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Pulsed laser beams with two-dimensional smoothing by spec-
tral dispersion (2-D SSD), used in inertial confinement fusion
(ICF), improve the on-target uniformity on the OMEGA laser
system;1–4 however, 2-D SSD is highly susceptible to signifi-
cant amplitude modulation (AM) during its generation and
propagation.5–8 In addition to on-target uniformity, the smooth-
ness of the pulsed beam as it propagates through the long laser
amplifier chain is important because of the perennial concern
regarding laser damage. Small-scale, nonlinear self-focusing
can occur as the pulsed beam propagates through various
optical components because of the large fluences inherent in
ICF applications. Any AM, in space or time, present on the
pulsed beam may induce self-focusing and lead to damage.
OMEGA utilizes many spatial filters to help alleviate the
buildup of high spatial frequencies that tend to self-focus. In an
effort to reduce the overall AM, it is imperative that the AM
produced by the SSD driver line is at an absolute minimum.

A complete analysis of the SSD driver line requires a
model that accounts for diffraction and spatiotemporal spec-
tral effects of the many optical components that comprise the
driver during both the generation and propagation of 2-D SSD
beams. AM sources and other nonideal behavior can occur at
any point in the SSD driver line, and the impact of a particular
optical component depends on its relative location and the
parameters that describe the SSD operation. Laser beam propa-
gation codes that include SSD as part of an entire ICF laser
system modeling exist at other laboratories, for example,
Prop92 at LLNL and Miró at CEA; however, they do not
emphasize the underlying optical components in the SSD
driver line. A comprehensive understanding of the AM issue
and other nonideal behavior entails a rigorous examination of
the specific optics involved in the SSD driver line, including
the effects of multiple-layered dielectric media, crystal bire-
fringence, multiple co-propagating beams, nonlinear grating
behavior, and far-field distortion. A model must be able to
simulate the nonideal effects, predict the relative impact, and
characterize the behavior so that experimental measurements
can be used to diagnose and excise the problem.

Angular Spectrum Representation of Pulsed Laser Beams
with Two-Dimensional Smoothing by Spectral Dispersion

The code (Waasese) developed to address the AM issue in
the SSD driver line simulates many optical components, pre-
dicts the degree of AM, and characterizes the AM mechanisms
in terms of measurable signatures. Different AM sources are
measured on near-field streak camera images and exhibit
distinct spatiotemporal patterns, trends in the temporal spec-
trum, and/or AM that varies as a function of an SSD parameter.
Waasese simulations associate these distinct characteristics or
signatures to particular optic components. These signature/
component relationships are then exploited to diagnose, lo-
cate, and eliminate the AM sources when used in conjunction
with experimental measurements. Waasese has been success-
fully used to locate some AM sources and identify solutions in
the new double-pass 2-D SSD driver line scheduled for instal-
lation on OMEGA. Waasese is based on the angular spectrum
representation, which accurately models diffraction and spa-
tiotemporal spectral effects. Waasese is not limited to AM
issues and has been used to model observed far-field distortion.
Waasese’s inherent flexibility facilitates future enhancements
as other laser propagation issues arise.

Waasese models the individual optical components of the
SSD driver line using a transfer-function approach as opposed
to applying the ideal spatiotemporal dependent phase term. An
angular spectrum representation and/or a thin optic phase
transformation describes the transfer functions of the optical
components. This approach models SSD generation in a step-
wise fashion so that nonideal components, such as wave plates,
may be included at any point in the process such as in between
the preshear and dispersion gratings. This is an important issue
because the degree to which optical components contribute to
AM depends on their relative location in the SSD driver line.
For example, surface roughness of a far-field retro mirror of the
second SSD dimension will produce AM on the first but not the
second dimension because the second dimension has not been
dispersed at this point. Also, the AM induced by the crystal
birefringence of the second SSD dimension can be compen-
sated, provided that re-imaging takes place prior to the final
grating. Additional examples of the modeling capabilities of
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Waasese include nonlinear behavior of gratings, multiple sur-
face reflections from a crystal in combination with an end
mirror that produce co-propagating beams with offset spa-
tiotemporal spectra, angular-dependent phase modulation depth
that produces distorted far-field spectra, multiple-layered di-
electric coatings that model high-reflection (HR) or antireflec-
tion (AR) coatings, etalon effects that modulate the temporal
spectrum, spatial phase modulation of irregular surfaces, and
image rotation between grating pairs. Waasese is capable of
modeling arbitrary initial spatial and temporal profiles such as
Gaussian, hyperbolic tangent, square, round, and elliptical. A
postprocessor for Waasese incorporates various instructional
data-visualization techniques of the spatiotemporal intensity
and phase history of 2-D SSD pulsed beams: a spatiotemporal
cross section, a spatial cross section, a false-color instanta-
neous wavelength overlay, a time-averaged far-field view, and
a time evolution of the far-field pattern. These data-visualiza-
tion techniques provide valuable insight into various problems
that arise and their subsequent solutions.

The angular spectrum representation provides a straight-
forward analytical and numerical method to accurately ana-
lyze the generation and propagation of 2-D SSD pulsed laser
beams. The angular spectrum representation decomposes a
pulsed beam into a continuous linear sum of harmonic plane
waves that individually propagate with a unique direction and
temporal frequency through the laser system. Each harmonic
plane wave is completely described by three parameters: kx, ky,
and ω. When the resultant harmonic plane waves are summed,
a representation of a 2-D SSD pulsed laser beam is obtained
that accurately models diffraction and spatiotemporal spectral
effects. Certain optical components require a thin optic phase
transformation operation, in real space, whenever the optical
surfaces are not planar, e.g., lenses, irregular surfaces on mirror
coatings, and surface roughness of optical finishing.

In this article we first describe the angular spectrum repre-
sentation of the two main elements of the SSD operation used
in Waasese: gratings and electro-optic (EO) phase modulators.
We then apply these transfer functions to the ideal generation
of 2-D SSD, which provides a foundation of comparison for
the nonideal cases. Ideal 2-D SSD utilizes a linearized grating
equation and a pure phase-modulation operation. Analytical
expressions and Waasese demonstrate that the application of
the ideal transfer functions reduces the problem to the well-
known spatiotemporal-dependent phase term that describes
2-D SSD.1,2 We also introduce the frequency domain and real-
space data visualization capabilities of the Waasese post-

processor. Finally in a section covering nonideal 2-D SSD
generation we discuss various errors and/or nonideal effects
that include nonideal gratings, nonideal phase modulators,
crystal birefringence, Littrow mount error, image rotation,
temporal spectrum modulation, spatial spectrum modulation,
and image-plane errors.

Angular Spectrum Representation
Consider the electromagnetic field of the pulsed laser beam

that propagates along the beam axis ẑ  within a nonmagnetic,
nonconducting, source-free, linear, causal, spatially and tem-
porally homogeneous, isotropic, and spatially and temporally
locally linear dielectric medium described by a constant refrac-
tive index n ≡ µε µ ε0 0 . Let the electric field E′(r,t) of the
pulsed laser beam be defined on an image plane at z = z0:

E E0
0

′ ( ) ≡ ′( )
=

r rT
z z

t t, , , (1)

where the position vector and transverse position vector are
defined, respectively, by

r x y z≡ + +x y zˆ ˆ ˆ (2)

and

r x yT x y≡ +ˆ ˆ (3)

in the right-handed rectangular coordinate system (x,y,z) with
the corresponding unit vectors ˆ , ˆ, ˆx y z( ) . In addition, let the
pulsed laser beam possess the form of a modulated carrier of
angular frequency ωc:

E E0 0′ ( ) ≡ ( )r rT T
i tt t e c, , ,ω (4)

where E r0 T t,( )  is the spatiotemporal envelope of the pulsed
beam. The angular spectrum of the electric field at the image
plane is given by the forward, three-dimensional, spatial spa-
tiotemporal Fourier-Laplace transform (compare Ref. 9, §5.1
and Ref. 10, Chap. 4):
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The wave vector and transverse wave vector are defined,
respectively, as
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k x y z≡ + +k k kx y zˆ ˆ ˆ (6)

and

k x yT x yk k≡ +ˆ ˆ , (7)

where the transverse wave numbers or spatial frequencies kx
and ky are real-valued and the longitudinal wave number kz is
given by the principle root of the expression

k k n kz T≡ −0
2 2 2  , (8)

and k k kT x y
2 2 2≡ + . The quantity k c0 2≡ = ′π λ ω  is the vac-

uum wave number, ω′  is the angular frequency of the electro-
magnetic disturbance that is centered about the carrier ωc,

′ ≡ +ω ω ωc , (9)

and c ≡ 1 0 0µ ε  is the vacuum speed of light.

Free-space propagation of the electric field of the pulsed
laser beam along the beam axis in any source-free and homog-
enous region of dielectric is given exactly by the angular
spectrum representation (compare Ref. 9, §5.1)
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where ∆z ≡ z − z0. The expression given in Eq. (10) is an exact
solution to Maxwell’s equations in an isotropic, source-free
dielectric medium. Any inaccuracies associated with this
method amount to assumptions made about the field behavior
E r0 T t,( )  on the initial plane z = z0 (such as assuming scalar
fields or Fresnel-Kirchoff boundary conditions) or when ap-
proximating the integrals as summations when performing
numerical simulations. When k k nT

2
0
2 2≤ , the longitudinal

wave number kz is real-valued and the integrand of Eq. (10)
represents homogenous plane waves with spectral amplitudes
or angular spectra ˜ ,E k0 T ω( )  whose phase fronts propagate in
the direction given by the wave vector k x y z≡ + +k k kx y zˆ ˆ ˆ .
Thus, the angular spectrum representation decomposes an
arbitrary pulsed laser beam into a continuous sum of homoge-
neous plane waves that propagate in a unique direction and

with an angular frequency ω′ . The expression in Eq. (10)
represents the general case of vectors and is certainly valid for
each individual vector component; therefore it is applicable to
the scalar diffraction problems presented in this article.

A useful measure that marks the boundary between the near
field and far field for diffraction problems is the Rayleigh
range given by (Ref. 11, p. 714)

z
A

c
R ≡

λ
, (11)

where A is the area of the beam (see Table 78.II for typical
numbers on OMEGA). Another useful parameter is the Fresnel
number given by

N
a

zc
≡

2

λ ∆
, (12)

which measures the number of Fresnel zones contained within
an aperture of width or diameter 2a. For full-aperture illumina-
tion, the Fresnel number will determine the number of strong
ripples apparent in the near-field diffraction pattern. However,
a beam with a supergaussian profile or other rounded square
shapes such as a hyperbolic-tangent will not exhibit these
strong ripples (Ref. 11, p. 739). For this reason, the simulations
presented here utilize these shapes to reduce the edge diffrac-
tion ripples in order to emphasize other diffraction effects.
Waasese is based on the angular spectrum representation and
is therefore inherently capable of modeling any beam shape or
temporal profile.

Elements of the SSD Operation
The two basic elements of the SSD operation in terms of the

angular spectrum representation—gratings and EO phase
modulators—are presented as transfer functions in both real
and frequency space to describe the complex 2-D SSD system
as a set of interchangeable operations. This method also
develops a sense of the resultant frequency-domain effects of
each operation and its relation to the real space.

1. The Grating Equation
The grating equation relates an incident harmonic plane

wave to a transmitted (or reflected) harmonic plane wave that
is given by12

sin sin  ,θ θ λ
i t m

d
( ) + ( ) = − (13)
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where θi and θt are the incident and transmitted angles relative
to the grating normal, m is the order of the grating, d is the
groove spacing, λ ≡ 2πc/ω′  is the wavelength, and ω′  ≡ ωc +
ω is the angular frequency that is centered about the carrier ωc.
The gratings in the SSD driver lines at LLE are used in
transmission mode with an order m = −1 (see Fig. 78.6).
Solving Eq. (13) for θt with an order m = −1 yields

θ λ θt id
= − ( )





−sin sin .1 (14)

Taking the derivative of Eq. (14) with respect to λ yields the
grating dispersion

d

d

θ
λ λ θ

t

id
d

=

− − ( )





1

1
2

sin

 . (15)

For the SSD laser systems at LLE, the gratings are typically
in a Littrow mount, which is defined to be when the angles of
the incident and transmitted plane waves are equal for a
particular design wavelength, i.e., θLitt ≡ θi = θt. Under this
condition, an incident pulsed beam will retain its incident beam
diameter and is described by

sin  ,θ λ
Litt( ) = c

d2
(16)

where λ π ωc cc= 2  is the central or design wavelength. Typi-
cally, the design parameters for a grating are the central
wavelength λc and a desired amount of dispersion d dθ λt
while assuming a Littrow mount, which then determines the
grating groove spacing d by substituting Eq. (16) into Eq. (15).
Once a grating design is realized, an operating point has been
determined on the d dθ λt  curve, which can be seen in the
example illustrated in Fig. 78.7. When the bandwidth ∆λ that
is induced by the SSD system is small enough, then the slope

Figure 78.6
The coordinate systems for the incident and transmitted pulsed beams that
traverse a grating in transmission mode of order m = −1. Notice that the beam
axis (z) remains unaltered as a result of the grating operation; indicating the
rotation from the incident to the transmitted coordinate system as the beam
axis follows the course of the real beam.

Table 78.II: The Rayleigh range ∆zR, the color-separation distance ∆zcrit, and their ratio  for various
beam diameters and two values of applied bandwidth for a dispersion of  = 197 µrad/Å and
grating beam diameter Dgrating = 44 mm.

Diameter (cm)

0.11 0.22 0.55 1.938 4.4 8.488 14.63 19.52 27.33

∆zR (m) 0.902 3.608 22.55 280 1443 5371 15956 28405 55683

∆zcrit (m), 1.5 Å 0.186 0.745 4.653 57.77 297.8 1108.2 3292.4 5861.1 11489

0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206 0.206

∆zcrit (m), 3.0 Å 0.093 0.372 2.327 28.89 148.9 554.12 1646.2 2930.6 5744.7

0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103 0.103
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Figure 78.7
The design points on (a) the grating equation θ t  and (b) the grating dispersion
equation d dθ λt  for λc = 1053 nm, θLitt = 46°, and d = 0.732 µm/groove.

d dθ λt  is nearly constant over that bandwidth; however, since
Eq. (15) is inherently nonlinear, beam distortion becomes more
significant as the bandwidth increases.

Consider an incident modulated pulsed laser beam with an
angular carrier frequency of ωc, pulse duration τ, and diameter
D impinging upon a grating that disperses along the ŷ  direc-
tion. Define the incident beam axis (z) to make an angle Θi with
regard to the grating normal in the y-z plane. Then define a
transmitted-beam axis that makes an angle Θt with regard to
the grating normal. (This situation is illustrated in Fig. 78.6.)
By decomposing the incident pulsed laser beam into its angular
spectrum, the grating equation (14) may be used to accurately
describe the action of the grating in the spatiotemporal fre-
quency space. The grating acts as an angular transformation
operation that redirects or maps each incident plane wave
(completely described by the parameters kx, ky, and ω) onto the
transmitted-beam axis. Notice that the image plane will be
rotated onto the transmitted-beam axis as indicated in

Fig. 78.6. Only the wave number in the ŷ  direction is altered
during this transformation, and, in general, the new transverse
wave number is a function of both the transverse wave number
and the angular frequency, i.e., k ky yg

,ω( ) . The transformation
operation k ky yg

,ω( )  is referred to as the grating angular
dispersion, which acts along the ŷ  direction as denoted by the
subscript y. The grating angular dispersion may be expressed
as [compare Eq. (14)]
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where k0 ≡ ω′ /c, λ ≡ 2πc/ω′ , and ω′  ≡ ωc + ω. The electric field
of the transmitted pulsed laser beam is expressed, in general,
by

E t E e e k kg T g T
i i

x yT Tr k k r, ˜ ,( ) =
( )

( ) ⋅⌠
⌡

⌠
⌡

⌠
⌡

−
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1

2 3π
ω ωω t d d d (18)

with the associated distorted angular spectrum given by

˜ , ˜ , , .E E k kg T x yg
k ω ω( ) = 



0 (19)

The action of the grating may be interpreted as a nonlinear
mapping of the angular spectrum onto a new spectral grid,
which is nonuniform in general. Consequently, in general,
Eq. (18) is not suitable for fast Fourier transform (FFT)
algorithms, and a proper treatment requires a slow Fourier
transform operation to regrid the data. Under certain approxi-
mations, however, Eq. (18) is suitable for FFT algorithms,
which are then used to regrid the angular spectrum back onto
the original grid: first, assuming that the angular dispersion is
a linear function of the transverse wave number ky and, second,
assuming an additional linear dependence of the temporal
frequency ω. Waasese can be configured to run in any of these
three modes to calculate the grating effects where a tradeoff
of speed versus accuracy must be made.

The first assumption may be expressed as a first-order
Taylor series expansion about the transverse wave number ky:
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The partial derivative in Eq. (20) is given by
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If the grating is in the Littrow mount and is tuned to the center
frequency ωc, then evaluating the partial derivative at ky = 0
yields

k k k n
dy y

k
t ig
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and while assuming that ω′  ≅  ωc,
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Substituting Eqs. (22) and (23) into Eq. (20) gives

k k k ky y y yg g
, ˆ  ,ω( ) = + (24)

where ˆ ,k ky yg g
ω ω( ) ≡ ( )0 . A change of variables defined by

Eq. (24) yields [compare Eq. (18)]
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Since k̂yg
 is only a function of the temporal angular frequency

ω, the inverse 2-D spatial Fourier transform operation yields
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The distorted angular spectrum is then given by
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The utility of Eq. (28) lies in the ability to regrid the angu-
lar spectrum using conventional FFT algorithms. Waasese
applies three operations to the initial angular spectrum
˜ ,E0 kT ω( )  to regrid the distorted angular spectrum ˜ ,Eg Tk ω( )

onto the original numerical grid: inverse spatially transform
the ky dimension, apply the distortion term

e ik yyg− ( )ˆ
,ω

and, finally, forward spatially transform the y dimension.

The second assumption may be expressed as a bivariate,
first-order Taylor series expansion:
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where ω′  ≡ ωc + ω. The partial derivative with regard to ω in
Eq. (29) is given by
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If the grating is in a Littrow mount tuned to the center fre-
quency ωc, then
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Equation (29) can then be written as

k k ky y y gg
,ω ξ ω( ) = + (34)

and is known as the linearized grating angular dispersion,
where Eq. (15) has been used in the definition
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The transmitted pulsed laser beam then becomes a temporally
skewed or sheared version of the incident pulsed beam:
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where a temporal delay is imposed across the beam by an
amount defined by

τ ξD gD= . (36)

The angular spectrum is also sheared and is given by

˜ , ˜ , , .E E k kg T x y gk ω ξ ω ω( ) = +( )0 (37)

During numerical simulations, Waasese regrids the initial
angular spectrum ˜ ,E0 kT ω( )  using the technique described in
association with Eq. (28).

2. The EO Phase Modulator
A strong microwave or radio frequency (RF) field inside a

cavity resonator can modulate the optical refractive index of a
nonlinear crystal such as lithium niobate (LiNbO3).13 The
ideal EO phase modulator operates only in the time domain by
applying the sinusoidal time-varying phase function

ei tδ ωM Msin( )  to the optical electric field as

E t E t eT T
i t

M
M Mr r, , ,sin( ) = ( ) ( )

0
δ ω (38)

where δM is the modulation depth and υ ω πM M≡ 2  is the RF
modulation frequency. This modulation scheme is referred to
as pure-tone phase modulation that is a specific type of a
general class known as exponential or angle modulation and is
inherently a nonlinear process. In general, the bandwidth ap-
plied by phase modulation has infinite extent, and discarding
any portion will result in distortion and a degradation of signal
fidelity, e.g., AM. Practically, the significant bandwidth ap-
plied by phase modulation is concentrated in a finite spectral
region, which is a function of the modulation depth δM. The
question then becomes How much bandwidth is required to
retain adequate signal integrity? (See Carlson Ref. 14, pp. 239–
245 for an in-depth discussion.)
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The applied bandwidth is estimated by Carson’s rule:

∆ ∆υ ω
π

δ υ= ≈ +( )
2

2 1M M , (39)

which appropriately goes to the limiting cases.

∆υ
δ υ δ

υ δ
=

>>
<<





2 1

2 1
M M M

M M
 ; (40)

however, Carson’s rule underestimates the bandwidth for the
range 2 < δM < 10. The bandwidth is more accurately estimated
by

∆υ δ υ≈ +( )2 2M M (41)

for modulation depths δM > 2. The applied bandwidth may also
be expressed in terms of the wavelength as

∆ ∆
∆λ λ

λ
υ

υλ= −
−

















≅2

2

2

c

c

cc
c c

 , (42)

where any estimate for ∆υ can be applied. Typically, the
estimate for the bandwidth given by 2δMυM is quoted in the
literature on SSD applications (even for modulation depths δM
< 10). This convention will be followed in this article for
consistency not accuracy.

Equation (38) can be written as an equivalent series expan-
sion given by (compare Ref. 14, p. 228)

E t E t J eT T l
il t

l
M M Mr r, , .( ) = ( ) ( )

=−∞

∞

∑0 δ ω (43)

The spatiotemporal Fourier-Laplace transform of Eq. (43)
yields the replicated angular spectrum

˜ , ˜ ,  .E k E k J lT T l
l

M M Mω ω δ δ ω ω( ) = ( ) ( ) −( )∗
=−∞

∞

∑0 (44)

The original angular spectrum ˜ ,E kT ω( )  is replicated with a
spacing of ωM and amplitudes determined by the Bessel
functions of the first kind Jl δ M( )  by virtue of the convolution
process denoted in Eq. (44) by the symbol *. If the original
bandwidth is not small compared to the modulation frequency,
some overlap will exist from one band to the next. As long as

the overlap is small, which is generally the case for well-
defined systems, the spectral peaks will be well defined. Even
if overlap does occur, it does not affect the validity of the linear
superposition implied by Eq. (44). Figure 78.8(a) illustrates a
spectrum obtained for a 1-ns pulse using the parameters δM
= 6.15 and νM = 3.3 GHz.

Like any form of exponential modulation, pure-tone phase
modulation possesses the unique property of constant ampli-
tude. Maintaining a constant amplitude with a sinusoidal phase
variation is best understood using a phasor interpretation
where phasors for the carrier plus every sideband are vector-
summed in phasor space as illustrated in Fig. 78.9. The result-
ant phasor sinusoidally sweeps back and forth (by an amount
determined by the modulation depth δM) in phasor space while
maintaining constant amplitude. All of the odd-order side-
band pairs are in phase quadrature (due to the fact that
the components of an odd-order pair have equal magnitude
with opposite sign, i.e., J Jl

l− ( ) = −( ) ( )1 1δ δM M  [see Ref. 15,
p. 258, Eq. (9.1.5)], and all of the even-order sideband pairs

Figure 78.8
The temporal spectrum for (a) a pure-tone and (b) a two-tone phase-modu-
lated optical pulse. The pulse duration is τ = 1 ns and the parameters are δM1

= 6.15, νM1 = 3.3 GHz, ∆λM1 = 1.5 Å, δM2 = 13.5, νM2 = 3.0 GHz, and ∆λM2

= 3.0 Å.
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discussion). The constant amplitude inherent in phase modula-
tion relies on the delicate balance of the amplitudes and phases
of its spectral components. Any deviation in this balance
results in distortion that can exhibit itself as AM.

Ideal 2-D SSD Generation
Here we describe the step-by-step process that Waasese

uses to generate 2-D SSD. Ideal 2-D SSD is produced when the
transfer functions given by Eqs. (37) and (44) are used. An-
alytical expressions are also developed and are shown to be
equivalent to a generalization of Ref. 3, which includes beam
shape. Ideal 2-D SSD is generated by a series of two ideal 1-D
SSD operations performed on the two orthogonal transverse
spatial directions of a seed-pulsed laser beam. Each 1-D SSD
operation consists of an EO phase modulator sandwiched
between a grating pair, such that an image plane exists at each
grating plane. The angular spectrum representation of the
grating and EO modulator, developed in the previous section,
is drawn upon to illustrate the frequency-domain effects and
how they relate to real space.

1. 1-D SSD Operation
Since each of the gratings is assumed to be at an image

plane, this implies that some kind of image-relaying system
must be in place. For practical SSD systems, these are afocal
image relay telescopes with slow lenses that do not contribute
significant aberrations. Figure 78.10 depicts the 1-D SSD

are collinear with regard to the carrier. The odd-order pairs
contribute to the desired sinusoidal phase modulation plus
unwanted amplitude modulation. The even-order pairs com-
pensate for the unwanted amplitude modulation imposed by
the odd-order pairs (see pp. 230–233 of Ref. 14 for a complete

Figure 78.10
A schematic representation of the 1-D SSD operation showing the two important functions: gratings and EO phase modulator. In addition, the image planes
are indicated along with the function names and a rough sketch of the field shape, in both real and frequency space, after each operation.

Figure 78.9
Phasor diagram of pure-tone phase modulation that depicts the phasor pairs
for a small modulation depth. The diagram depicts how the even-order pairs
compensate for the unwanted amplitude modulation imparted by the odd-
order pairs. (Adapted from Ref. 14, p. 232, Fig. 6.7.)
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operation with the three major components, including the field
names at certain locations. If the bandwidth ∆λ (typically 1 Å
< ∆λ < 12 Å) introduced by the SSD system is small relative to
the operating wavelength λc (for OMEGA the IR wavelength
is 1053 nm), then the linearized grating angular dispersion
Eq. (34) is an adequate representation of the grating and serves
this section by demonstrating the ideal or desired response of
an SSD system.

Consider a seed-modulated pulsed laser beam with an
angular carrier frequency of ωc, pulse duration τ, and diam-
eters Dy and Dx. The electric field is defined on an image plane
as E0 rT t,( )  with the associated angular spectrum ˜ ,E0 kT ω( )
and is image relayed onto the input of grating G1. Let the
first grating G1 preshear the pulsed beam with a linearized
angular dispersion of −ξy along the ŷ  direction. Consequently,
the sheared field after the grating G1 is given by [compare
Eq. (35)]

E t E t yT T yG1 0r r, , ,( ) = +( )ξ (45)

where a temporal delay is imposed across the field by an
amount given by τ ξD y yy

D= . The angular spectrum is also
sheared and is given by [compare Eq. (37)]

˜ , ˜ , , ,E E k kT x y yG1 0k ω ξ ω ω( ) = −( ) (46)

where the angular spectrum has been distorted only in the
direction parallel to the ky axis by the quantity ξyω. A repre-
sentation of the sheared field and angular spectrum is illus-
trated in Fig. 78.10. Let the EO phase modulator have a
modulation depth of δM1 and a RF modulation frequency of
υ ω πM M1 1 2= . By combining the results from Eqs. (43) and
(45), the electric field becomes

E t E t e

E t J e

T T
i t

T l
il t

l

M G

G M

M M

M

1 1

1 1

1 1

1

r r

r

, ,

,

sin( ) = ( )

= ( ) ( )

( )

=−∞

∞

∑

δ ω

ωδ (47)

and the replicated-sheared angular spectrum is given by

˜ , ˜ , .E E J lT T l
l

M G M M1 1 1 1k kω ω δ δ ω ω( ) = ( ) ( ) −( )∗
=−∞

∞

∑ (48)

A representation of the phase-modulated sheared field and
angular spectrum is illustrated in Fig. 78.10. The second

grating G2 now acts to disperse the increased bandwidth and
remove the preshear from the first grating G1. Let the linear-
ized angular dispersion be of equal magnitude and in the same
direction as the first grating but with opposite sign, i.e., +ξy
(this is realized through the image flip of an odd number of
image relays), so that the electric field becomes

E t E t yT T yG M2 1r r, , ,( ) = −( )ξ (49)

and the unsheared angular spectrum is given by

˜ , ˜ , , .E E k kT x y yG M2 1k ω ξ ω ω( ) = +( ) (50)

After substituting the results of Eqs. (45)–(47)

E t E t y e

E t e

E t J e

T T y
i t y

T
i t y

T l
il t y

l

y

y

y

G G

M

M M

M M

M

2 1

0

0 1

1 1

1 1

1

r r

r

r

, ,

,

,  .

sin

sin

( ) = −( )

= ( )

= ( ) ( )

+( )[ ]

+( )[ ]

+( )
=−∞

∞

∑

ξ

δ

δ ω ξ

δ ω ξ

ω ξ (51)

The angular spectrum of the 1-D SSD operation is then given
by the spatiotemporal Fourier-Laplace transform of Eq. (51):

˜ , ˜ ,

, , ,

E E

J k k l l

T T

l x y y
l

G

M M M

2 0

1 1 1

k kω ω

δ δ ξ ω ω ω

( ) = ( )

( ) − +( )∗
=−∞

∞

∑ (52)

where it is important to notice that exact replicas of the
original spectrum, modified only by the amplitude of the
Bessel functions of the first kind Jl δM1( ) , are centered on a
regularly spaced line or comb of delta functions described by
the summation operation. The comb of delta functions lies
along the line ky = ξyω on the ky − ω plane of the 3-D
spatiotemporal spectrum and are spaced by ξyωM1 on the ky
axis and ωM1 on the ω axis. A representation of the final field
and angular spectrum is illustrated in Fig. 78.10. Each replica
of the original angular spectrum in Eq. (52) can be interpreted
as an individual colored-pulsed beam with an associated wave-
length or color λ ≡ 2πc/ω′ , where ω′  = ωc + lωM1, whose phase
front advances in the direction k x y z≡ + −( ) +k k l kx y y zˆ ˆ ˆξ ωM1 .
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It is important to notice that, for propagation distances ∆z
<< zR (such that minimal edge diffraction takes place for
rounded square beams), the individual colored-pulsed beams
retain their shape and continue to propagate along the beam
axis and only the phase fronts break across the beam in a
different direction. The individual colored beams will eventu-
ally separate since the energy flows along the direction k. The
distance that colored-pulsed beam shifts in the transverse
direction is given approximately by

∆ ∆ ∆y zl l= ( )tan ,θ (53)

where

∆ ∆θ ξ
λ

λl g
c

l
c D

D
= grating ,

(54)

∆λ λ νl c c l≅ ( )2
1M  is the spectral offset of a particular color,

and Dgrating is the beam diameter at the grating. The critical
propagation distance for color separation is defined as when
the outermost colored-pulsed beam has shifted by one beam
diameter, i.e., ∆y = Dy, and is approximated by

∆
∆ ∆ ∆

z
D D

c

D

D
y y

g

c y
crit

grating
=

( )
≅ =

tan
 ,

θ θ ξ
λ

λ
2 2

(55)

Figure 78.11
Spatiotemporal slices along (a) the y-t plane and (b) the x-t plane of a 1-D SSD pulsed beam with an overlay of the instantaneous wavelength ˆ ,λ rT t( )
superimposed onto the intensity profile for the system parameters δM1 = 6.15, νM1 = 3.3 GHz, ∆λM1 = 1.5 Å, τ = 1 ns, Ncy

≅ 1 , τ = 1 ns, Dy = Dx = 44 mm,
and where hyperbolic-tangent profiles were used in the spatial and temporal dimensions.

where ∆λ is the applied bandwidth given by Eq. (42). The data
in Table 78.II represents ∆zR, ∆zcrit, and ∆ ∆z zcrit R  for vari-
ous OMEGA beam diameters for the system parameters:
d dθ λ ωt =0  = 197 µrad/Å, ∆λM1 = 1.5 Å, 3.0 Å, and Dgrating
= 44 mm.

The electric field of a pulsed beam is a complex three-
dimensional object whose intensity distribution, in space, is
suitably described as a brick of light that moves along the
propagation axis at the group velocity of the pulse. At one
position of the propagation axis, the intensity of the brick of
light is distributed about the transverse spatial dimensions as
described by the beam profile and in time as described by the
pulse shape. Taking different kinds of cross sections or slices
of the brick of light is a way to visualize the multidimen-
sioned data. A spatiotemporal cross section illustrates the
intensity history of the pulsed beam. As an example, a spa-
tiotemporal slice of a 1-D SSD pulsed laser beam is shown in
Fig. 78.11 for two orthogonal directions with the system
parameters δM1 = 6.15, νM1 = 3.3 GHz, ∆λM1 = 1.5 Å, τ = 1 ns,
Dy = Dx = 44 mm, and where stepped hyperbolic-tangent
profiles were used in the spatial and temporal dimensions. In
addition a false-color representation of the instantaneous wave-
length is defined by

1.0

0.8

0.6

0.4

0.2

0.0
4

2
0

–2
–4 –1.0

0.0
0.5

–0.5
Time (ns)

1.0

1053.06 nm

1053.04

1053.02

1053.00

1052.98

1052.96

1052.94

In
te

ns
ity

 (
W

/c
m

2 )

1.0

0.8

0.6

0.4

0.2

0.0
4

2
0

–2
–4 –1.0

0.0
0.5

–0.5
Time (ns)

1.0
Transverse y axis (cm)

Transverse x axis (cm)
TC5017

(a) (b)



ANGULAR SPECTRUM REPRESENTATION OF PULSED LASER BEAMS

LLE Review, Volume 78 73

ˆ ,
ˆ

 ,λ

λ
ν

rT

c

t
c

c( )≡
−

(56)

where the instantaneous frequency is given by

ν̂
π

ϕ≡ ∂
∂

1

2 t
(57)

and ϕ is the instantaneous phase of the field of the form

e ei y t i tcϕ ω,( ) . The instantaneous wavelength is shown mapped
onto the 3-D intensity surface, in effect, displaying the phase
information of the electric field as a fourth dimension of data.
The resultant dispersed spectrum of the 1-D SSD operation is
displayed across the beam as one cycle of instantaneous
wavelength or color, i.e., every color is displayed twice as the
RF phase modulation cycles through 2π radians. In general,
the fraction of RF phase-modulation cycles completed during
the temporal shear τ ξD y yy

D= , imposed by the first grating
G1, and displayed across the beam as a result of the second
grating G2, is determined by the number of color cycles
(compare to Ref. 1):

Nc Dy y
≡ τ ν M1 . (58)

The instantaneous wavelength (or color) is not to be confused
with the discrete colored-pulsed beams mentioned in the pre-
vious paragraph; the instantaneous wavelength is a continuous
function defined in the temporal domain, whereas the other
forms a discrete set defined in the temporal frequency domain.
The bandwidth of the instantaneous frequency is given by

∆ ˆ .ν δ ν≡ 2 1 1M M (59)

Notice that no approximation is made here as compared to the
frequency-domain bandwidth described by Eqs. (39) and (41),
and that it equals the bandwidth in the limit of large modulation
depths given by Eq. (40). This fact illustrates the important

Figure 78.12
A schematic representation of the 2-D SSD operation, which exhibits a series of two 1-D SSD operations that act on two orthogonal directions x̂  and ŷ .

difference between the instantaneous frequency and that of the
frequency domain. When used with care, however, the instan-
taneous frequency is useful in describing some optical effects
(such as etalons) since the modulation rate is slow compared to
the underlying optical carrier. Another very important differ-
ence is that ˆ ,λ rT t( ) is a smooth, continuous function, and the
frequency-space spectrum is comprised of a discrete set of
frequencies (broadened only by the finite duration of the pulse
width) as described by Eq. (44).

2. Series of Two 1-D SSD Operations
Consider, in a manner analogous to the previous subsection,

a seed-modulated pulsed laser beam with an angular carrier
frequency ωc, pulse duration τ, and diameters Dy and Dx. The
electric field is defined on an image plane as E0 rT t,( )  with the
associated angular spectrum ˜ ,E0 kT ω( )  and is image relayed
onto the input of grating G1. A diagram of the 2-D SSD system
is shown in Fig. 78.12. Let the first SSD operation be given by
Eqs. (51) and (52). Let the first grating of the second-dimen-
sion G3 operation preshear the pulsed beam with a linearized
angular dispersion of −ξx along the direction x̂ . Consequently,
the sheared field after the grating G3, in terms of the results
from the first dimension Eq. (35), is given by

E t E t xT T xG G3 2r r, ,  ,( ) = +( )ξ (60)

where a temporal delay imposed across the field is an amount
given by τ ξD x xy

D= . The sheared angular spectrum is given
by [compare Eq. (37)]

˜ , ˜ , , ,E E k kT x x yG G3 2k ω ξ ω ω( ) = −( ) (61)

where the angular spectrum has been distorted only in the
direction parallel to the kx axis by the quantity δM2. Let the
second EO phase modulator have a modulation depth of δM2
and a RF modulation frequency of υ ω πM M2 2 2= . The
electric field becomes

{–  y,  }ωξ {+  y,  }ωξ {–  x,  }ωξ x,  M2
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and the replicated-sheared angular spectrum is given by

˜ , ˜ ,
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k kω ω

δ δ ω ω

( ) = ( )

( ) −( )∗
=−∞

∞

∑ (63)

The second grating of the second dimension G4 now acts to
disperse the increased bandwidth and removes the preshear
from the grating G3. Let the linearized angular dispersion be of
equal magnitude to the grating G3 but with opposite sign, i.e.,
+ξx, so that the electric field becomes

E t E t xT T xG M4 2r r, ,( ) = −( )ξ (64)

and the unsheared angular spectrum is given by

˜ , ˜ , ,  .E E k kT x x yG M4 2k ω ξ ω ω( ) = +( ) (65)

After substituting the results of Eqs. (52), (55), (57), and (60),
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Equation (66) represents a generalization of Ref. 3, which
includes beam shape. The angular spectrum of the 2-D SSD

operation is then given by the spatiotemporal Fourier-Laplace
transform of Eq. (66):
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where it is important to notice that exact replicas of the original
spectrum, modified only by the amplitudes of the Bessel
functions of the first kind Jl δM1( )  and Jm δM2( ) , are centered
on a regularly spaced grid or field of delta functions formed by
the innermost convolution operation. The field of delta func-
tions lies on the plane k kx x y yξ ξ ω+ =  in the 3-D spa-
tiotemporal spectrum and are spaced by ξyωM1 in the direction
of the ky axis, by ξxωM2 in the direction of the kx axis, and by
linear combinations of both ωM1 and ωM2 in the direction of
the ω axis. Notice that there exist sum and difference frequen-
cies, which is characteristic of two-tone phase modulation (see
Ref. 14, pp. 233–234). An example of a two-tone phase-
modulated temporal spectrum is illustrated in Fig. 78.8(b) for
the parameters δM1 = 6.15, νM1 = 3.3 GHz, δM2 = 13.5, and
νM2 = 3.0 GHz.

Spatiotemporal cross sections of a 2-D SSD pulsed laser
beam with the instantaneous wavelength overlay is shown in
Fig. 78.13 for two orthogonal directions for the system param-
eters δM1 = 6.15, νM1 = 3.3 GHz, ∆λM1 = 1.5 Å, δM2 = 13.5,
and νM2 = 3.0 GHz, ∆λM2 = 3.0 Å, τ = 1 ns, Dy = Dx = 44 mm,
and where hyperbolic-tangent profiles were used in the spatial
and temporal dimensions. At any particular moment in time,
the resultant dispersed spectrum from the first dimension of
the 2-D SSD operation is seen displayed across the beam as a
smaller window of color (relative to the overall bandwidth).
As time progresses, the window of color is swept across the
total bandwidth. The number of color cycles of the second SSD
dimension is given by

Nc D Mx x
≡ τ ν 2 , (68)
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Figure 78.13
Spatiotemporal slices along (a) the y-t plane and (b) the x-t plane of a 2-D SSD pulsed beam. with an overlay of the instantaneous wavelength ˆ ,λ rT t( )
superimposed onto the intensity profile for the system parameters: δM1 = 6.15, νM1 = 3.3 GHz, ∆λM1 = 1.5 Å, Ncy

≅ 1 , δM2 = 13.5, and νM2 = 3.0 GHz, ∆λM2

= 3.0 Å, Ncx
≅ 0 9. , τ = 1 ns, Dy = Dx = 44 mm, and where hyperbolic-tangent profiles were used in the spatial and temporal dimensions.

Figure 78.14
Spatial cross sections of a 2-D SSD pulsed beam with an overlay of the instantaneous wavelength ˆ ,λ rT t( )  for the system parameters: δM1 = 6.15, νM1

= 3.3 GHz, ∆λM1 = 1.5 Å, Ncy
≅ 1 , δM2 = 13.5, and νM2 = 3.0 GHz, ∆λM2 = 3.0 Å, Ncx

≅ 0 9. , τ = 1 ns, Dy = Dx = 44 mm, and where hyperbolic-tangent profiles
were used in the spatial and temporal dimensions. The images are for two instants of time: (a) t1 = 0 ps and (b) t2 = 46 ps.

where τ ξD x xx
D= . The brick of light can also be sliced in

another direction, i.e., a spatial cross section at a particular
instant of time that illustrates how the instantaneous colors
move across the beam profile as time changes. Two examples

of the 3-D intensity profile of the beam, as viewed from above,
are illustrated in Fig. 78.14 with an instantaneous wavelength
overlay. The color center is seen to move across the beam. The
number of color cycles in each direction is readily observed.
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A useful diagnostic for 2-D SSD systems is the time-
averaged, far-field intensity structure of the pulsed beam. A
far-field camera operates by propagating the 2-D SSD pulsed
beam through a lens onto its focal plane, where a CCD or
film captures the image in a time-integrated sense. This pro-
cess takes advantage of the Fourier-transforming properties
of lenses. The object is assumed to be one focal length in front
of the lens (otherwise a phase curvature is imposed across
the far field), and the image is in the focal plane of the lens (see
Ref. 16, pp. 86–87). Waasese simulates this data by taking the
time average of the expression

˜ , , .I t n c E t e x yT T
i T Tfar field d dk r k r( ) ≡ ( ) ⋅⌠

⌡
⌠
⌡

−

−∞

∞
1

2 0 0

2

ε (69)

The expression given by Eq. (64) is equivalent to the far field
in real space, at the focal plane of the lens, by making the
transformations k x fx c≡2π λff  and k y fy c≡ 2π λff , where
xff and yff are the real-space, far-field coordinates and f is
the focal length of the lens. A time-averaged plot of Eq. (69)
is illustrated in Fig. 78.15 for the same system parameters of
this section. If the expression Eq. (64) is plotted directly as a
function of time, a movie of the far field can be generated. The
underlying far-field pattern remains constant while the spec-

Figure 78.15
Simulation of the time-averaged far field of a 2-D SSD pulsed beam for the
system parameters: δM1 = 6.15, νM1 = 3.3 GHz, ∆λM1 = 1.5 Å, Ncy

≅ 1 , δM2

= 13.5, and νM2 = 3.0 GHz, ∆λM2 = 3.0 Å, Ncx
≅ 0 9. , τ = 1 ns, Dy = Dx

= 44 mm, and where hyperbolic-tangent profiles were used in the spatial and
temporal dimensions.
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tral peaks change amplitude and can give the appearance of
movement when the number of color cycles is less than 1
(provided there are no other smoothing mechanisms).

Nonideal Effects
In realistic SSD driver lines, a variety of mechanisms

complicate the ideal situation described in the previous sec-
tion. Some mechanisms simply distort the pulsed beam and
others lead to AM. For example, if the preshear and dispersion
grating are misaligned, the dispersion grating will not com-
pletely remove the distortion placed on the beam by the
preshear grating. The result is a slight increase to the rise time
of the pulse as well as a distorted far-field pattern in the rough
shape of a rhombus. If the EO phase modulator has an angular-
dependent modulation depth, the bandwidth imposed by the
modulator will depend on the incident angle of the incident
harmonic plane waves. This effect in combination with a
grating misalignment explains the observed distorted far-field
images (see Fig. 78.16); however, these two effects do not
induce AM.

1. PM-to-AM Conversion Mechanisms
A variety of mechanisms destroy the ideal situation de-

scribed in the previous section by producing AM. In general,
they are referred to as PM-to-AM conversion mechanisms
since any disruption to the spectral components of perfect
phase modulation results in amplitude modulation. These
mechanisms fall basically into two main categories that refer
to the manner in which the spectral components can be altered:
phase and amplitude effects. If the relative phases or the
amplitudes of the spectral components are altered (with the
exception to a linear phase variation), the phasor components
will not add properly, resulting in AM. Waasese is well suited
to analyze all of these effects in the spatiotemporal domain
since it is based on the angular spectrum representation.

PM-to-AM conversion mechanisms further divide into tem-
poral or spatial domain effects. Temporal domain effects
directly control the phase or amplitudes by spectral filtering
through devices such as etalons and amplifiers with nonconstant
bandwidth. The transmissivity of etalons varies as a function of
wavelength, which modulates the spectral amplitudes of a PM
pulse. A similar and stronger effect is produced when a first-
order ghost image co-propagates at a slight angle to the main
beam, which has made one round-trip in a cavity. A streak
camera measurement of this effect along with a simulation is
shown in Fig. 78.17. Spatial domain effects indirectly control
the spectral phase or amplitudes since, as a result of the
gratings, the temporal spectrum has been coupled with the
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Figure 78.16
(a) A measured distorted far-field image of the double-pass 2-D SSD system and (b) a simulation of the time-averaged far field with an angular-dependent
modulation depth and a G3 and G4 misalignment for the system parameters: δM1 = 6.15, νM1 = 3.3 GHz, ∆λM1 = 1.5 Å, Ncy

≅ 1 , δM2 = 13.5, and νM2

= 3.0 GHz, ∆λM2 = 3.0 Å, Ncx
≅ 0 9. , τ = 1 ns, Dy = Dx = 44 mm, and where hyperbolic-tangent profiles were used in the spatial and temporal dimensions.

Figure 78.17
(a) A measured streak camera image (showing 2.4 ns of time) resulting from a noncollinear co-propagating reflection and (b) a simulation (showing 1 ns of
time) of the interference from a first-order ghost delayed by 50 ps co-propagating at an angle of 40 µrad to the main beam. The simulation is limited to 1 ns
due to practical memory constraints; however, 1 ns is sufficient to illustrate the pattern that repeats at a rate of 1/νM.
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Figure 78.18
Modeled surface roughness on a far-field, high-reflecting dielectric mirror.

spatial spectrum, i.e., the dispersed bandwidth. Therefore,
spatial domain effects play a role only after the dispersion
gratings G2 of the first dimension and G4 of the second
dimension and include propagation and pinhole clipping.
Propagation leads to AM since each color’s phase front propa-
gates in a different direction, which imparts a different amount
of phase to each color. The AM grows unbounded in a nonlin-
ear manner as the propagation distance increases, but image
relaying has the ability to restore PM at an image plane.
Table 78.III contains some simulation results of propagation
out of the image plane for various locations on OMEGA and for
different 2-D SSD configurations. Pinhole clipping leads to
AM since, in the far field, the dispersed bandwidth is splayed
across the focal plane and, if the outermost colors are blocked
by the pinhole, AM results.

Spatial phase variations in the near field of an SSD pulsed
beam do not directly convert to AM, but the far field may be
significantly broadened. If this image is passed through an
image relay with a pinhole filter, spectral clipping can occur,
which leads to AM. On the other hand, nonlinear spatial phase
variations in the far field convert directly to AM in the near
field since the spectral components are distributed in the far
field as shown in Fig. 78.15. For example, surface roughness
of a mirror that is placed in the far field of an image relay cavity
alters the phase front of the reflected beam. Waasese simulates
the surface roughness by spectrally filtering a random-number
generator to match observed surface roughness statistics; an
example is shown in Fig. 78.18. The effect on a 1-D SSD pulsed
beam is shown in the example in Fig. 78.19. As another
example, a curved retro mirror was unknowingly placed in the
far-field retro stage of the second dimension and was sheared

to produce planar phase fronts. When planar mirrors were
substituted for the curved mirror, extremely large AM was
observed. The signature of propagation out of an image plane
was used to identify the AM source as a curved far-field mirror
since propagation also induces a curved phase on the angular
spectrum (see Fig. 78.20). Combinations of devices can also
lead to AM. For example, a Faraday rotator with a wavelength-
sensitive rotation in combination with a cavity ejection wave
plate and a polarizer will result in an effective spectral filter.

Nonideal phase-modulator effects can be included in addi-
tion to applying the ideal PM described in Eq. (43). If the
angular spectrum of the input beam is significantly broad in the
direction of the optic axis, i.e., a 1-D SSD beam entering the
second-dimension modulator, the crystal birefringence must
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Table 78.III: The AM, given as a percentage of peak-to-initial value, that results from propagation out of an image
plane for different locations on OMEGA and for different 2-D SSD configurations.

Component
Location

Beam
Diameter

(cm)

1 THz
Nc = 2,1

2.1, 10.4 Å
8.8, 10.2 GHz

Nc = 1,3.6
1.5, 3.0 Å

3.3, 12 GHz

Nc = 1, 1
LLNL
5.0 Å

17 GHz

Nc = 2, 1
LLNL
5.0 Å

17 GHz

Current
Nc = 1, 1

1.25, 1.75 Å
3.3, 3.0 GHz

Focus lens (3ω) 27.3 13.6 31.3 2.08 8.90 5.83

FCC 27.3 0.731 1.45 0.120 0.482 0.328

F spatial filter 19.5 3.06 6.23 0.496 2.01 1.36

E spatial filter 14.6 3.88 7.98 0.626 2.55 1.72

C relay 8.49 18.9 46.1 2.81 12.3 7.91
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Figure 78.19
(a) Spatiotemporal cross section and (b) lineout of a 1-D SSD pulsed beam incident on a far-field mirror with surface roughness as modeled in Fig. 78.18 that
yielded a peak-to-mean AM of 4.8%.

Figure 78.20
(a) A measured streak camera image (showing 3 ns of time) resulting from a phase curvature caused by an improperly placed retro mirror at the second SSD
dimension double-pass cavity and (b) a simulation of the same effect, resulting in 110% peak-to-mean AM. The simulation is limited to 1 ns due to practical
memory constraints; however, 1 ns is sufficient to illustrate the pattern that repeats at a rate of 1/νM.
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Figure 78.21
(a) Simulation of the propagation of a 1.1-mm beam through the second SSD dimension modulator while including crystal birefringence results in a peak-to-
mean AM of 4%; (b)  simulation of the compensating effect of a 0.56-mm adjustment to the image plane prior to the final grating at the 1.1-mm beam diameter.
The system parameters: δM1 = 6.15, νM1 = 3.3 GHz, ∆λM1 = 1.5 Å, Ncy

≅ 1, δM2 = 13.5, and νM2 = 3.0 GHz, ∆λM2 = 3.0 Å, Ncx
≅ 0 9. , τ = 1 ns, Dy = Dx

= 44 mm, where hyperbolic-tangent profiles were used in the spatial and temporal dimensions, and an effective LiNbO3 crystal length of 36 mm.
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Figure 78.22
Simulation of the nonlinear grating equation effect on a 2-D SSD pulsed beam
using a double-grating set. The distortion is greatest near the edge of the beam
and results in a peak-to-mean AM of about 1%. The lineout is taken at x
= 1.5 cm and y = 0 cm. The system parameters: δM1 = 6.15, νM1 = 3.36 GHz,
∆λM1 = 1.5 Å, Ncy

≅ 1, δM2 = 3.38, νM2 = 12.06 GHz, ∆λM2 = 3.0 Å, and

Ncx
≅ 3 65. .

be taken into account. This effect is exhibited by a quadratic
phase distortion in the spatial frequency domain (in the direc-
tion corresponding to the optic axis) that results from the index
ellipsoid of uniaxial crystals (see Ref. 17, pp. 86–90). Each
harmonic plane wave produced by the first SSD dimension will
experience a different phase delay as it propagates through the
second modulator, which results in AM in the first dimension.
Before the second dimension has been dispersed by G4, an
adjustment of the image plane will correct for this AM source
because propagation induces a compensating phase curvature
on the angular spectrum (see Fig. 78.21). This is permissible
because the spread of the angular spectrum in the second
dimension is not significant before it has passed through the
dispersion grating.

One other source of PM to AM is the nonlinear mapping of
the grating. In the ideal case, Eq. (34) is used to describe this
mapping. If the more complete nonlinear mapping is used
[Eq. (17)], large enough bandwidths and color cycles will lead
to a distorted mapping onto the spatial spectrum and subse-
quently will introduce AM. Waasese simulates this effect and
shows that the distortion is greatest near the edge of the beam
as seen in Fig. 78.22.
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Conclusion
Waasese provides a flexible modeling tool for simulating

the generation and propagation of 2-D SSD pulsed laser
beams. Waasese simulates ideal and nonideal behavior of the
many optical components that comprise the SSD driver line
including their relative positions. Waasese predicts measur-
able signatures that function as diagnostic tools since they are
associated with particular optical components. The signature/
component relationships act together with experimental mea-
surements to help locate and eliminate a troublesome compo-
nent. Minimizing any AM in the driver line will ensure the
safety level and lifetime of OMEGA optics by circumventing
the effects of small-scale self-focusing. Waasese proves to be
an indispensable modeling tool for the OMEGA laser, and its
inherent flexibility will provide a means to enhance its capa-
bilities to model other laser propagation issues such as nonlin-
ear propagation, on-target uniformity, amplifier gain, scattering
losses, and pinhole clipping.
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