Angular Spectrum Representation of Pulsed L aser Beams
with Two-Dimensional Smoothing by Spectral Dispersion

Pulsed laser beams with two-dimensional smoothing by spec-
tral dispersion (2-D SSD), used ininertial confinement fusion
(ICF), improve the on-target uniformity on the OMEGA laser
system; 1 however, 2-D SSD ishighly susceptible to signifi-
cant amplitude modulation (AM) during its generation and
propagation.>—8 [nadditionto on-target uniformity, thesmooth-
ness of the pulsed beam asit propagatesthrough thelong laser
amplifier chain isimportant because of the perennial concern
regarding laser damage. Small-scale, nonlinear self-focusing
can occur as the pulsed beam propagates through various
optical components because of the large fluences inherent in
ICF applications. Any AM, in space or time, present on the
pulsed beam may induce self-focusing and lead to damage.
OMEGA utilizes many spatial filters to help aleviate the
buildup of high spatial frequenciesthat tend to self-focus. Inan
effort to reduce the overall AM, it isimperative that the AM
produced by the SSD driver lineis at an absolute minimum.

A complete analysis of the SSD driver line requires a
model that accounts for diffraction and spatiotemporal spec-
tral effects of the many optical components that comprise the
driver during both the generation and propagation of 2-D SSD
beams. AM sources and other nonideal behavior can occur at
any point inthe SSD driver line, and theimpact of aparticular
optical component depends on its relative location and the
parametersthat describethe SSD operation. L aser beam propa-
gation codes that include SSD as part of an entire ICF laser
system modeling exist at other laboratories, for example,
Prop92 at LLNL and Mir6 at CEA; however, they do not
emphasize the underlying optical components in the SSD
driver line. A comprehensive understanding of the AM issue
and other nonideal behavior entails a rigorous examination of
the specific optics involved in the SSD driver line, including
the effects of multiple-layered dielectric media, crystal bire-
fringence, multiple co-propagating beams, nonlinear grating
behavior, and far-field distortion. A model must be able to
simulate the nonideal effects, predict the relative impact, and
characterize the behavior so that experimental measurements
can be used to diagnose and excise the problem.
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The code (Waasese) devel oped to addressthe AM issuein
the SSD driver line simulates many optical components, pre-
dictsthedegree of AM, and characterizestheAM mechanisms
in terms of measurable signatures. Different AM sources are
measured on near-field streak camera images and exhibit
distinct spatiotemporal patterns, trends in the temporal spec-
trum, and/or AM that variesasafunction of an SSD parameter.
Waasese simul ations associ ate these distinct characteristics or
signatures to particular optic components. These signature/
component relationships are then exploited to diagnose, lo-
cate, and eliminate the AM sources when used in conjunction
with experimental measurements. Waasese has been success-
fully used to locate someAM sourcesand identify solutionsin
the new double-pass 2-D SSD driver line scheduled for instal-
lation on OMEGA. Waasese is based on the angular spectrum
representation, which accurately models diffraction and spa-
tiotemporal spectral effects. Waasese is not limited to AM
issuesand hasbeen usedto model observedfar-field distortion.
Waasese's inherent flexibility facilitates future enhancements
as other laser propagation issues arise.

Waasese models the individual optical components of the
SSD driver line using atransfer-function approach as opposed
toapplying theideal spatiotemporal dependent phaseterm. An
angular spectrum representation and/or a thin optic phase
transformation describes the transfer functions of the optical
components. This approach models SSD generation in a step-
wisefashion sothat nonideal components, such aswaveplates,
may beincluded at any point in the process such asin between
the preshear and dispersion gratings. Thisisanimportant issue
because the degree to which optical components contribute to
AM depends on their relative location in the SSD driver line.
For example, surfaceroughnessof afar-fieldretromirror of the
second SSD dimensionwill produceAM onthefirst but not the
second dimension because the second dimension has not been
dispersed at this point. Also, the AM induced by the crystal
birefringence of the second SSD dimension can be compen-
sated, provided that re-imaging takes place prior to the final
grating. Additional examples of the modeling capabilities of
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Waasese include nonlinear behavior of gratings, multiple sur-
face reflections from a crystal in combination with an end
mirror that produce co-propagating beams with offset spa-
tiotemporal spectra, angular-dependent phasemodul ation depth
that produces distorted far-field spectra, multiple-layered di-
electric coatingsthat model high-reflection (HR) or antireflec-
tion (AR) coatings, etalon effects that modulate the temporal
spectrum, spatial phase modulation of irregular surfaces, and
image rotation between grating pairs. Waasese is capable of
modeling arbitrary initial spatial and temporal profilessuch as
Gaussian, hyperbolic tangent, square, round, and elliptical. A
postprocessor for Waasese incorporates various instructional
data-visualization techniques of the spatiotemporal intensity
and phase history of 2-D SSD pulsed beams: a spatiotemporal
Cross section, a spatial cross section, a false-color instanta-
neouswavel ength overlay, atime-averaged far-field view, and
atime evolution of thefar-field pattern. These data-visualiza-
tiontechniquesprovidevaluableinsight into various problems
that arise and their subsequent solutions.

The angular spectrum representation provides a straight-
forward analytical and numerical method to accurately ana-
lyze the generation and propagation of 2-D SSD pulsed laser
beams. The angular spectrum representation decomposes a
pulsed beam into a continuous linear sum of harmonic plane
wavesthat individually propagate with aunique direction and
temporal frequency through the laser system. Each harmonic
planewaveiscompletely described by three parameters: ky, ky,
and w. When the resultant harmonic plane waves are summed,
arepresentation of a2-D SSD pulsed laser beam is obtained
that accurately model s diffraction and spatiotemporal spectral
effects. Certain optical components require athin optic phase
transformation operation, in real space, whenever the optical
surfacesarenot planar, e.g., lenses, irregular surfacesonmirror
coatings, and surface roughness of optical finishing.

In thisarticle we first describe the angular spectrum repre-
sentation of the two main elements of the SSD operation used
inWaasese: gratingsand electro-optic (EO) phase modul ators.
We then apply these transfer functions to theideal generation
of 2-D SSD, which provides a foundation of comparison for
the nonideal cases. Ideal 2-D SSD utilizesalinearized grating
equation and a pure phase-modulation operation. Analytical
expressions and Waasese demonstrate that the application of
the ideal transfer functions reduces the problem to the well-
known spatiotemporal-dependent phase term that describes
2-D SSD.12Wealsointroducethefrequency domain and real-
space data visualization capabilities of the Waasese post-
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processor. Finally in a section covering nonideal 2-D SSD
generation we discuss various errors and/or nonideal effects
that include nonideal gratings, nonideal phase modulators,
crystal birefringence, Littrow mount error, image rotation,
temporal spectrum modulation, spatial spectrum modulation,
and image-plane errors.

Angular Spectrum Representation

Consider the el ectromagnetic field of the pul sed laser beam
that propagates along the beam axis Z within anonmagnetic,
nonconducting, source-free, linear, causal, spatially and tem-
porally homogeneous, isotropic, and spatially and temporally
locally linear diel ectric medium described by aconstant refrac-
tiveindex n=./ue/Uo€y - Let the electric field E'(r t) of the
pulsed laser beam be defined on an image plane at z = zy:

, D)

Eo' (rr.t) =E'(r.t) -

where the position vector and transverse position vector are
defined, respectively, by

r=xx+yy+z 2

and

rr = XX+yy €)

in the right-handed rectangular coordinate system (x,y,2) with
the corresponding unit vectors ()?,9, 2). In addition, let the
pulsed laser beam possess the form of a modulated carrier of
angular frequency

EO' (rT,t) = Eo(rT,t)eith , (4)

where EO(rT,t) is the spatiotemporal envelope of the pulsed
beam. The angular spectrum of the electric field at the image
planeis given by the forward, three-dimensional, spatial spa-
tiotemporal Fourier-Laplace transform (compare Ref. 9, §5.1
and Ref. 10, Chap. 4):

Eo(kt,w) = E(kT, 20, @)

= FFFEFP Eo(rrt)e®e It dtdxdy.  (5)

The wave vector and transverse wave vector are defined,
respectively, as
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k = k& +k,§ +k.2 (6)

and
kr =k&+K3 | ©
where the transverse wave numbers or spatial frequencies k,

and ky are real-valued and the longitudinal wave number k; is
given by the principle root of the expression

k, = (k3n? -kZ | (8)

and k# =kZ +kZ. The quantity ko =271/ A = o//c isthevac-
uum wave number, ' isthe angular frequency of the electro-
magnetic disturbance that is centered about the carrier w,

w=wtow, 9

and c= ]/\//JOEO is the vacuum speed of light.

Free-space propagation of the electric field of the pulsed
laser beam al ong the beam axisin any source-free and homog-
enous region of dielectric is given exactly by the angular
spectrum representation (compare Ref. 9, 85.1)

E(rr.zt)

=— 4]4]4] Eo(kt,w)e%eeiotelkr Brd odk,dky ,  (10)

where Az=z - z,. The expression givenin Eqg. (10) isan exact
solution to Maxwell’s eguations in an isotropic, source-free
dielectric medium. Any inaccuracies associated with this
method amount to assumptions made about the field behavior
Eo(ry.t) on theinitial plane z = z, (such as assuming scalar
fields or Fresnel-Kirchoff boundary conditions) or when ap-
proximating the integrals as summations when performing
numerical simulations. When kZ < k2n?, the longitudinal
wave number k, is real-valued and the integrand of Eq. (10)
represents homogenous plane waves with spectral amplitudes
or angular spectra Eo(kT , a)) whose phasefronts propagatein
the direction given by the wave vector k = kX +kyy +k,Z.
Thus, the angular spectrum representation decomposes an
arbitrary pulsed laser beam into a continuous sum of homoge-
neous plane waves that propagate in a unique direction and
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with an angular frequency «'. The expression in Eq. (10)
representsthe general case of vectorsandiscertainly valid for
each individual vector component; thereforeit isapplicableto
the scalar diffraction problems presented in this article.

A useful measurethat marksthe boundary between the near
field and far field for diffraction problems is the Rayleigh
range given by (Ref. 11, p. 714)

RET (11)

where A is the area of the beam (see Table 78.11 for typical
numberson OMEGA). Another useful parameter isthe Fresnel
number given by

: (12)

which measuresthe number of Fresnel zones contained within
an apertureof width or diameter 2a. For full-apertureillumina-
tion, the Fresnel number will determine the number of strong
ripplesapparent in the near-field diffraction pattern. However,
a beam with a supergaussian profile or other rounded square
shapes such as a hyperbolic-tangent will not exhibit these
strong ripples(Ref. 11, p. 739). For thisreason, thesimulations
presented here utilize these shapes to reduce the edge diffrac-
tion ripples in order to emphasize other diffraction effects.
Waasese is based on the angular spectrum representation and
isthereforeinherently capabl e of modeling any beam shape or
temporal profile.

Elements of the SSD Operation

Thetwo basic elements of the SSD operationintermsof the
angular spectrum representation—gratings and EO phase
modul ators—are presented as transfer functions in both real
and frequency spaceto describe the complex 2-D SSD system
as a set of interchangeable operations. This method also
develops a sense of the resultant frequency-domain effects of
each operation and its relation to the real space.

1. The Grating Equation
The grating eguation relates an incident harmonic plane

waveto atransmitted (or reflected) harmonic plane wave that
is given byl2

sin(g;) +sin(6,) = —m% : (13)
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Table 78.11:  The Rayleigh range Azg, the color-separation distance Az, and their ratio Az /Azg for various
beam diameters and two values of applied bandwidth for a dispersion of d6,/dA =197 prad/A and

grating beam diameter D i, = 44 mm.
Diameter (cm)

0.11 022 | 055 | 1938 4.4 | 8488 | 14.63 | 19.52 | 27.33
Az (M) 0.902 | 3.608 | 2255 | 280 | 1443 | 5371 | 15956 | 28405 | 55683
Azgqr (M), 1.5 A 0.186 | 0.745 | 4.653 | 57.77 | 297.8 | 1108.2 | 3292.4| 5861.1 | 11489
Az /Azg 0.206 | 0.206 | 0.206 | 0.206 | 0.206 | 0.206 | 0.206 | 0.206 | 0.206
AZgip (M), 3.0 A 0.093 | 0.372 | 2.327 | 28.89 | 148.9 | 554.12 | 1646.2|2930.6 | 5744.7
Az /Azg 0.103 | 0.103 | 0.103 | 0.103 | 0.103 | 0.103 | 0.103 | 0.103 | 0.103

where 6 and 6, aretheincident and transmitted anglesrelative
to the grating normal, mis the order of the grating, d is the

6 :sjn—l%‘—sjn(ei)

O

H

groove spacing, A = 2rc/w isthe wavelength, and o' = @, +
wistheangular frequency that is centered about thecarrier w..
The gratings in the SSD driver lines at LLE are used in
transmission mode with an order m = -1 (see Fig. 78.6).
Solving Eq. (13) for 6, with an order m= -1 yields

Transmitted
coordinate
system

Incident
coordinate
system

Yi

TC4941

Figure 78.6

The coordinate systems for the incident and transmitted pulsed beams that
traverseagrating in transmission mode of order m=-1. Noticethat the beam
axis (2) remains unaltered as aresult of the grating operation; indicating the
rotation from the incident to the transmitted coordinate system as the beam
axis follows the course of the real beam.
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Taking the derivative of Eq. (14) with respect to A yields the
grating dispersion
do; _ 1

dA e‘
d\l—%—sin(ei)g

(15)

For the SSD laser systemsat LLE, thegratingsaretypically
in aLittrow mount, which is defined to be when the angles of
the incident and transmitted plane waves are equal for a
particular design wavelength, i.e., 8, i = 6 = 6. Under this
condition, anincident pul sed beamwill retai nitsincident beam
diameter and is described by

N|>
o o

sin(6Lix) == | (16)

where A. = 2t/ ay. isthecentral or design wavelength. Typi-
cally, the design parameters for a grating are the central
wavelength A, and a desired amount of dispersion d6;/dA
while assuming a Littrow mount, which then determines the
grating groove spacing d by substituting Eq. (16) into Eq. (15).
Once agrating design isrealized, an operating point has been
determined on the d6,/dA curve, which can be seen in the
exampleillustrated in Fig. 78.7. When the bandwidth AA that
isinduced by the SSD system is small enough, then the slope
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Figure 78.7

Thedesign pointson (a) thegrating equation 6¢ and (b) the grating dispersion
equation d6; /dA for Ac = 1053 nm, 6| ji; = 46°, and d = 0.732 um/groove.

d6; /dA isnearly constant over that bandwidth; however, since
Eqg. (15) isinherently nonlinear, beam distortion becomesmore
significant as the bandwidth increases.

Consider an incident modulated pul sed laser beam with an
angular carrier frequency of w, pulseduration 7, and diameter
D impinging upon agrating that disperses along the y direc-
tion. Definetheincident beam axis(z) to makean angle ©; with
regard to the grating normal in the y-z plane. Then define a
transmitted-beam axis that makes an angle ©; with regard to
the grating normal. (This situation isillustrated in Fig. 78.6.)
By decomposing theincident pul sed laser beamintoitsangular
spectrum, the grating equation (14) may be used to accurately
describe the action of the grating in the spatiotemporal fre-
guency space. The grating acts as an angular transformation
operation that redirects or maps each incident plane wave
(completely described by the parametersk,, ky, and w) ontothe
transmitted-beam axis. Notice that the image plane will be
rotated onto the transmitted-beam axis as indicated in
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Fig. 78.6. Only the wave number in the y direction is altered
during thistransformation, and, in general, the new transverse
wavenumber isafunction of both thetransversewave number
andtheangular frequency, i.e., kyg (ky, a)) . Thetransformation
operation kyg (ky, w) is referreq to as the grating angular
dispersion, which actsalong the y direction as denoted by the
subscript y. The grating angular dispersion may be expressed
as [compare Eq. (14)]

Ky, (ky-)
=k0nsin§9 —sjn—lgd—sjnD - +sin‘1Dky (17)
5 t @j Ef)l % ,

wherekg=w'/c, A=2r/w, and w' = w. + w. Theelectricfield
of the transmitted pulsed laser beam is expressed, in general,
by

Eg(rr.t) = — #4]4]Eg(kT,w)e_iwteikTdewdkxdky(18)

(2m)®

with the associated distorted angular spectrum given by

Eqg(kr.) = Eopk, kg, 0y (19)

The action of the grating may be interpreted as a nonlinear
mapping of the angular spectrum onto a new spectral grid,
which is nonuniform in general. Consequently, in general,
Eqg. (18) is not suitable for fast Fourier transform (FFT)
algorithms, and a proper treatment requires a slow Fourier
transform operation to regrid the data. Under certain approxi-
mations, however, Eq. (18) is suitable for FFT algorithms,
which are then used to regrid the angular spectrum back onto
the original grid: first, assuming that the angular dispersionis
alinear function of thetransversewave number k, and, second,
assuming an additional linear dependence of the temporal
frequency w. Waasese can be configured to runin any of these
three modes to calculate the grating effects where a tradeoff
of speed versus accuracy must be made.

The first assumption may be expressed as a first-order
Taylor series expansion about the transverse wave number ky:

kYg (ky’ w) = kYg (ky’ w)‘ky =0 + ky % kyg (ky’ a)‘ky =0 (20)
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The partial derivativein Eq. (20) is given by

%kyg (ky,w)

cos%ﬂt —sin‘1§$ —singei +§n‘1%%

[ _SmD . +gn_1%k7y[lj:?r
P Hon

0
cos9; +sin~t
y SBG' Dkon%
Ok, O
V" o
If the grating isin the Littrow mount and istuned to the center

frequency w, then evaluating the partial derivative at ky, =0
yields

(21)

S s A SVSAN: 1
—o_kOnSnEQt s sn(@,)%, (22)

y=

Ky, (ky-) )

and while assuming that &' O ¢,

0

@kyg (ky,a)) o1 (23)

k,=0

Substituting Egs. (22) and (23) into Eqg. (20) gives

Ky, (Kky ) = Ky, +Ky (24)
where ﬁyg (w) = Ky, (0, w). A change of variables defined by
Eq. (24) yields [compare Eq. (18)]

[o0)

E rT, (kx, kyg a))

xe—iwtei[k*“kygy'k ][dwdk dky, . (25)
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Since Izyg isonly afunction of thetemporal angular frequency
w, theinverse 2-D spatial Fourier transform operation yields

Eq(rr. )zzi%éo(rr )_iwte_ikyg(w)ydwa (26)
where
Eolr ) = G P Eoli et ot 27

The distorted angular spectrum is then given by

Eg(kt, @)= ## Eo(rr. a))ei|2yg ()Y gikr B gy

e |l2yg(w)y—ikyydy_ (28)

The utility of Eq. (28) lies in the ability to regrid the angu-
lar spectrum using conventional FFT algorithms. Waasese
applies three operations to the initial angular spectrum
Eo(kT,w) toregridthedistorted angular spectrum Eg(kT )
onto the original numerical grid: inverse spatialy transform
the ky, dimension, apply the distortion term

e_ilZYQ (w)y,

and, finally, forward spatially transform the y dimension.

The second assumption may be expressed as a bivariate,
first-order Taylor series expansion:

kyg (ky’ w) = kyg (ky’ w)‘ky:O’wZO

*hy aiy kyg (ky w)‘ky=o,w=0
HU% kg (ky' w)‘kyzo,wzo ’ ()
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where w' = w, + w. The partial derivative with regard to win
Eq. (29) isgiven by

smBe +sn‘1%%

smge +sin™ E%

+kgn Q Dkon
smB@ +sin” H‘T%
E coD +sin” wm E
B - U ek 0 (@)
R
§ y ~Hont §

If the grating is in a Littrow mount tuned to the center fre-
quency «, then

Ky, (ky’“’)‘ky:o,w:o =0, (3D)
9
@kyg(kww)\ky:o,w:o:ly (32)
and
%"yg(ky' )‘k oo~ ] L %C (33)

Equation (29) can then be written as
ky, (Kky @) = ky + e (34)

and is known as the linearized grating angular dispersion,
where Eq. (15) has been used in the definition
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Thetransmitted pul sed | aser beam then becomes atemporally
skewed or sheared version of the incident pulsed beam:

00

o) o Pl e

—00

= EO(rT,t —Egy) , (35)

where a temporal delay is imposed across the beam by an
amount defined by

rp=&D. (36)

The angular spectrum is also sheared and is given by
Eg(kr.) = Eglke.ky + e @) - (37)

During numerical~simular[ions, Waasese regrids the initial
angular spectrum Eq(kt,w) using the technique described in
association with Eq. (28).

2. The EO Phase Modulator

A strong microwave or radio frequency (RF) field inside a
cavity resonator can modulate the optical refractiveindex of a
nonlinear crystal such as lithium niobate (LiNbO3).13 The
ideal EO phase modulator operatesonly in thetime domain by
applying the sinusoidal time-varying phase function

e sin(@nt) 15 the optical electric field as

By (r1.t) = Eg(ry,t)eomsn(@mt), (38)

where 8, isthemodulation depthand vy, = wy,/2TistheRF
modulation frequency. This modulation scheme isreferred to
as pure-tone phase modulation that is a specific type of a
general classknown asexponential or anglemodulationandis
inherently a nonlinear process. In general, the bandwidth ap-
plied by phase modulation has infinite extent, and discarding
any portion will result in distortion and adegradation of signal
fidelity, e.g., AM. Practically, the significant bandwidth ap-
plied by phase modulation is concentrated in a finite spectral
region, which is a function of the modulation depth &. The
guestion then becomes How much bandwidth is required to
retainadequatesignal integrity? (See Carlson Ref. 14, pp. 239—
245 for an in-depth discussion.)
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The applied bandwidth is estimated by Carson’srule:

A
8o =22 =2(5y +1)uy (39)

which appropriately goes to the limiting cases.

|:26|\/|UM JM >>1 )

Av=[ 5M<<1,

40
20y, (40)

however, Carson’s rule underestimates the bandwidth for the
range2 < g, < 10. Thebandwidthismoreaccurately estimated
by

AU =28y +2)uy (41)

for modul ation depths &y, > 2. Theapplied bandwidth may also
be expressed in terms of the wavelength as

O 0
O c O AvA?

DA =20 ~ 5002 . (42)
o —-=—no ¢
O A 20

where any estimate for Av can be applied. Typically, the
estimate for the bandwidth given by 24,,uy, is quoted in the
literature on SSD applications (even for modulation depths dy,
< 10). This convention will be followed in this article for
consistency not accuracy.

Equation (38) can be written as an equivalent series expan-
sion given by (compare Ref. 14, p. 228)

00

Em(r1.t) = Eo(rm.t) >3 (5)€'lomt. (43)

|=—00

The spatiotemporal Fourier-Laplace transform of Eq. (43)
yields the replicated angular spectrum

Eulkr ) = Eofkr, ) O 3(G) A w1 ) - (49

|=—00

The original angular spectrum E(kT,w) is replicated with a
spacing of )y and amplitudes determined by the Bessel
functionsof thefirstkind J; (8)) by virtueof the convolution
process denoted in Eq. (44) by the symbol *. If the original
bandwidthisnot small compared to the modul ation frequency,
some overlap will exist from one band to the next. Aslong as
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the overlap is small, which is generally the case for well-
defined systems, the spectral peakswill bewell defined. Even
if overlap doesoccur, it doesnot affect thevalidity of thelinear
superposition implied by Eq. (44). Figure 78.8(a) illustrates a
spectrum obtained for a 1-ns pulse using the parameters &,
=6.15and v, = 3.3 GHz.

Like any form of exponential modulation, pure-tone phase
modulation possesses the unique property of constant ampli-
tude. Maintai ning aconstant amplitudewith asinusoidal phase
variation is best understood using a phasor interpretation
where phasors for the carrier plus every sideband are vector-
summed in phasor spaceasillustrated in Fig. 78.9. Theresult-
ant phasor sinusoidally sweeps back and forth (by an amount
determined by the modulation depth ;) in phasor spacewhile
maintaining constant amplitude. All of the odd-order side-
band pairs are in phase quadrature (due to the fact that
the components of an odd-order pair have equal magnitude
with oppositesign,i.e., J_y(8y) = (-1)' 3, (S [seeRef. 15,
p. 258, Eq. (9.1.5)], and all of the even-order sideband pairs

@

Fourier amplitude
g o B N W h~ 01O
T
1

Fourier amplitude

0
-100 50 0 50 100

Frequency (GHZz)

TC5016

Figure 78.8

The temporal spectrum for (a) a pure-tone and (b) a two-tone phase-modu-
lated optical pulse. The pulsedurationis 7= 1 nsand the parameters are o1
=6.15, V1 =3.3GHz, AAM1= 154, 2 =13.5, U2 =3.0 GHz, and AAy2
=3.0A.
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are collinear with regard to the carrier. The odd-order pairs
contribute to the desired sinusoidal phase modulation plus
unwanted amplitude modulation. The even-order pairs com-
pensate for the unwanted amplitude modulation imposed by
the odd-order pairs (see pp. 230-233 of Ref. 14 for acomplete

J1 (Om)

Magnitude=1

Yy

'~

TC4943

Figure 78.9

Phasor diagram of pure-tone phase modulation that depicts the phasor pairs
for asmall modulation depth. The diagram depicts how the even-order pairs
compensate for the unwanted amplitude modulation imparted by the odd-
order pairs. (Adapted from Ref. 14, p. 232, Fig. 6.7.)

GRBGR

discussion). Theconstant amplitudeinherent in phase modul a-
tionrelieson the delicate bal ance of the amplitudes and phases
of its spectral components. Any deviation in this balance
resultsin distortion that can exhibit itself asAM.

Ideal 2-D SSD Generation

Here we describe the step-by-step process that Waasese
usestogenerate2-D SSD. |deal 2-D SSD isproduced whenthe
transfer functions given by Egs. (37) and (44) are used. An-
alytical expressions are also developed and are shown to be
equivalent to ageneralization of Ref. 3, which includes beam
shape. Ideal 2-D SSD isgenerated by aseriesof twoideal 1-D
SSD operations performed on the two orthogonal transverse
spatial directions of a seed-pulsed laser beam. Each 1-D SSD
operation consists of an EO phase modulator sandwiched
between agrating pair, such that an image plane exists at each
grating plane. The angular spectrum representation of the
grating and EO modulator, developed in the previous section,
is drawn upon to illustrate the frequency-domain effects and
how they relate to real space.

1. 1-D SSD Operation

Since each of the gratings is assumed to be at an image
plane, this implies that some kind of image-relaying system
must be in place. For practical SSD systems, these are afocal
image relay telescopeswith slow lenses that do not contribute
significant aberrations. Figure 78.10 depicts the 1-D SSD
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Figure 78.10

A schematic representation of the 1-D SSD operation showing the two important functions: gratings and EO phase modulator. In addition, the image planes
are indicated along with the function names and a rough sketch of the field shape, in both real and frequency space, after each operation.
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operation with the three major components, including thefield
names at certain locations. If the bandwidth AA (typically 1 A
<AA <12 A)introduced by the SSD systemissmall relativeto
the operating wavelength A, (for OMEGA the IR wavelength
is 1053 nm), then the linearized grating angular dispersion
Eq. (34) isan adequate representation of the grating and serves
this section by demonstrating the ideal or desired response of
an SSD system.

Consider a seed-modulated pulsed laser beam with an
angular carrier frequency of ., pulse duration 7, and diam-
etersDy and D,. Theelectricfieldisdefinedonan inlageplane
as Eo(rr.t) with the associated angular spectrum Eg(kT,w)
and is image relayed onto the input of grating G1. Let the
first grating G1 preshear the pulsed beam with a linearized
angular dispersion of —¢, alongthe y direction. Consequently,
the sheared field after the grating G1 is given by [compare
Eq. (35)]

Eca(rmt) = Eo(rTat +5yY) : (45)

where a temporal delay is imposed across the field by an
amount given by 75 = ¢yDy. The angular spectrum is also
sheared and is given f)y [compare Eq. (37)]

Ié(}l(kTvo‘)) = éo(kx, ky - Eyw’ (‘J) ’ (46)

where the angular spectrum has been distorted only in the
direction parallel to the k, axis by the quantity ¢yw. A repre-
sentation of the sheared field and angular spectrum is illus-
trated in Fig. 78.10. Let the EO phase modulator have a
modulation depth of &4 and a RF modulation frequency of
Upm1 = wpm1/2 7. By combining the resultsfrom Egs. (43) and
(45), the electric field becomes

Ema(rr.t) = EGl(rTJ)eiaMlsm(let)

00

Eau(rrt) z

|=—c0

Ji(Byy)e'emt  (47)

and the replicated-sheared angular spectrum is given by

00

En1(kt,0) = Ega(kT, @) Dz J(au) { w! au1). (48)

|=—00

A representation of the phase-modulated sheared field and
angular spectrum is illustrated in Fig. 78.10. The second
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grating G2 now acts to disperse the increased bandwidth and
remove the preshear from the first grating G1. Let the linear-
ized angular dispersion be of equal magnitude and in the same
direction as the first grating but with opposite sign, i.e., +&,
(this is realized through the image flip of an odd number of
image relays), so that the electric field becomes

Ega(rmt)= EMl(rTit —ny) : (49)
and the unsheared angular spectrum is given by
Eca(kr@) = Ena(keky + &, ). (50)
After substituting the results of Egs. (45)—47)

Eoalrr) = Ecalrrt - &y oLl 5]

_ EO(rT,t)eidMlgn[w“"l(H &)

=Eo(rr.t) 29 (5M1)e”wm(t+€yy) . (5D)

|=—c0

The angular spectrum of the 1-D SSD operation isthen given
by the spatiotemporal Fourier-Laplace transform of Eq. (51):

Ega(kt,w) = Eg(kT, w)

Dz JI(5M1)5(kx:ky_|Eyw!\/|1' w+l (*R/Il)’ (52)

|=—c0

where it is important to notice that exact replicas of the
original spectrum, modified only by the amplitude of the
Bessel functions of the first kind J(Sy1), are centered on a
regularly spaced line or comb of delta functions described by
the summation operation. The comb of delta functions lies
along the line k, = ¢yw on the k, — w plane of the 3-D
spatiotemporal spectrum and are spaced by &,wy1 on the k,
axisand wy, 1 on the waxis. A representation of thefinal field
and angular spectrumisillustrated in Fig. 78.10. Each replica
of the original angular spectrumin Eq. (52) can beinterpreted
asanindividual col ored-pul sed beamwith an associated wave-
lengthor color A=2mc/w', where o' = w, +1 ) 1, Wwhose phase
front advancesin the direction k = kyX +(ky —Ifwa1)§/ +k,Z.
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It isimportant to notice that, for propagation distances Az
<< zg (such that minimal edge diffraction takes place for
rounded square beams), the individual colored-pulsed beams
retain their shape and continue to propagate along the beam
axis and only the phase fronts break across the beam in a
different direction. Theindividual colored beamswill eventu-
ally separate sincethe energy flowsalong thedirectionk. The
distance that colored-pulsed beam shifts in the transverse
direction is given approximately by

Ay, = Aztan(AG,) (53)

where
Dyrai 54
A9| :EgiAAl grating , (54
Ac D
AA| D(/\%/c)lv M1 1S the spectral offset of a particular color,
and Dg4ing IS the beam diameter at the grating. The critical
propagation distance for color separation is defined as when
the outermost colored-pulsed beam has shifted by one beam
diameter, i.e., Ay = Dy, and is approximated by

2

Dy DDy_ 2 A by

Azgie= . (55
" tan(AB) T A8 & cAA Dyrging 9

@

Intensity (W/cm2)

TC5017

where AX isthe applied bandwidth given by Eq. (42). Thedata
in Table 78.11 represents Azg, Azyit, and Az; /Azg for vari-
ous OMEGA beam diameters for the system parameters:
d6; /dA| =0 =197 prad/A, AAy; =1.5A,3.0A, and Dying
=44 mm.

The electric field of a pulsed beam is a complex three-
dimensional object whose intensity distribution, in space, is
suitably described as a brick of light that moves along the
propagation axis at the group velocity of the pulse. At one
position of the propagation axis, the intensity of the brick of
light is distributed about the transverse spatial dimensions as
described by the beam profile and in time as described by the
pulse shape. Taking different kinds of cross sections or slices
of the brick of light is a way to visualize the multidimen-
sioned data. A spatiotemporal cross section illustrates the
intensity history of the pulsed beam. As an example, a spa-
tiotemporal slice of a1-D SSD pulsed laser beam isshownin
Fig. 78.11 for two orthogona directions with the system
parameters &y, 1 =6.15, vjy1 =3.3GHz, A1 =1.5A, 1=1ns,
Dy = Dy = 44 mm, and where stepped hyperbolic-tangent
profiles were used in the spatial and temporal dimensions. In
additionafal se-col or representati on of theinstantaneouswave-
length is defined by

(b) —
— 1053.06 nm

—1 1053.04

— 1053.02

1053.00
1052.98

1052.96

1052.94

Figure 78.11

Spatiotemporal slices along (a) the y-t plane and (b) the x-t plane of a 1-D SSD pulsed beam with an overlay of the instantaneous wavelength )A\(rT,t)
superimposed onto the intensity profile for the system parameters 1 = 6.15, vy1 = 3.3 GHz, AAy1 = 1.5A, 1=1ns, Ncy U1, r=1ns, Dy = Dy =44 mm,
and where hyperbolic-tangent profiles were used in the spatial and temporal dimensions.
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Arrt)=——, (56)

where the instantaneous frequency is given by

1 a¢
21 ot

vs_— (57)

and ¢ is the instantaneous phase of the field of the form
el 9(v.t)giwct. Theinstantaneous wavelength is shown mapped
onto the 3-D intensity surface, in effect, displaying the phase
information of the electric field as afourth dimension of data.
The resultant dispersed spectrum of the 1-D SSD operationis
displayed across the beam as one cycle of instantaneous
wavelength or color, i.e., every color isdisplayed twice asthe
RF phase modulation cycles through 2rrradians. In general,
the fraction of RF phase-modulation cycles completed during
the temporal shear Tp, = ¢yDy, imposed by the first grating
G1, and displayed across the beam as a result of the second
grating G2, is determined by the number of color cycles
(compare to Ref. 1):

Ne, =Tp VM1 - (58)

The instantaneous wavelength (or color) is not to be confused
with the discrete col ored-pul sed beams mentioned in the pre-
vious paragraph; theinstantaneouswavel engthisacontinuous
function defined in the temporal domain, whereas the other
formsadiscrete set defined in thetemporal frequency domain.
The bandwidth of the instantaneous frequency is given by

A\’) = 26M1VM1 . (59)

Notice that no approximation is made here as compared to the
frequency-domain bandwidth described by Egs. (39) and (41),
andthat it equal sthebandwidthinthelimit of largemodul ation
depths given by Eq. (40). This fact illustrates the important

difference between theinstantaneousfrequency and that of the
frequency domain. When used with care, however, theinstan-
taneous frequency is useful in describing some optical effects
(suchasetalons) sincethemodulationrateisslow compared to
the underlying optical carrier. Another very important differ-
enceisthat A (rT , t) isasmooth, continuous function, and the
frequency-space spectrum is comprised of a discrete set of
frequencies (broadened only by thefinite duration of the pulse
width) as described by Eq. (44).

2. Seriesof Two 1-D SSD Operations

Consider, inamanner anal ogousto the previous subsection,
a seed-modulated pulsed laser beam with an angular carrier
frequency ., pulse duration 7, and diameters Dy and D,. The
electricfieldisdefined onanimageplaneas Eg(rr,t) withthe
associated angular spectrum Eq(kt,w) and isimage relayed
onto theinput of grating G1. A diagram of the 2-D SSD system
isshowninFig. 78.12. Let thefirst SSD operation be given by
Egs. (51) and (52). Let thefirst grating of the second-dimen-
sion G3 operation preshear the pulsed beam with alinearized
angular dispersion of —&, along thedirection X . Consequently,
the sheared field after the grating G3, in terms of the results
from the first dimension Eq. (35), is given by

Ega(r1.t) = Ego(rm.t +&X) , (60)

where atemporal delay imposed acrossthe field isan amount
givenby Tp, = ¢xDy. The sheared angular spectrumis given
by [compare Eq. (37)]

I§G3(k1-,w) EGZ( EXCU ky, Ol)), (61)

where the angular spectrum has been distorted only in the
direction paralléel to the k, axis by the quantity Jy,». Let the
second EO phase modulator have a modulation depth of ),
and a RF modulation frequency of vy, =wpyo/2m. The
electric field becomes

{0}

XVm2 {+&oad

=y Yvmi {+éy.ad
A (y,t) rlrEu()) Ami
#1

TC4942

EO\ Auy
mod
#2

Figure 78.12

A schematic representation of the 2-D SSD operation, which exhibits a series of two 1-D SSD operations that act on two orthogonal directions X and .
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Emz(rr.t) = Ea(rr.t) eouzsn(eha)

= EG3(rT,t) Z Jm(sz)eimwMzt, (62)

m=—co

and the replicated-sheared angular spectrum is given by

Emz(kt.0) = Ega(kt, @)

DZJm(éMz)é(w—mﬁ.Mz) . (63)

m=—oco

The second grating of the second dimension G4 now acts to
disperse the increased bandwidth and removes the preshear
fromthegrating G3. L et thelinearized angular dispersion be of
equal magnitude to the grating G3 but with opposite sign, i.e.,
+&,, so that the electric field becomes

Ega(rr.t) = Ema(rrt - &) (64)
and the unsheared angular spectrum is given by
EG4(kT,O)) = EMZ(kX + EX(}.), ky, (}.)) . (65)

After substituting the results of Egs. (52), (55), (57), and (60),

Eca(rm.t) = Ees(rvt +gxx)ei5w|25i”[wmz(t+ &)
— EGZ(rT1t)ei6M2 sin[wMz(H{Xx)]
_ EO(rT,t)eiaMlsin[le(H'Eyy)] iz S iz (t+ &)

=Eo(rr.t) z J (5M1)eile1(t+Eyy)

|=—00

xS In(Bz)emon(t+E) (66)

m=—oo

Equation (66) represents a generalization of Ref. 3, which
includes beam shape. The angular spectrum of the 2-D SSD
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operation isthen given by the spatiotemporal Fourier-Laplace
transform of Eg. (66):

Ega(kT, ) = Ep(kT, w)

Dz J, (6M1)5(kX7 ky ml Eyc’)Mb w+| (‘Rlll)

|=—00

0 Z Jm(JMz)J(kx - mExWZ'ky' wtm aMZ)

m=-o

= Ey(kr,) 00 i i[m(%)%(dm)

|=—com=—co

><5(|<X ~mé& iz, ky —1 & w1, @+ ayg +m qz,.z)], (67)

whereitisimportant to noticethat exact replicasof theoriginal
spectrum, modified only by the amplitudes of the Bessel
functionsof thefirstkind J; (Sy1) and J(Sy2), arecentered
onaregularly spaced grid or field of deltafunctionsformed by
the innermost convolution operation. The field of delta func-
tions lies on the plane k, /&, +ky /¢y =w in the 3-D spa-
tiotemporal spectrumand arespaced by &,y 1 inthedirection
of theky axis, by &ywy 2 inthe direction of the ky axis, and by
linear combinations of both wy, 1 and )y » in the direction of
the waxis. Notice that there exist sum and difference frequen-
cies, whichischaracteristic of two-tone phase modul ation (see
Ref. 14, pp. 233-234). An example of a two-tone phase-
modulated temporal spectrum isillustrated in Fig. 78.8(b) for
the parameters dy; 1 = 6.15, vy1 = 3.3 GHz, )y, = 13.5, and
VM2 = 3.0 GHz.

Spatiotemporal cross sections of a 2-D SSD pulsed laser
beam with the instantaneous wavelength overlay is shown in
Fig. 78.13for two orthogonal directionsfor the system param-
eters Oy 1 = 6.15, 1 = 3.3 GHz, AAy = L5 A, ), =135,
and vy =3.0GHz, My, =3.0A, 1=1ns, Dy =D, =44mm,
and where hyperbolic-tangent profileswere used in the spatial
and temporal dimensions. At any particular moment in time,
the resultant dispersed spectrum from the first dimension of
the 2-D SSD operation is seen displayed across the beam as a
smaller window of color (relative to the overall bandwidth).
As time progresses, the window of color is swept across the
total bandwidth. Thenumber of color cyclesof the second SSD
dimension is given by

Ne, =Tp,Vm2 (68)
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where Tp =¢yDy. The brick of light can also be sliced in  of the3-D intensity profileof thebeam, asviewed fromabove,
another direction, i.e., a spatial cross section at a particular  areillustrated in Fig. 78.14 with an instantaneous wavel ength
instant of time that illustrates how the instantaneous colors  overlay. The color center isseento moveacrossthebeam. The
move across the beam profile astime changes. Two examples ~ number of color cyclesin each direction is readily observed.

€Y (b) — 1053.20 nm
— 1053.15
— 1053.10
— 1053.05
1053.00
1052.95
1052.90
1052.85
1052.80

Intensity (W/cm2)

Figure 78.13

Spatiotemporal slices along (a) the y-t plane and (b) the x-t plane of a 2-D SSD pulsed beam. with an overlay of the instantaneous wavelength A(rT,t)
superimposed onto theintensity profilefor the system parameters: dy1 = 6.15, v =3.3 GHz, AAm1=1.5A, N¢, 01, o2 =135 andvy2 = 3.0 GHz, AAm2
=3.0A, Ng, 00.9, T=1ns, Dy = Dy =44 mm, and where hyperbolic-tangent profiles were used in the spatial and temporal dimensions.
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Figure 78.14

Spatial cross sections of a 2-D SSD pulsed beam with an overlay of the instantaneous wavelength A(rT,t) for the system parameters: dv1 = 6.15, vm1
=3.3GHz, AMM1=15A, No, O1,8v2=135,and vm2=3.0 GHz,AMv2=3.0A, N, 00.9, 7=1ns, Dy =Dy =44mm, and where hyperbolic-tangent profiles
were used in the spatial and temporal dimensions. The images are for two instants of time: (a) t1 = 0 psand (b) to = 46 ps.
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A useful diagnostic for 2-D SSD systems is the time-
averaged, far-field intensity structure of the pulsed beam. A
far-field camera operates by propagating the 2-D SSD pulsed
beam through a lens onto its focal plane, where a CCD or
film captures the image in a time-integrated sense. This pro-
cess takes advantage of the Fourier-transforming properties
of lenses. The abject isassumed to be onefocal lengthin front
of the lens (otherwise a phase curvature is imposed across
thefar field), and theimageisinthefocal planeof thelens(see
Ref. 16, pp. 86-87). Waasese simulates this data by taking the
time average of the expression

- 2
o fieta(kt) E%nfoc FIJqJEo(fTJ)e'”‘Tmfdxdy . (69

The expression given by Eq. (64) is equivalent to the far field
in real space, at the focal plane of the lens, by making the
transformations k, =27mx/ A, f and ky =27y / A f, where
Xg and yg are the real-space, far-field coordinates and f is
the focal length of the lens. A time-averaged plot of Eq. (69)
isillustrated in Fig. 78.15 for the same system parameters of
this section. If the expression Eq. (64) is plotted directly asa
function of time, amovie of thefar field can be generated. The
underlying far-field pattern remains constant while the spec-
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Figure 78.15

Simulation of the time-averaged far field of a2-D SSD pulsed beam for the
system parameters: oy 1 = 6.15, V1 =3.3GHz, AAy1=15A, Ncy 01, dv2
=135, and vz = 3.0 GHz, AMv2 =30 A, N 009, 7=1ns, Dy = Dy
=44 mm, and where hyperbolic-tangent profiles were used in the spatial and
temporal dimensions.
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tral peaks change amplitude and can give the appearance of
movement when the number of color cycles is less than 1
(provided there are no other smoothing mechanisms).

Nonideal Effects

In realistic SSD driver lines, a variety of mechanisms
complicate the ideal situation described in the previous sec-
tion. Some mechanisms simply distort the pulsed beam and
otherslead to AM. For example, if the preshear and dispersion
grating are misaligned, the dispersion grating will not com-
pletely remove the distortion placed on the beam by the
preshear grating. Theresultisaslight increaseto therisetime
of the pulse aswell asadistorted far-field pattern in the rough
shape of arhombus. If the EO phase modulator hasan angular-
dependent modulation depth, the bandwidth imposed by the
modulator will depend on the incident angle of the incident
harmonic plane waves. This effect in combination with a
grating misalignment explainsthe observed distorted far-field
images (see Fig. 78.16); however, these two effects do not
induce AM.

1. PM-to-AM Conversion Mechanisms

A variety of mechanisms destroy the ideal situation de-
scribed in the previous section by producing AM. In general,
they are referred to as PM-to-AM conversion mechanisms
since any disruption to the spectral components of perfect
phase modulation results in amplitude modulation. These
mechanisms fall basically into two main categories that refer
tothe manner in which the spectral components can bealtered:
phase and amplitude effects. If the relative phases or the
amplitudes of the spectral components are altered (with the
exception to alinear phase variation), the phasor components
will not add properly, resulting in AM. Waasese iswell suited
to analyze al of these effects in the spatiotemporal domain
sinceit is based on the angular spectrum representation.

PM-to-AM conversion mechanismsfurther divideintotem-
poral or spatial domain effects. Temporal domain effects
directly control the phase or amplitudes by spectral filtering
through devicessuch asetalonsand amplifierswith nonconstant
bandwidth. Thetransmissivity of etalonsvariesasafunction of
wavelength, which modulatesthe spectral amplitudes of aPM
pulse. A similar and stronger effect is produced when a first-
order ghost image co-propagates at a slight angle to the main
beam, which has made one round-trip in a cavity. A streak
camera measurement of this effect along with asimulation is
shown in Fig. 78.17. Spatial domain effectsindirectly control
the spectral phase or amplitudes since, as a result of the
gratings, the temporal spectrum has been coupled with the
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Figure 78.16

(a) A measured distorted far-field image of the double-pass 2-D SSD system and (b) a simulation of the time-averaged far field with an angular-dependent
modulation depth and a G3 and G4 misalignment for the system parameters: dy1 = 6.15, vy1 = 3.3 GHz, AAy1 = 1.5 A, Ng, 01, duz = 13.5, and vm2
=3.0 GHz, AA\y2=3.0A, N¢, 0.9, 7=1ns, Dy =Dy =44 mm, and where hyperbolic-tangent profiles were used in the spatial and temporal dimensions.
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Figure 78.17

(a) A measured streak camera image (showing 2.4 ns of time) resulting from a noncollinear co-propagating reflection and (b) a simulation (showing 1 ns of
time) of the interference from afirst-order ghost delayed by 50 ps co-propagating at an angle of 40 urad to the main beam. The simulation islimited to 1 ns
due to practical memory constraints; however, 1 nsis sufficient to illustrate the pattern that repeats at arate of 1/vy.
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spatial spectrum, i.e., the dispersed bandwidth. Therefore,
spatial domain effects play a role only after the dispersion
gratings G2 of the first dimension and G4 of the second
dimension and include propagation and pinhole clipping.
Propagation leadsto AM since each color’s phase front propa-
gatesin adifferent direction, whichimpartsadifferent amount
of phaseto each color. The AM grows unbounded in anonlin-
ear manner as the propagation distance increases, but image
relaying has the ability to restore PM at an image plane.
Table 78.111 contains some simulation results of propagation
out of theimageplanefor variouslocationson OMEGA andfor
different 2-D SSD configurations. Pinhole clipping leads to
AM since, inthe far field, the dispersed bandwidth is splayed
acrossthefocal planeand, if the outermost colors are blocked
by the pinhole, AM results.

Spatia phase variationsin the near field of an SSD pulsed
beam do not directly convert to AM, but the far field may be
significantly broadened. If this image is passed through an
image relay with a pinhole filter, spectral clipping can occur,
which leadsto AM. On the other hand, nonlinear spatial phase
variations in the far field convert directly to AM in the near
field since the spectral components are distributed in the far
field as shown in Fig. 78.15. For example, surface roughness
of amirror that isplacedinthefar field of animagerelay cavity
altersthe phasefront of thereflected beam. Waasese simulates
the surface roughnessby spectrally filtering arandom-number
generator to match observed surface roughness statistics; an
exampleisshowninFig. 78.18. Theeffect onal-D SSD pul sed
beam is shown in the example in Fig. 78.19. As another
example, acurved retro mirror was unknowingly placed inthe
far-field retro stage of the second dimension and was sheared

to produce planar phase fronts. When planar mirrors were
substituted for the curved mirror, extremely large AM was
observed. The signature of propagation out of an image plane
was used to identify theAM sourceasacurved far-field mirror
since propagation also induces a curved phase on the angular
spectrum (see Fig. 78.20). Combinations of devices can aso
leadto AM. For example, aFaraday rotator with awavel ength-
sensitive rotation in combination with a cavity g ection wave
plate and a polarizer will result in an effective spectral filter.

Nonideal phase-modulator effects can beincluded in addi-
tion to applying the ideal PM described in Eq. (43). If the
angul ar spectrum of theinput beamissignificantly broadinthe
direction of the optic axis, i.e., a1-D SSD beam entering the
second-dimension modulator, the crystal birefringence must
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Figure 78.18

Modeled surface roughness on afar-field, high-reflecting dielectric mirror.

Table 78.111: The AM, given as a percentage of peak-to-initial value, that results from propagation out of an image
plane for different locations on OMEGA and for different 2-D SSD configurations.
1THz Ne=1,1 [ No=21 Current
Beam Ne=21 Nc =136 LLNL LLNL Ne=11
Component Diameter | 2.1, 10.4 A 15 30A 5.0 A 5.0 A 1.25, 1.75 A
Location (cm) 88,102 GHz | 33,12 GHz | 17 GHz 17 GHz | 3.3, 3.0 GHz
Focus lens (3w) 27.3 13.6 31.3 2.08 8.90 5.83
FCC 27.3 0.731 1.45 0.120 0.482 0.328
F spatia filter 19.5 3.06 6.23 0.496 2.01 1.36
E spatia filter 14.6 3.88 7.98 0.626 2.55 1.72
C relay 8.49 18.9 46.1 2.81 12.3 7.91
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Figure 78.19

(a) Spatiotemporal cross section and (b) lineout of a1-D SSD pulsed beam incident on afar-field mirror with surface roughness as modeled in Fig. 78.18 that
yielded a peak-to-mean AM of 4.8%.
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Figure 78.20

(a) A measured streak cameraimage (showing 3 ns of time) resulting from a phase curvature caused by an improperly placed retro mirror at the second SSD
dimension double-pass cavity and (b) asimulation of the same effect, resulting in 110% peak-to-mean AM. The simulation is limited to 1 ns due to practical
memory constraints; however, 1 nsis sufficient to illustrate the pattern that repeats at arate of 1/vy.
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be taken into account. This effect is exhibited by a quadratic
phase distortion in the spatial frequency domain (in the direc-
tion corresponding to the optic axis) that resultsfrom theindex
ellipsoid of uniaxial crystals (see Ref. 17, pp. 86-90). Each
harmonic planewaveproduced by thefirst SSD dimensionwill
experience adifferent phase delay asit propagatesthrough the
second modulator, which resultsin AM in thefirst dimension.
Before the second dimension has been dispersed by G4, an
adjustment of theimage plane will correct for thisAM source
because propagation induces a compensating phase curvature
on the angular spectrum (see Fig. 78.21). Thisis permissible
because the spread of the angular spectrum in the second
dimension is not significant before it has passed through the
dispersion grating.

One other source of PM to AM isthe nonlinear mapping of
the grating. In theideal case, EQ. (34) is used to describe this
mapping. If the more complete nonlinear mapping is used
[Eq. (17)], large enough bandwidthsand color cycleswill lead
to a distorted mapping onto the spatial spectrum and subse-
quently will introduce AM. Waasese simulates this effect and
shows that the distortion is greatest near the edge of the beam
asseeninFig. 78.22.
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Figure 78.22

Simulation of thenonlinear grating equation effect ona2-D SSD pul sed beam
using adouble-grating set. Thedistortionisgreatest near the edge of the beam

and results in a peak-to-mean AM of about 1%. The lineout is taken at x
=1.5cmandy=0cm. The system parameters: o1 = 6.15, vp1 = 3.36 GHz,

Mm1=15A, No, 01, o2 =3.38, ym2 = 12.06 GHz, AAM2 =3.0A, and
N, 0365,

(b) — 1053.20 nm
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Figure 78.21

(a) Simulation of the propagation of a 1.1-mm beam through the second SSD dimension modulator while including crystal birefringence resultsin a peak-to-
mean AM of 4%; (b) simulation of the compensating effect of a0.56-mm adjustment to theimage plane prior to thefinal grating at the 1.1-mm beam diameter.
The system parameters: dy1 = 6.15, ym1 =3.3 GHz, AAy1 = 1.5 A, N¢, 01, dvz2 =13.5, and vz = 3.0 GHz, AAm2 = 3.0 A, Nc>< 00.9, 1=1ns, Dy =Dy
= 44 mm, where hyperbolic-tangent profiles were used in the spatial and temporal dimensions, and an effective LiNbO3 crystal length of 36 mm.
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Conclusion

Waasese provides a flexible modeling tool for simulating
the generation and propagation of 2-D SSD pulsed laser
beams. Waasese simulatesideal and nonideal behavior of the
many optical components that comprise the SSD driver line
including their relative positions. Waasese predicts measur-
able signatures that function as diagnostic tools since they are
associated with particular optical components. The signature/
component relationships act together with experimental mea-
surementsto help locate and eliminate a troublesome compo-
nent. Minimizing any AM in the driver line will ensure the
safety level and lifetime of OMEGA optics by circumventing
the effects of small-scale self-focusing. Waasese proves to be
an indispensable modeling tool for the OMEGA laser, and its
inherent flexibility will provide a means to enhance its capa-
bilitiesto model other laser propagation issues such asnonlin-
ear propagation, on-target uniformity, amplifier gain, scattering
losses, and pinhole clipping.
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