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In inertial confinement fusion (ICF) implosions, a laser irra-
diation induces a shock wave propagating through the target.
During the shock transit time, the ablation front travels at a
constant velocity, and any surface perturbations could grow
due to the Richtmyer-Meshkov (RM)–like instability.1–5

Later, when a rarefaction wave reaches the ablation surface,
the acceleration of the interface becomes finite, and ablation-
front perturbations (multiplied by the RM growth) grow due to
the Rayleigh–Taylor (RT) instability. It is important to study
the perturbation evolution during the shock transit time mainly
for two reasons: (1) to determine the initial conditions for the
RT phase of instability and (2) to analyze the level of laser
imprint on directly driven ICF targets.

The RM instability occurs when a plane shock interacts
with a corrugated interface between two fluids (see Fig. 77.30).
As a result of such an interaction, interface perturbation starts
to grow because the transmitted shock is converging at the
peak (point A) and diverging at the valley (point B). Converg-
ing shock increases pressure and accelerates perturbation peak
into fluid 2. Similar instability occurs at the distorted interface
of an ablatively driven target, where ablation pressure gener-
ates a rippled shock that induces pressure perturbation at the
ablation front and causes distortion growth. The classical
treatment of the RM problem leads to a linear-in-time asymp-
totic perturbation growth1   η ηkc t kc ts s>>( )1 0. , where η is
the interface perturbation, k is the mode wave number, cs is
the sound speed of the compressed material, and η0 is a
constant depending on the initial conditions. Recent studies
showed that the ablation of material from the target surface
turns such a growth into damped oscillations.4,5 During the last
two years, several researchers have made attempts to develop
an analytic theory of the ablative Richtmyer–Meshkov insta-
bility. In Refs. 4 and 5, the authors, on the basis of a gas
dynamic model, found saturation of perturbations. At the
ablation front, however, they used an heuristic boundary con-
dition that, as will be shown later, contradicts the result of the
self-consistent theory.6–8 In Ref. 3 the boundary conditions at
the ablation front were derived by using the Chapman–Jouget
deflagration model. As criticized in Ref. 5, however, this
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model does not give an adequate description of the ablative
process. In this article, we develop a sharp-boundary model to
study the imposed mass-perturbation growth during the shock-
transit time. The boundary conditions at the shock front are
derived using the Hugoniot relations. At the ablation front the
result of the self-consistent analysis6–8 is applied, and it is
shown that the asymptotic behavior of the ablation-front per-
turbations is quite different from the earlier theoretical predic-
tions.3–5 In particular, the dynamic overpressure causes

Figure 77.30
Richtmyer–Meshkov instability occurs when a plane shock interacts with a
corrugated interface between two fluids.
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perturbation oscillations in time (in agreement with the nu-
merical results)2,5 with the frequency ω = k V Va bl  and the
amplitude η0c V Vs a bl , where Va and Vbl are the ablation and
blow-off velocity, respectively. In addition, the mass ablation
damps the oscillation amplitude on a time scale 1 1kVa( ) >> ω .

To study the linear perturbation growth during the shock-
transit time, we consider a sharp-boundary model and identify
the following three constant-density regions (see Fig. 77.31):
(1) uncompressed material (undriven portion of the target) y <
ys (ρ = ρ1), (2) material compressed by the shock ys < y < ya
(ρ = ρ2), and (3) ablated plasma y > ya with the density ρ = ρ3.
In the ablation-front frame of reference, the compressed mate-
rial and blowoff plasma are moving in a positive y direction
with velocities Va and V Vabl = ρ ρ2 3 , respectively. In the
shock-front frame of reference, the undriven- and compressed-
fluid velocities areU P P1 2 1 2 1 2 1= −( ) −( )ρ ρ ρ ρ and U2 =
ρ1U1/ρ2 , where P1(2) is the pressure in the region 1(2).
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Figure 77.31
The equilibrium configuration is represented by the three regions (1) undriven
target, (2) compressed material, and (3) ablated plasma.

The stability analysis of the described equilibrium is per-
formed in the standard fashion. First, all perturbated quantities
are decomposed in the Fourier space Q Q y t eikx

1 = ( )˜ , . Then, in
the frame of reference moving with the compressed-region
velocity, the linearized conservation equations are combined
into a single partial differential equation for the pressure
perturbation ̃p :1,3,9

∂ − + =t s y sp c p k c p2 2 2 2 2 0˜ ˜ ˜ ,∂ (1)

where cs is the sound speed of the compressed material. The
boundary conditions at the ablation front can be derived by
integrating the perturbed conservation equations across the
interface y = ya. The result is
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where superscript l denotes the blowoff region variable, Ω =
Vbl/cs, δ = ρ3/ρ2, τ = kcst, ˜ ˜w p cs= ( )ρ2

2 , and ζa = kηa is the
normalized ablation-surface perturbation. It is well known10,11

that the sharp-boundary model cannot be solved in closed form
in the presence of ablation without a supplementary boundary
condition at the surface of discontinuity. The closure equation
can be derived only by using the self-consistent stability
analysis of ablation fronts. In Refs. 6–8 such an analysis was
carried out by keeping finite thermal conductivity in the
energy-conservation equation. Taking the limit of zero abla-
tion-front thickness in the analytical solution, one can derive
the jump conditions for the hydrodynamic quantities at the
ablation front.8,10 In addition to the conditions (2), the follow-
ing jump in the perturbed transverse velocity is found:

  
˜ ˜ .v vy y

l− = − −( )ζ δaVbl 1 (3)

Observe that by combining Eqs. (2) and (3) one can derive
an equation for the perturbation evolution 

  
d kVt a a aη η+ = ṽy

that contradicts the boundary condition chosen heuristically
in Eq. (10) of Ref. 5. At the shock front the boundary condi-
tions are obtained by using the perturbed Hugoniot rela-
tions. The details of calculation can be found in Ref. 9. Next,
to simplify the matching procedure we introduce new variables
r k y= −τ 2 2 2 and θ τ= ( )−tanh 1 ky ; then Eq. (1) and the
boundary conditions at the shock and ablation fronts take the
following form:
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where tanhθa = −Va/cs, tanhθs = −U2/cs, ˜ ˜ ,w w rs s= ( )θ ,
˜ ˜ ,w w ra a= ( )θ , and
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Here M U c1 1 1=  is the shock Mach number, and c1 is the
sound speed of the undriven material. A general solution of
Eq. (4) can be written as an infinite sum of Bessel functions
Jµ(r):3,9

˜ cosh sinh  ,w M N J r= +( ) ( )∑ µ µ
µ

µµθ µθ (9)

where constants Mµ and Nµ are determined from the boundary
conditions (5)–(8). The temporal evolution of the front-surface
perturbations is described by Eqs. (7) and (8) that can be solved
by using the multiple-scale analysis. Next, we introduce a
long-scale variable T r= δ  and make the following ordering:
Ω ~ ,  ~1 1V ca s( ) <<δ . Also we assume that

˜ ~ ,  ˜ ~ ,  ˜ ~ .w w wa r a aδ δ θ∂ ∂ 1 (10)

The last assumptions will be verified a posteriori. The system
(7)–(8) then reduces to
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where f (T) satisfies the first-order differential equation

d f T w F TT a( ) = + ( )Ω Ω˜ .δ δ 2

In Eqs. (11) and (12) the ablation-front perturbation ζa and
constants Nµ and Mµ are expanded in powers of δ : Q = Q0 +
δQ1 + … . To the first order in δ , the solution of Eq. (11) is
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The constant B and function A(T) are determined from the
matching conditions. The functions Mµ(T) can be found by
solving Eqs. (11)–(13) and keeping only terms up to the order
of δ . The result is M M Ni
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where ∆ Ω Ω Ω2
2= ′ + + − ( )δ A T A T B f T( ) ( ) . Observe that

Eqs. (14) and (15) confirm our initial assumption (10). Next,
we derive an equation for the δ correction to the front pertur-
bation. Keeping δ- and δ3/2-order terms in Eq. (11) yields
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Following the standard procedure of the multiple-scale analy-
sis, we eliminate the secular terms in the last equation. This
condition gives the following differential equation for A(T):

′′ + ′ + +( ) +
∂





= ( )
→∞

A T A T B C
w

r
f Tt

r

( ) ( )
˜

,δ θΩ Ω
1

(17)

where

∂





= ( ) + ( )






+ ( ) +( )


− +

=

∞
∑

θ

µ µ µ
µ

˜

 ,

w

r
N J r N J r

J r N N

1

1
1

0 2
1

1

1
1

1
1

2

1

2

(18)

and C Nt i i= −∑ =
∞

+0 2 1
0 . The functions Nµ(T) can be found by

solving Eqs. (5) and (6). After some straightforward algebra, in
the limit of µ >> 1, we obtain   N Mµ µ

1 1. , and Eq. (18) becomes
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terms in Eq. (16) with the help of Eq. (19) gives B = −Ct , and
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Substituting Eq. (20) into Eq. (13) and using the fact that the
coefficients Ni>3

0  are numerically small for an arbitrary Mach
number M1 yields
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Equation (21) shows that the ablation-front perturbations os-
cillate in time with the frequency ω proportional to the abla-
tion velocity Va. In addition, the amplitude of oscillations
is damped by the mass ablation [term e kV ta−2  in Eq. (21)].
The period of oscillations is much smaller, however, than
the damping rate kV V Va aω δ= = <<bl 1. In the limit of
zero ablation velocity,   sinω t k V V ta. bl , and Eq. (21)
leads to a classical asymptotic linear growth η kc ts >>( )1 .
η0 1 21 − +( )Σ Σkc ts .

The oscillatory behavior of the perturbations can be ex-
plained on the basis of the following simple model. Let us
consider a slab of a uniform-density fluid with the perturbed
right interface. If the applied pressure at the left and right
sides of the slab is PL and PR, then the effective acceleration
experienced by the slab is g P P MR Leff = − −( ) , where M =
ρL is the mass of the slab and L is its length. In the case where
the effective acceleration is pointing in the direction from a
perturbed interface toward the slab, such a configuration is
hydrodynamically stable, and any surface perturbations oscil-
late in time (gravity wave). For a target driven by a laser
irradiation, the dynamic pressure in the blowoff region
P V V VR a= =ρ ρ3

2
2bl bl  is greater than the dynamic pressure in

the shock-compressed region P V P PL a R R= = <ρ δ2
2 , and

the effective acceleration is pointing in the direction of the
density gradient (from the perturbed ablation surface toward
the shock compressed region). From the equation describing
the temporal evolution of a gravity wave ˙̇η η= kgeff , it follows
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that the frequency of oscillations is ω = −kg kV V Laeff . bl ,
and we recover the result of Eq. (21) with L = 1/k. The simple
model described above shows that the dynamic overpressure is
the main stabilizing mechanism of the ablation-surface pertur-
bations during the shock-transit time. The estimate of the
oscillation frequency can be also obtained by using the result
of the self-consistent theory of the ablative RT instability.6–8

For the large Froude number case (small acceleration), the
perturbation growth rate is γ . kg k V V kVa a− −2 2bl . Taking
the limit of g → 0 in the last expression gives the oscillation
frequency ω γ= =i k V Va bl , in agreement with Eq. (21).

For a quantitative comparison of the model [Eq. (21)] with
the result of numerical simulations, one needs to estimate
the value of blowoff velocity Vbl. Simulations and the self-
consistent analysis of ablation fronts6–8 show that the velocity
of ablated plasma is not uniform, and it increases in the
direction toward the blowoff plasma. As shown in Refs. 7,
8, and 10, however, the appropriate value of the blowoff
velocity to be substituted into the sharp-boundary model is
V V V kLa abl ≡ = ( )( )[ ]δ µ ν ν

0
1/ , where ν  is the power index

for the thermal conduction, L0 is the characteristic thickness
of ablation front (proportional to the minimum density-gradi-
ent scale length),7 µ = ( ) +( ) +2 1 1 0 121 2ν ν νν/ .Γ , and Γ(x)
is the gamma function. The effective power index ν and
the thickness of the ablation front L0 can be determined by
fitting the hydrodynamic profiles obtained using the 1-D
hydrodynamic code with the solution of the isobaric model.12

For plastic (CH) targets directly driven by a flat-top laser pulse
with an intensity of 50 to 200 TW/cm2, L0 . 0.1 µm, ν . 1, and
the oscillation period is

T V kaCH .2 8 1. µ µm ns m ns.( ) ( )[ ]−

Cryogenic DT targets have a much smaller density-gradient
scale length L0 . 0.01 µm, ν . 2, and

TDT m ns m ns.2 3 4 1V ka µ µ( ) ( )[ ]−/ .

For the cryogenic NIF target designs, Va . 2 µm/ns during the
shock-transit time, and TDT = 2.5 ns for 20-µm perturbation
wavelength. In this case the ablation-front perturbations will
experience several oscillations (the breakout time for such
targets is around 5 ns). Figure 77.32 shows the front-perturba-
tion evolution of the 200-µm-thick DT foil driven by a square

pulse with an intensity of 100 TW/cm2. The initial amplitude
of perturbation is 0.1 µm, and its wavelength is 20 µm. The
dots represent the  result of 2-D hydrocode ORCHID,13 and
the solid line shows the prediction of the sharp-boundary
model. Observe that the analytic formula (21) reproduces not
only the period of oscillation but also its amplitude.

In summary, the analytic theory of the ablative Richtmyer–
Meshkov instability was developed. It was shown that the main
stabilizing mechanism of the ablation-front perturbations is
the dynamic overpressure of the blowoff plasma with respect
to a target material.
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