Theory of the Ablative Richtmyer—Meshkov Instability

In inertial confinement fusion (ICF) implosions, a laser irra-

diation induces a shock wave propagating through the target. /
During the shock transit time, the ablation front travels at a
constant velocity, and any surface perturbations could grow
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due to the Richtmyer-Meshkov (RM)-like instability 0 Before
Later, when a rarefaction wave reaches the ablation surface, [ “
the acceleration of the interface becomes finite, and ablation- “"““4"““
front perturbations (multiplied by the RM growth) grow due to "““““
the Rayleigh—Taylor (RT) instability. It is important to study “ “
the perturbation evolution during the shock transit time mainly Interface Shock front
for two reasons: (1) to determine the initial conditions for the
RT phase of instability and (2) to analyze the level of laser
imprint on directly driven ICF targets.
The RM instability occurs when a plane shock interacts ~ Converging A
with a corrugated interface between two fluids (see Fig. 77.30). shock Higher
As a result of such an interaction, interface perturbation starts Diverging pressure
to grow because the transmitted shock is converging at the shock <% B After
peak (point A) and diverging at the valley (point B). Converg- Lower
: : . pressure
ing shock increases pressure and accelerates perturbation peak
into fluid 2. Similar instability occurs at the distorted interface
of an ablatively driven target, where ablation pressure gener-
ates a rippled shock that induces pressure perturbation at the Transmitted Interface  Reflecting
ablation front and causes distortion growth. The classical shock shock

TC4930
treatment of the RM problem leads to a linear-in-time asymp-

totic perturbation growth n(kegt >>1)=ngkegt, wherern is
the interface perturbatioh,is the mode wave numbay, is ~ Figure 77.30 S _ .
the sound speed of the Compressed material,r@nid; a R|chtmyer—Meshkov instability occur; when a plane shock interacts with a
. o . . corrugated interface between two fluids.
constant depending on the initial conditions. Recent studies
showed that the ablation of material from the target surface
turns such a growth into damped oscillatiéi¥®uring the last
two years, several researchers have made attempts to devetopdel does not give an adequate description of the ablative
an analytic theory of the ablative Richtmyer—Meshkov instaprocess. In this article, we develop a sharp-boundary model to
bility. In Refs. 4 and 5, the authors, on the basis of a gastudy the imposed mass-perturbation growth during the shock-
dynamic model, found saturation of perturbations. At thdransit time. The boundary conditions at the shock front are
ablation front, however, they used an heuristic boundary corderived using the Hugoniot relations. At the ablation front the
dition that, as will be shown later, contradicts the result of theesult of the self-consistent analysi¥is applied, and it is
self-consistent theo§78In Ref. 3 the boundary conditions at shown that the asymptotic behavior of the ablation-front per-
the ablation front were derived by using the Chapman—-Jougatrbations is quite different from the earlier theoretical predic-
deflagration model. As criticized in Ref. 5, however, thistions3-> In particular, the dynamic overpressure causes
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perturbation oscillations in time (in agreement with the nu- Vy —\7|X . . ~|
merical resultg}® with the frequencyw = k,/V,\}; and the s 1aQ(1-0), (1-0)drla =y ~5%,
amplitudengcs/VaVhl , WhereV, andvy, are the ablation and (2)
blow-off velocity, respectively. In addition, the mass ablation W= = ZﬁQ(l— 5) Za,

damps the oscillation amplitude on atime st4kV; ) >>1/w. Cs

To study the linear perturbation growth during the shockwhere superscrigtdenotes the blowoff region variab®@,=
transit time, we consider a sharp-boundary model and identifyy,/cs, = p3/p,, T=kct, W= f)/(pzcg) , and{y =kn, is the
the following three constant-density regions (see Fig. 77.31pormalized ablation-surface perturbation. Itis well k&t
(1) uncompressed material (undriven portion of the tayget) that the sharp-boundary model cannot be solved in closed form
Ys (P = p1), (2) material compressed by the shggky <y, inthe presence of ablation without a supplementary boundary
(p=p»), and (3) ablated plasnye y, with the density = pa. condition at the surface of discontinuity. The closure equation
In the ablation-front frame of reference, the compressed matean be derived only by using the self-consistent stability
rial and blowoff plasma are moving in a positivelirection  analysis of ablation fronts. In Refs. 6-8 such an analysis was
with velocitiesV, and V, =V,0,/p3, respectively. In the carried out by keeping finite thermal conductivity in the
shock-front frame of reference, the undriven- and compressednergy-conservation equation. Taking the limit of zero abla-
fluid velocities aréJ; = /p,/p1 (P ~ R)/(p2 — 1) andU, = tion-front thickness in the analytical solution, one can derive
pP1U1/po , wherePy ) is the pressure in the region 1(2). the jump conditions for the hydrodynamic quantities at the
ablation front:10In addition to the conditions (2), the follow-
ing jump in the perturbed transverse velocity is found:

Undriven | Compressed| Ablated

© e _
target material plasma Vy ~Vy = ~(aVp (1 5)- (3)

P1 P2 P3 Observe that by combining Egs. (2) and (3) one can derive
Vs Ya >y an equation for the perturbation evolutiggm, + kVa, = \7y

ressst that contradicts the boundary condition chosen heuristically

in Eq. (10) of Ref. 5. At the shock front the boundary condi-

Figure 77.31 tions are obtained by using the perturbed Hugoniot rela-
The equilibrium configuration is represented by the three regions (1) undrivetions. The details of calculation can be found in Ref. 9. Next,
target, (2) compressed material, and (3) ablated plasma. to simplify the matching procedure we introduce new variables

r=412-k%2and 6 =tanh™}(ky/7); then Eq. (1) and the
The stability analysis of the described equilibrium is perboundary conditions at the shock and ablation fronts take the
formed in the standard fashion. First, all perturbated quantitiésllowing form:
are decomposed in the Fourier spege= Q(y,t)e’*. Then, in
the frame of reference moving with the compressed-region

velocity, the linearized conservation equations are combined ar2\7v+lar\7v+\7v—izagv”v= 0, (4)
into a single partial differential equation for the pressure r r
perturbationp:1-3.9
s iy =L dZ, ©)
02p-c202p+k2c2p=0, (1) cosh b5
wherecg is the sound speed of the compressed material. The sinh26 rL,

d?¢s, (6)

boundary conditions at the ablation front can be derived by 0gWs = —TL3 COShBS s cosh @
integrating the perturbed conservation equations across the s s
interfacey =y,. The result is
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(1-0)d?¢, -5Q%, + "Gf"a +W, = 0(52), ) 020 + 2300205 + Q0,{5 +0Q01(,
+0%, —% = £(T), (12)
dr (600, + 597, — iy
- 5Qii, + 5202F(r) +O(63), (8) wheref (T) satisfies the first-order differential equation

= OW. /S ++8 02
where tanif, = -V /cs, tanhfs = —Ulcg, Ws = W(r,65), dr £(T) = QW /V 5 ++8 QF(T).

W, =W(r,6,), and
In Egs. (11) and (12) the ablation-front perturbat{grand

_ 4 _ Mi2 +1 constants\,, andM,, are expanded in powers 8fQ = Q0+
L= y +1tanh93, L2=2 M2(y +1)’ QL+ To the f|rst order in/3, the solution of Eq. (11) is
M -1 Dgia(£) 7

70 = A(T)+Br - [ dtf dE (13)

104 0-9qQr O The constanB and functionA(T) are determined from the
:L_l 1 L3EWF sH matching conditions. The functios,(T) can be found by
solving Eqgs. (11)—(13) and keeping only terms up to the order
of V3. The resultisM? =0, M} =4, - N?/2, and
Here M; =U;/c; is the shock Mach number, andis the
sound speed of the undriven material. A general solution of
\I]Ej(.r)(é,);an be written as an infinite sum of Bessel functions M%i =20, - E‘P'szzl(Zk 1)N0( )

h O
W:Z(Muco o + Nusinhue) 3,(1), ©) +N20i_1+|\|gi+1H i=12.. . (14)
u

where constantdl,, andN,, are determined from the boundary
conditions (5)—(8). The temporal evolution of the front-surface, , 1

=2(2i +1)BQ?
perturbations is described by Egs. (7) and (8) that can be solved? *1 ~ (2 +1)
by using the multiple-scale analysis. Next, we introduce a B gd 0o [ o U ._
long-scale variabl@ = +/or and make the following ordering: 20 EgONZ“*l (i+ DN +1S =01, (15)
Q-1 (Va/cs) ~ 0 <<1. Also we assume that
Wy ~ 8, 0,W, ~3, dgW, ~1. (10)  whereA, = Q6A(T) + Q2A(T) + QB - f(T). Observe that

Egs. (14) and (15) confirm our initial assumption (10). Next,
The last assumptions will be verifiaghosteriori The system we derive an equation for tlecorrection to the front pertur-
(7)—(8) then reduces to bation. Keeping>- andd3/2-order terms in Eq. (11) yields

0204 + 21002, +0 020, +5 Q0 {, 0271 = - A"(T)

W

dgW, = Ar
3/2 oWa _ - Qq - 0_ ) 16
+5%2Q0.¢, + ra =f(T), (11) QVOA(T) - Q0,7 -5 —H + T (T). (186)
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Following the standard procedure of the multiple-scale analy- 5 16(M12 -1 M12

is, liminate th lar t in the last tion. Thi 0~ ’
sis, we eliminate the secular terms in the last equa |9n is (2yM12—y+1)(3M12 +1)
condition gives the following differential equation #&{T):

= _ M (5y -1) +2MZ(y +3) -3y -1
A"(T)wﬁsz'(T)+Q(B+Ct)+5"|—?Wﬁl =1(1),  (7) 217220 1a (17~ 7)+ 2M2(y +9) -3y +5'
:l(z +z)
where 22 g\20™21)
A O _ 3004 . Osinh?6g
?%WQZEEQ%JO(r)+ N3J,(r) 237 L, Oy +1 La-Lsf—g
@ 0
£y 3,() (Nh +NLaJD, a8) S 4= 3 o(L-tahe,).
u=2 =

andC, ==Y Zp Ngi +1- The functionsN (T) can be found by Equation (21) shows that the ablation-front perturbations os-

solving Egs. (5) and (6). After some straightforward algebra, igillate in time with the frequencs proportional to the abla-

the limitofu>>1, we obtainl\l%, =M},, and Eqg. (18) becomes tion velocity V,. In addition, the amplitude of oscillations
is damped by the mass ablation [tegTVa! in Eq. (21)].
The period of oscillations is much smaller, however, than

=0, -CQ%2+QC + (B+ Ct)er , (19)  the damping rat&V, /w = \;’m =/J <<1. In the limit of
zero ablation velocity,snwt=k,V W, t, and Eq. (21)
leads to a classical asymptotic linear grovn](rkcst >> 1):
rlo(l_ Zl + szZZt) .

oWl
Hr 4

r - o

where C; =-3 2o(2i +1)NJ ;. Eliminating the secular

terms in Eq. (16) with the help of Eq. (19) gi\gs -C;, and The oscillatory behavior of the perturbations can be ex-
plained on the basis of the following simple model. Let us
A" +2:/6QA + Q2A=2f(T) + Q2C,. (20) consider a slab of a uniform-density fluid with the perturbed

right interface. If the applied pressure at the left and right

sides of the slab B andPg, then the effective acceleration
Substituting Eq. (20) into Eq. (13) and using the fact that thexperienced by the slab @y = —(PR - PL)/M , whereM =
coefficients Nio>3 are numerically small for an arbitrary Mach pL is the mass of the slab ahdk its length. In the case where
numberM, yields the effective acceleration is pointing in the direction from a

perturbed interface toward the slab, such a configuration is

_kv,t/snhe, hydrodynamically stable, and any surface perturbations oscil-

na(kcst >> 1) - ZSekVat J’e”Si“hele(n)dn late in time (gravity wave). For a target driven by a laser
No - irradiation, the dynamic pressure in the blowoff region
Pr= p3V57T = PV, is greater than the dynamic pressure in
22 ot HL-51+54) costhe_ZkVat 1 (21) the shoclf-compresse(_j regidﬁ_ :.pzv_a2 = PR6_< Pr, and
B VaVor § the effective acceleration is pointing in the direction of the
density gradient (from the perturbed ablation surface toward
the shock compressed region). From the equation describing
where w = kyV,V, and the temporal evolution of a gravity wawme= kge 17, it follows
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thatthe frequency of oscillationsas= /—kgest =KV /L,

and we recover the result of Eq. (21) witk 1k. The simple 0.2
model described above shows that the dynamic overpressure i

the main stabilizing mechanism of the ablation-surface pertur- < 00
bations during the shock-transit time. The estimate of the S

=

oscillation frequency can be also obtained by using the result 5 02k
of the self-consistent theory of the ablative RT instalfitify. €
For the large Froude number case (small acceleration), the
perturbation growth rate ig = kg - k?V,\, - 2kV,. Taking

-0.4

1 I 1 I 1 I 1 I 1 I 1 I 1 I
the limit ofg — 0 in the last expression gives the oscillation 02 04 06 08 10 12 14

frequencyw =iy = k\V,V, , in agreement with Eq. (21).

Time (ns)
TC4932

For a quantitative comparison of the model [Eq. (21)] with
the result of numerical simulations, one needs to estima}_e;gure 7732
the value of blowoff velocity},. Simulations and the self- Time evolution of the ablation-front perturbation calculated using analytic
consistent analysis of ablation frofrt8show that the velocity formula (22) (solid line) compared with the numerical results (dots) of the
of ablated plasma is not uniform, and it increases in théD hydrocodeORCHID.
direction toward the blowoff plasma. As shown in Refs. 7,
8, and 10, however, the appropriate value of the blowoff
velocity to be substituted into the sharp-boundary model ipulse with an intensity of 100 TW/&xiThe initial amplitude
Vol sva/dzva/[u(v)(kLo)l“’], wherev is the power index of perturbation is 0.um, and its wavelength is 2am. The
for the thermal conductiot, is the characteristic thickness dots represent the result of 2-D hydroc@RCHID,13 and
of ablation front (proportional to the minimum density-gradi-the solid line shows the prediction of the sharp-boundary
entscale lengthj,u = (2/v)1lv/r(1+l/v) +0.12/vZ,andr'(x)  model. Observe that the analytic formula (21) reproduces not
is the gamma function. The effective power indexand  only the period of oscillation but also its amplitude.
the thickness of the ablation frobg can be determined by
fitting the hydrodynamic profiles obtained using the 1-D Insummary, the analytic theory of the ablative Richtmyer—
hydrodynamic code with the solution of the isobaric mddel. Meshkov instability was developed. It was shown that the main
For plastic (CH) targets directly driven by a flat-top laser pulsestabilizing mechanism of the ablation-front perturbations is
with an intensity of 50 to 200 TW/ciyLy=0.1um,v=1,and the dynamic overpressure of the blowoff plasma with respect

the oscillation period is to a target material.
ACKNOWLEDGMENT
~ -1
TCH - 2'8/[Va(l'lm/ns)\ k(/“lm )] ns. The author thanks Professors R. Betti and J. Sanz and Dr. C. Cherfils for

helpful discussions. This work was supported by the U.S. Department of
Energy Office of Inertial Confinement Fusion under Cooperative Agree-

. h h ler d . di ment No. DE-FC03-92SF19460, the University of Rochester, and the New
Cryogenic DT targets have a much smaller density-gra Ien\;ork State Energy Research and Development Authority. The support of

scale Iength.o = 0.01um, v = 2, and DOE does not constitute an endorsement by DOE of the views expressed in
this article.
Tor=2/ [Va(um/ ns)k? 4(um_1)] ns. REFERENCES

1. R.D. Richtmyer, Commun. Pure. Appl. MaXill , 297 (1960).
For the cryogenic NIF target desigh'g,= 2 um/ns during the
2. S. E.Bodner, D. G. Colombant, J. H. Gardner, R. H. Lehmberg, S. P.

shock-transit time, an@ipt = 2.5 ns for 2Qum perturbation _ i, , _
. . . . Obenschain, L. Phillips, A. J. Schmitt, J. D. Sethian, R. L. McCrory,
wavelength. In this case the ablation-front perturbations will \y seka, c. P. Verdon, J. P. Knauer, B. B. Afeyan, and H. T. Powell

experience several oscillations (the breakout time for such  Phys. Plasmas, 1901 (1998).
targets is around 5 ns). Figure 77.32 shows the front-perturba-

tion evolution of the 20Qmm-thick DT foil driven by a square R. Ishizaki and K. Nishihara, Phys. Rev. L8, 1920 (1997).

34 LLE Review, Volume 77



THEORYOF THE ABLATIVE RCHTMYER-MESHKOV INSTABILITY

4. R.J.Tayloet al, Phys. Rev. Letf79, 1861 (1997).
5. A. L. Velikovichet al, Phys. Plasmas, 1491 (1998).
6. J. Sanz, Phys. Rev. Let3, 2700 (1994).

7. V. N. Goncharov, R. Betti, R. L. McCrory, P. Sorotokin, and C. P.
Verdon, Phys. Plasma&s 1402 (1996).

8. V. N. Goncharov, “Self-Consistent Stability Analysis of Ablation

Fronts in Inertial Confinement Fusion,” Ph.D thesis, University of
Rochester, 1998.

LLE Review, Volume 77

10.

11.

12.

P. M. Zaidel, J. Appl. Math. MecB4, 316 (1960).
A. R. Piriz, J. Sanz, and L. F. Ibanez, Phys. Plagima$17 (1997).
S. E. Bodner, Phys. Rev. L8, 761 (1974).

R. Betti, V. N. Goncharov, R. L. McCrory, and C. P. Verdon, Phys.
Plasmas, 1446 (1998).

R. L. McCrory and C. P. Verdon, @omputer Applications in Plasma

Science and Engineeringdited by A. T. Drobot (Springer-Verlag,
New York, 1991).

35



