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Stimulated Raman scattering (SRS), an instability that con-
verts laser light incident on a plasma into plasma waves and
lower-frequency scattered photons, has been a major concern
in laser fusion research for many years. The scattered photons
represent wasted energy, and the plasma waves can produce
suprathermal electrons that penetrate and preheat the target
core, thereby preventing efficient implosion. Interest in SRS
has intensified in recent years as experiments with higher laser
intensities and longer-scale-length plasmas, intended to simu-
late laser–plasma interaction conditions in the National Igni-
tion Facility (NIF), have yielded SRS reflectivities as high as
25%.1 Furthermore, for many years theoretical models of SRS
have had difficulty accounting for several aspects of the experi-
mental observations: SRS is often observed at incident inten-
sities well below the theoretical threshold; the spectrum of the
scattered light is broader and extends to shorter wavelengths
than theory predicts; and anomalous spectral and temporal
structure is observed.2 More recently it has been found that
“beam smoothing,” which involves small increases in the
spatial and/or temporal bandwidth of the incident laser light,
effectively suppresses the SRS instability,3,4 while theory
predicts that much larger increases in the bandwidth, compa-
rable to the instability growth rate, would be required for
such suppression.

To account for the discrepancies in the threshold and spec-
trum, it was proposed some time ago5,6 that SRS is not
occurring in the bulk plasma, but rather in intense light fila-
ments formed from hot spots in the incident laser beam by the
self-focusing instability. Intensities in such filaments could
easily surpass SRS thresholds, even if the average beam
intensity was well below the threshold, and the higher intensity
would be expected to drive SRS over a broader range of
wavelengths. The more recent experimental observations add
further support to this hypothesis: Filamentation can be sup-
pressed by much lower bandwidths than would be required to
suppress SRS directly, and the anomalous spectral and tempo-
ral features may be accounted for by the temporal evolution of
the waveguide mode structure in the filament. A thorough
discussion of the anomalies in SRS experiments and how they

Collisionless Damping of Localized Plasma Waves in
Laser-Produced Plasmas and Application to
Stimulated Raman Scattering in Filaments

can be explained by filamentation is presented in Afshar-rad
et al.,7 along with direct observational evidence for the occur-
rence of SRS in filaments. It should be pointed out that this
interpretation of the experimental observations has great
potential significance for NIF since it suggests that the band-
width already incorporated in the NIF design to improve
irradiation uniformity may also be sufficient to suppress or
greatly reduce SRS.

The experimental evidence for the connection between
filamentation and SRS is especially compelling for the short-
wavelength portion of the SRS spectrum. Recently reported
experiments1,3,4 on the Nova laser at LLNL studied a 351-nm
laser beam interacting with a preformed plasma at a tempera-
ture of ~3 keV. The density profiles of these plasmas have a
large central region at densities of about 10% ncrit and fairly
sharp boundaries. LASNEX simulations of these targets, in
concert with the laser interactions postprocessor (LIP),8 pre-
dicted a narrow SRS spectrum at ~600 nm, whereas observa-
tions showed a much broader spectrum extending to shorter
wavelengths. In some cases without beam smoothing, this part
of the spectrum dominated, with a peak near 450 nm. Substan-
tial scattering at these wavelengths requires long regions of
very-low-density plasma, which do not appear in the hydrody-
namic simulations but could exist in a filament. This part of the
spectrum is strongly peaked in the backscatter direction and is
greatly diminished by increased bandwidth:4 further indica-
tions that this scattering is associated with filamentation. The
beam-deflection phenomenon, observed in many of these
experiments and associated with filamentation in theory and
simulations,9,10 provides independent evidence that fila-
mentation is occurring in these plasmas.

One remaining difficulty with this interpretation concerns
the damping of SRS at these wavelengths. The parametric
nature of the SRS instability requires that the participating
electromagnetic and electrostatic waves satisfy frequency- and
wave-vector–matching conditions:

ω ω ω0 0= + = +s sk k k, ,
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where (ω0,k0), (ωs,ks), and (ω,k) are the frequency and wave-
number pairs of the incident and scattered electromagnetic
waves and the plasma wave, respectively. In the fluid approxi-
mation the dispersion relations for these three waves are
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where ωp is the plasma frequency, vT is the electron thermal
velocity, and λD is the Debye length. Short-wavelength scatter-
ing requires that ω and therefore ωp be small so that ωs ≈ ω0.
Consequently, the thermal dispersion term becomes signifi-
cant, with kλD of order 1. It is well known that for electrostatic
waves in homogeneous plasmas Landau damping becomes
very strong when kλD ≥ 0.4. This suggests that the plasma wave
associated with short-wavelength SRS will be heavily Landau
damped, and, in fact, in this case SRS is more properly referred
to as stimulated Compton scattering (SCS), which has a much
lower growth rate and correspondingly higher threshold; thus,
significant scattering would not be expected in this range of
wavelengths. One possible explanation, recently proposed by
Afeyan et al.,11 is that thermal transport across steep tempera-
ture gradients, produced by inverse bremsstrahlung absorption
in intense hot spots in the laser beam, produces a modified non-
Maxwellian electron distribution function (MDF) in the hot
spot with a depleted high-energy tail. Since the high-energy
electrons are responsible for Landau damping, this would
result in a reduced damping in the hot spots, allowing SRS to
occur. The thermal-electron mean free path in these plasmas,
however, is typically much larger than the size of the laser hot
spots, and the mean free path for the high-energy electrons is
even longer, so it is not clear that the required steep gradient in
the high-energy electron population could be sustained. More-
over, recent experiments12 using random phase plates suggest
that hot spots alone, without self-focusing, cannot account for
the levels of SRS observed.

In this article we propose an alternative explanation. We
investigate the collisionless damping of plasma waves propa-
gating in a bounded region of plasma, such as the interior of a
filament, and find that it can be much smaller than expected on
the basis of the infinite-medium Landau theory, even with a
Maxwellian electron distribution. Using a simple model of a
filament and its internal modes, we then apply these results to
SRS in filaments.

Linear Collisionless Damping
of Localized Plasma Waves

SRS occurs when plasma waves originating in noise are
amplified by their interaction with the laser field. The initiation
and early growth of the instability thus depend on the behavior
of small-amplitude plasma waves, so for the purpose of analyz-
ing SRS thresholds and growth rates, a linear treatment of the
plasma waves suffices. Furthermore, in the plasmas of interest
here, the mean free paths and collision times are much longer
than the spatial and temporal scales of interest, so the plasma
may be regarded as collisionless. We will therefore be inter-
ested in the collisionless damping of localized small-ampli-
tude plasma waves. This process is often referred to as
“transit-time damping” since it results from the transfer of
energy from the wave to particles transiting the localization
volume. Although the analysis presented here is self-con-
tained, we treat transit-time damping in filaments using the
method presented in greater generality in an earlier article.13

Since we are interested in filaments, we will analyze plasma
waves confined in a cylindrical geometry (though the exten-
sion to other geometries will be evident and the case of slab
geometry is treated in Appendix A). For simplicity, we con-
sider only azimuthally symmetric waveguide modes (l = 0) for
the electromagnetic and electrostatic waves in the cylinder.
While self-consistent radial intensity and density profiles for
filaments can be calculated numerically,6 it is adequate for our
purposes to consider a simple filament model consisting of a
circular cylinder with a sharp boundary at radius R, as shown
in Fig. 76.44. The density n0 inside the filament is assumed to
be significantly lower than that outside the filament, so that
waveguide modes for the light and plasma waves have negli-
gible fields extending outside the cylinder. Pressure balance is
provided by the ponderomotive potential Ψ0 of the laser light
propagating in the filament. The size and intensity of filaments
likely to form in laser-produced plasmas and the properties
of the corresponding waveguide modes will be discussed
further below.

Inside the filament the electron distribution function is
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where   vT Bk T m2
0= . Consider a phase-space volume element

dV containing a group of co-moving particles passing through
the filament. We represent the motion of each particle by the
motion of its oscillation center, neglecting the oscillation
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amplitude of the particle in the laser field as small compared to
the length scales over which the fields vary. Since we are taking
the equilibrium ponderomotive potential inside the filament
to be uniform, the particle trajectories can then be represented
as straight lines within the filament, as shown in Fig. 76.44.
Each particle thus acquires an energy ∆E in time

  ∆t R b= − ⊥2 2 2 v , where b is the impact parameter of the
particle and v⊥ is the velocity component perpendicular to the
cylinder axis. This energy, which may be positive or negative,
is acquired as the particle interacts with the plasma wave
trapped in the filament. To conceptually simplify the analysis
we take this wave to be a standing wave and we assume that the
energy removed from the wave by damping is replaced by a
driving process, such as SRS, so that the wave has a constant
amplitude. Then, since f0 is even in v, it is clear that the time-
reversed process, in which the particles in a time-reversed
phase-space element dV* interact with the filament, acquiring
energy −∆E in time ∆t, is also occurring. Since we are neglect-
ing collisions, phase-space volume is conserved, dV dV* = ,
and the net rate at which energy is transferred to the particles
associated with dV is
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Integration of this quantity over the phase space within the
filament then gives twice the collisionless damping rate of the
plasma wave since the phase space is effectively included twice
in the integration (both forward and backward in time).

First we calculate the energy acquired by a particle interact-
ing with the filament. Inside the filament the potential satisfies
the longitudinal plasma-wave dispersion relation, so assuming
azimuthal symmetry for simplicity, we can write the potential
as

φ α ω βr z t AJ kr k z tz, , cos cos ,( ) = ( ) +( ) +( )0 (1)

where A is the infinitesimal wave amplitude, J0 is the zeroth-
order Bessel function, kz and ω are the axial wave number and
frequency of the wave, and α and β are arbitrary constants
representing the spatial and temporal phases of the wave, to be
averaged over below. The boundary condition is J0 (kR) = 0, so
k may be any of a discrete set of wave numbers determined by
the roots of the Bessel function. We relate ω and k by the fluid
plasma dispersion relation

  
ω ω2 2 2 2 23= + +( )p z Tk k v .

The main kinetic correction to this relation is an imaginary
component of ω resulting from the damping we are about to
calculate; corrections to the real frequency will result only in
a small shift in the resulting SRS spectrum and will be ne-
glected here. Let t = 0 be the time when the particle is closest
to the cylinder axis. Its change in energy in crossing the
filament is then obtained by integrating over the unperturbed
orbit:

∆ E e t dt
t

t= − ∇ ( )⋅∫− v rφ , ,
0

0

where   t R b0
2 2= − ⊥v . The total derivative of the potential

is

d
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t t t t

t
t tφ φ φr v r r( )[ ] = ∇ ( )[ ] + ∂

∂
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so the above integral can be written
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Figure 76.44
Geometry of cylindrical filament model. R is the cylinder radius, v and b are
the electron velocity and impact parameter, respectively, and dV denotes a
six-dimensional phase-space volume element.
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Substituting the form of the potential, we have

∆E e A J kr t k t t dt

e A J kr t k t t

J kr t k t tdt

t

t
z z

z zt

t

z zt

t

= − ( )[ ] +[ ] +( )

= − ( )[ ]

− ( )[ ] 

−

−

−

∫

∫

∫

ω α ω β

ω α β ω

α β ω

0

0

0

0

0

0

0

0

0

cos sin

cos sin cos cos

            sin cos sin sin .

v

v

v

Squaring and averaging over the phases α and β gives
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Defining the integrals
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where the last form follows from the symmetry: f0(vz)
= f0(−vz), so waves propagating in both directions along the
axis must be equally damped. Changing the integration vari-
able to s = kv⊥t,
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which must be evaluated numerically.

Next we must integrate the above expression for ∆E2

over the six-dimensional phase space inside the cylinder. Note
that it depends on the particle coordinates and velocities only
through the two quantities kb and w k kvz z± ⊥≡ ±( )ω v . The
total power being transferred to particles in a length L of
filament is
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where the factor 1/2 in the integrand compensates for the
double-counting of phase space, as noted above. Because of
the rotational symmetry, all particle orbits with the same
impact parameter b and speed   v  must make the same contri-
bution to ∆E2 , so the quantity in square brackets in (2)
depends on r, θr, and θv only through the impact parameter b.
We can therefore transform the last three integrals in the above
expression to a single integral over b. First we transform the
angles θr and θv to
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By shifting portions of the region of angular integration by 2π
in θr or θv, the integral over [0, 2π] in θr and θv becomes an
integral over [0, 4π] in θ+ and [−π,π] in θ−, as shown in
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Figure 76.45
Illustration of variable and range transformations used in converting the
integral in Eq. (2) to the form in Eq. (3). The angles θi in (b) are measured from
the dashed extension of r.

Fig. 76.45(a). Using the Jacobian ∂( ) ∂ ( ) =+ −θ θ θ θr, ,v 1 2,
we see that the angular integration is transformed as
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As shown in Fig. 76.45(b), there are four values of θ− in
[−π, π] for each value of r and b. Because of the cylindrical
symmetry these values of θ− are all physically equivalent, so
we can combine the above results to obtain the transformation
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After this transformation, the expression for the power is
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where we have done the z-integral using the fact that ∆E2  is
independent of z.
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this becomes
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As an aside, we now verify that the above expression gives
the familiar result for Landau damping of a plane electrostatic
wave as R → ∞. This result can be established in full generality
(including finite radial and azimuthal wave numbers) by meth-
ods analogous to those employed for slab and spherical geom-
etries in Ref. 14, but the analysis is fairly complex. Since we are
interested here in the application to SRS backscatter, we can
simplify matters by considering only the special case where the
R → ∞ limit is a plane wave with wave number kz propagating
in the z direction (k = 0). To simplify the calculation, we take
the limit k → ∞ first, and then let R → ∞, so that the cylinder
contains a plane wavefront for all r < R. This means the
boundary conditions will not be satisfied as we take this limit,
but this doesn’t affect the result since the boundary’s contribu-
tion to the damping vanishes as it recedes to infinity. For small
x, y we have
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Now the quantity   R b2 2− ⊥v  in the argument of the sine
function above is half the time a particle spends in the cylinder;
it becomes large as R becomes large, except for the relatively
small number of particles that just graze the boundary of the
cylinder. Since the relative contribution of the boundary be-
comes insignificant as R → ∞, we may regard   R b2 2− ⊥v  as
large for all particles of interest. With this assumption, and
using

  

lim sin
,

α
α

α
πδ α

→ ∞
= ( ) = − ⊥

2

2
2 2x

x
x R bwith v

we have

  

lim
, ,

,

k k
G kR kb

k

k

R b

k k

z z

z
z

z

→
+





= − +






⊥

⊥

0
1

4

2
2

2 2

ω

π δ ω

v
v

v v

so that

  

P
n e A L

m k

d db R b

d
k

e

A L

k
e

d e

T z

R

z z
z

p

T z

k

T

z T

=
( )

× −

× +






=
( )

×

⊥
∞

⊥

−∞
∞ −

−

⊥ ⊥
−

∫ ∫

∫

⊥

4

4 2

4 2

0
2 2 2

1
2 5

0
2 2

0

2

2 2 2

1
2 5

2

2

2 2

2

2 2

2

π ω

π

δ ω

ω ω

π

ω

v

v v

v v

v

v v

v v

v

v vTT

z T

db R b

A L

k

R
e

R

p

T z

k

2

2

2 2

0
2 2

0

2 2 2

1
2 3

2
2

4 2 4

∞

−

∫ ∫ −

=
( )
ω ω

π

π
ω

v

v .

The energy density in a traveling electrostatic plasma wave
E kx t0 cos −( )ω  is E0

2 8π ; superimposing two such waves to
give a standing wave doubles the amplitude and the energy, so
the energy density in a standing wave E kx t0 cos cosω  is
E0

2 16π . In our case, Emax = kzA, so the wave energy in a
portion of a cylinder of radius R and length L is
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and the amplitude damping rate γ of a plane plasma wave is
then given by
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in agreement with the usual expression for Landau damping.14

Returning to the finite radius problem, we can perform one
more integration analytically by transforming variables
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The integral over u can be carried out using the identity15
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where D is the parabolic cylinder function, which in this case
can be expressed in terms of the error function Φ using
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The remaining integrations must be carried out numerically;
for this purpose it is convenient to make the integration limits
finite by changing the integration variable w to ζ:
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Then we have
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Combining these results with the above expression for P and
letting x = kb gives
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and
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The average energy density of the plasma waves in the cylinder
is
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and the boundary condition J0(kR) = 0, we have
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thus, the amplitude damping rate is given by
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In terms of the plane-wave Landau result given above, this is
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Stimulated Raman Scattering in Filaments
In this section we analyze SRS in filaments using the simple

sharp-boundary cylindrical model of the previous section
(Fig. 76.44). We determine the filament parameters (radius,
etc.) most likely to produce short-wavelength SRS and then
estimate the collisionless damping in these filaments using the
results of the previous section.

We assume that the pump and backscattered electromag-
netic waves propagate as waveguide modes in the filament, so
their dispersion relations can be written

ω ω0
2 2 2

0
2

0
2= + +( )p r zc k k , (5)

ω ωs p sr szc k k2 2 2 2 2= + +( ) , (6)

where the subscripts r and z denote the radial and axial
wave numbers and the boundary conditions require
J k R J k Rr sr0 0 0 0( ) = ( ) = , where R is the filament radius. The
ponderomotive force arising from the beating of the pump and
scattered waves drives an electrostatic plasma response. We
assume that this response is largest when the frequency and
wave numbers of the plasma wave satisfy the fluid dispersion
relation
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ω ω2 2 2 2 23= + +( )p T r zk kv , (7)

where again J k Rr0 0( ) = . This approximation will be good as
long as the damping rate is much smaller than the frequency ω.
As in the previous section, we assume that the SRS process is
near threshold, i.e., the pump replaces the energy lost to
damping of the scattered waves, so that the frequencies and
wave numbers of all the modes can be taken as real. Then
the frequencies and axial wave vectors satisfy the matching
conditions

ω ω ω0 = +s , (8)

k k kz sz z0 = + . (9)

Coupling between the modes is strongest for the lowest-order
(smallest radial wave number) modes;6 since in this simple
model all modes have the same boundary condition
J k R J k R J k Rr sr r0 0 0 0 0( ) = ( ) = ( ) = , the strongest coupling is
obtained by taking

k k k j Rr sr r0 01= = = ,

where j01 ≅ 2.4048 is the smallest root of J0.

Light propagates in a waveguide mode in the filament
because the density inside the filament, n0, is lower than that
outside, N0. The difference in plasma pressures inside and
outside the filament must be balanced by the ponderomotive
force of the light confined in the filament. The required
intensity in the filament will be a minimum when the increment
in density across the filament boundary is the minimum re-
quired to confine the pump wave, or

N

n

n

n

c k

c c

r0 0
2

0
2

0
2− =

ω
. (10)

Since the scattered waves are of lower frequency than the
pump, they are also confined to the filament when condition
(6) holds.

If we are now given the background temperature T0, density
N0, and pump wavelength λ π ω0 02= c , Eqs. (5)–(10) are six
equations determining the six unknowns ω πp n e m2

0
24= , k0z,

ksz, kz, ω, and R in terms of the scattered-light wavelength
λ π ωs sc= 2 . We can solve them numerically to obtain in
particular the filament radius and density as a function of

SRS wavelength, as shown in Figs. 76.46(a)–76.46(b) for the
typical experimental parameters N nc0 0 1= . , T0 = 3 keV, and
λ0 = 351 nm. The SRS spectrum corresponding to these

Figure 76.46
Parameters of the filament model as determined in the Stimulated Raman
Scattering in Filaments section, plotted against the SRS emission wave-
length. The filament radius is plotted in (a), the interior density in (b) (for
an exterior density of one-tenth critical), the interior light intensity in (c), and
the normalized power in the filament in (d).
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parameters extends from about 450 nm to about 550 nm. The
density plot shows that longer wavelengths would require
N nc0 0 1= . , while shorter wavelengths lead to unphysical
negative densities inside the filament. Note that over most of
the spectrum the required filament radii tend to be quite
small—of the order of a few collisionless skin depths or about
a micron for these parameters.

By using the condition that the ponderomotive force bal-
ance the difference in plasma pressures inside and outside the
filament, we can obtain the intensity and power in the filament.
The pressure balance condition is   n N e T0 0

40
2 2

= −v v , where v0
is the oscillatory velocity of an electron in the electric field of
the filament

  
v0 0 025 6= ≅ ( ) ( ) −eE m Imax .ω λ µW cm m  cm s2 1 (11)

with I being the intensity in the filament and λ0 the laser
wavelength. Solving for the intensity yields

I
T N

n
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m
2( ) ≅ × ( )

( )

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
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1 1 1013 0

0
2

0

0
. ln .

λ µ

These intensities are plotted in Fig. 76.46(c). Since in our
simplified model the intensity is uniform in the interior of the
filament, the power in the filament is obtained by multiplying
the intensity by πR2 and is shown in Fig. 76.46(d) as the
normalized power PN (usually denoted by N in the literature;16

we use the present notation to avoid confusion with the number
density). The normalized power is in general defined by

P
e

m T c
E dxdyN

p

A

≡ ∫∫
2

0
2

0

2

2
2

8π ω
ω

,

where the integration is over the cross-sectional area of
the filament.

The normalized power and the filament radius normalized
to the collisionless skin depth are useful in comparing our
simple filament model with what might be expected of actual
filaments. Recently Vidal and Johnston17 have published some
nonlinear simulations of the breakup of laser beams into
filaments in plasmas. They find that comparatively long-lived
filaments typically tend to form with radii of a few collisionless
skin depths and normalized powers PN in the range of 2 to 15.
Larger filaments tend to break up into several smaller filaments

within this range; smaller filaments cannot form because of
diffraction. From Figs. 76.46(a) and 76.46(d) we see that the
filaments our model predicts for short-wavelength SRS have
parameters within this range. So we may conclude that, at least
in terms of gross parameters such as size and intensity, our
model is not an unreasonable representation of the filaments
likely to be involved in SRS.

The collisionless damping rate for the plasma mode associ-
ated with each SRS wavelength, as calculated in the Linear
Collisionless Damping section, is shown in Fig. 76.47. For
comparison we also show the damping rate for a plasma
wave in a homogeneous plasma that would give the same
SRS wavelength. Details of the calculation of the damping
rate in homogeneous plasmas is given in the Appendix. From
Fig. 76.47 we see that for longer wavelengths (corresponding
to filaments of large radius) the damping rates approach the
homogeneous Landau result, but for shorter wavelengths the
smaller radius results in a much-reduced damping as compared
to the homogeneous case.

The growth rate for SRS in a filament is readily calculated
from the coupled wave equations for the waveguide modes;6 it
is largest when the plasma response is taken to be the funda-
mental mode (i.e., k j R= 01 ) and is then the same as for a
plane-wave pump of the same intensity in a homogeneous
plasma. The linear, undamped, homogeneous SRS growth rate
γ0 at high pump intensities is given by14

Figure 76.47
Damping rates for plasma waves giving rise to SRS, plotted against the
wavelength of the SRS light produced. The upper curve gives the results for
a homogeneous plasma, the lower for the filament model in the Stimulated
Raman Scattering in Filaments section.
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γ
ω

ω
ω

0

0 0
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c

v
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From Fig. 76.46(c) and Eq. (11) we see that γ ω0 0 0 1≈ .  in the
parameter regime of interest to us. This means that the instabil-
ity will reach nonlinear saturation within a few tens of laser
periods temporally and within a few tens of wavelengths
spatially, i.e., the spatial and temporal length scales of the SRS
interaction are typically much smaller than those of the fila-
ment. This justifies the use of an infinitely long, steady-state
filament model to study SRS. The high intensities and low
damping within the filament also mean that the SRS threshold
arising from damping14

γ γ γ0 > e s

is greatly exceeded, where γe and γs are the damping rates of the
plasma and electromagnetic waves, respectively. Finally, the
comparatively low damping of the plasma wave justifies the
use of the plasma-wave dispersion relation for the plasma
response in these calculations, since for low damping SRS will
dominate stimulated Compton scattering.

Conclusions
Discrepancies have long been noted between observations

of SRS and theories premised on relatively homogeneous
plasmas and uniform laser irradiation. Foremost among these
are the onset of SRS at intensities well below the predicted
thresholds and the presence of SRS at short wavelengths,
which should in theory be suppressed by Landau damping.
Many of these discrepancies can be accounted for if the SRS is
actually occurring in high-intensity, self-focused light fila-
ments, but this interpretation is still open to the objection that
the short-wavelength scattering requires low plasma densities
and thus should still be suppressed by Landau damping. We
have shown that if short-wavelength SRS is generated in
filaments, the Landau damping of the corresponding plasma
waves is greatly reduced relative to the damping that would
occur if the SRS were being generated outside the filamentary
context. This removes the primary objection to the filamentation
hypothesis as the explanation for the anomalous SRS observa-
tions and suggests that if filamentation is suppressed, for
example, by beam-smoothing schemes intended to improve
irradiation uniformity, the SRS instability should then be well
described by classical theories. One especially important im-
plication of this is that the effective observational threshold for
SRS should be significantly increased if filamentation is sup-

pressed by beam smoothing, so that at NIF intensities, for
example, SRS would not be significant.

ACKNOWLEDGMENT
This work was supported by the U.S. Department of Energy Office of

Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-
92SF19460, the University of Rochester, and the New York State Energy
Research and Development Authority. The support of DOE does not consti-
tute an endorsement by DOE of the views expressed in this article.

APPENDIX:  Calculation of Collisionless Damping for
SRS in Homogeneous Plasmas

For purposes of comparison with our results for the damp-
ing of longitudinal waveguide modes in filaments, we also
showed in Fig. 76.47 the corresponding damping rates for
plane waves in homogeneous plasmas. Since these damping
rates are typically much larger and can be comparable to the
real frequency, the use of the usual small-damping approxima-
tion14 to Landau damping is not justified. To calculate these
damping rates we therefore use the exact expression for the
plasma dielectric response function in a Maxwellian plasma:

ε ω
λ

k
k

Z, ;( ) = +
( )

+ ( )[ ]1
1

12
D

Ω Ω (A1)
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and where Z denotes the plasma dispersion function,18 ωs is
the SRS scattered light frequency, n0 is the homogeneous
plasma electron density, vT is the electron thermal velocity, λD
is the Debye length, and nc is the critical density at the laser
frequency ω0. The normal modes are given by the values of k
and ω for which ε(k,ω) = 0. These are the modes that propa-
gate in the absence of a driver, and for a Maxwellian plasma
they are damped, i.e., ω has an imaginary component, corre-
sponding to the Landau damping, and the wave amplitude
decreases with time. Here, however, we are interested in the
steady-state response of a driven plasma wave, corresponding
to the situation where SRS is at threshold; i.e., the power
provided by the pump wave (the laser beam) exactly compen-
sates for the power lost to damping. (Once above threshold, the
instability grows so rapidly that the damping becomes irrel-
evant.) The plasma response at a given frequency may then be
regarded as a driven damped harmonic oscillator, reaching
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maximum amplitude at that point in the plasma where ε ωk,( )
is a minimum. SRS can occur at a range of plasma densities
below quarter-critical density. Underdense plasmas typically
include such a range of plasma densities but are close to
isothermal; thus, we regard the temperature as being fixed and
look for the values of n nc0  and kλd that minimize ε(k,ω).
From (A1) and (A2), since ωs is known, this minimization
provides a relation between the two unknowns n nc0  and kλd,
which we can write by expressing kλd as a function of n nc0 :
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where we have used (A2) to represent Ω as a function of kλd
and n nc0 .

We obtain another relation between these unknowns from
the dispersion relations of the pump and scattered light waves
and the frequency and wave-number matching conditions for
SRS:

ω ω ω ω

ω ω ω
0
2 2 2

0
2 2 2 2 2

0 0 0

= + = +

= − = − = ++

p s p s

s s s

c k c k

k k k k k k

, ;

, , ,

where (ω0,k0) and (ωs,ks) are the frequency and wave number
of the pump and scattered EM waves, respectively. Subtracting
the two dispersion relations gives
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Adding the two dispersion relations then yields
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Next we can write

  

c k c k

c

n

n
k

T

p T

p

T

c

2 2

0
2

2

2

2

0
2

2 2

2

2

2

1
0 2

ω
ω
ω ω

λ= =






( )

−

v
v v

D , (A5)

and since the temperature, or equivalently vT, is assumed
known, combining (A4) and (A5) gives another relation be-
tween kλD and n nc0 , which along with (A3) can be solved
numerically to obtain these unknowns and thus determine k.
The Landau damping rate, which may also be regarded as the
rate of transfer of energy from the wave to the resonant
particles, is then given by

γ
ω

ε ω= ( )[ ]1

2
Im , .k

Using (A1) and the formula for the Z function of a real
argument
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this is
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This is the damping rate for SRS in a homogeneous plasma, as
plotted in Fig. 76.47. It should be noted that while (A6) is
identical to the Landau damping rate usually obtained for
normal modes ε ωk,( ) =[ ]0  under the assumption of weak
damping, for driven modes with ω real it is valid even for
strong damping.
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