Collisionless Damping of Localized Plasma Waves in
Laser-Produced Plasmas and Application to
Stimulated Raman Scattering in Filaments

Stimulated Raman scattering (SRS), an instability that corcan be explained by filamentation is presented in Afshar-rad
verts laser light incident on a plasma into plasma waves aret al,’ along with direct observational evidence for the occur-
lower-frequency scattered photons, has been a major concemnce of SRS in filaments. It should be pointed out that this
in laser fusion research for many years. The scattered photointerpretation of the experimental observations has great
represent wasted energy, and the plasma waves can prodpogential significance for NIF since it suggests that the band-
suprathermal electrons that penetrate and preheat the targetith already incorporated in the NIF design to improve
core, thereby preventing efficient implosion. Interest in SRS$rradiation uniformity may also be sufficient to suppress or
has intensified in recent years as experiments with higher lasgreatly reduce SRS.
intensities and longer-scale-length plasmas, intended to simu-
late laser—plasma interaction conditions in the National Igni- The experimental evidence for the connection between
tion Facility (NIF), have yielded SRS reflectivities as high adfilamentation and SRS is especially compelling for the short-
25%1 Furthermore, for many years theoretical models of SR@avelength portion of the SRS spectrum. Recently reported
have had difficulty accounting for several aspects of the experexperiment&3-4on the Nova laser at LLNL studied a 351-nm
mental observations: SRS is often observed at incident intefaser beam interacting with a preformed plasma at a tempera-
sities well below the theoretical threshold; the spectrum of theure of ~3 keV. The density profiles of these plasmas have a
scattered light is broader and extends to shorter wavelengttesge central region at densities of about 1% and fairly
than theory predicts; and anomalous spectral and temporstharp boundaries. LASNEX simulations of these targets, in
structure is observetiMore recently it has been found that concert with the laser interactions postprocessor (8 {®§-
“beam smoothing,” which involves small increases in thalicted a narrow SRS spectrum at ~600 nm, whereas observa-
spatial and/or temporal bandwidth of the incident laser lighttions showed a much broader spectrum extending to shorter
effectively suppresses the SRS instabiflifywhile theory  wavelengths. In some cases without beam smoothing, this part
predicts that much larger increases in the bandwidth, compaf the spectrum dominated, with a peak near 450 nm. Substan-
rable to the instability growth rate, would be required fortial scattering at these wavelengths requires long regions of
such suppression. very-low-density plasma, which do not appear in the hydrody-
namic simulations but could exist in a filament. This part of the
To account for the discrepancies in the threshold and spespectrum is strongly peaked in the backscatter direction and is
trum, it was proposed some time a§ahat SRS is not greatly diminished by increased bandwidtfurther indica-
occurring in the bulk plasma, but rather in intense light filations that this scattering is associated with filamentation. The
ments formed from hot spots in the incident laser beam by tHeeam-deflection phenomenon, observed in many of these
self-focusing instability. Intensities in such filaments couldexperiments and associated with filamentation in theory and
easily surpass SRS thresholds, even if the average beaimulations®10 provides independent evidence that fila-
intensity was well below the threshold, and the higher intensitynentation is occurring in these plasmas.
would be expected to drive SRS over a broader range of
wavelengths. The more recent experimental observations add One remaining difficulty with this interpretation concerns
further support to this hypothesis: Filamentation can be supghe damping of SRS at these wavelengths. The parametric
pressed by much lower bandwidths than would be required twature of the SRS instability requires that the participating
suppress SRS directly, and the anomalous spectral and temptectromagnetic and electrostatic waves satisfy frequency-and
ral features may be accounted for by the temporal evolution efave-vector—-matching conditions:
the waveguide mode structure in the filament. A thorough
discussion of the anomalies in SRS experiments and how they Wy =w+ws, Kg=k+Kkg,
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where (u.kg), (wsks), and (k) are the frequency and wave- Linear Collisionless Damping
number pairs of the incident and scattered electromagnetaf Localized Plasma Waves
waves and the plasma wave, respectively. In the fluid approxi- SRS occurs when plasma waves originating in noise are
mation the dispersion relations for these three waves are amplified by their interaction with the laser field. The initiation
and early growth of the instability thus depend on the behavior
of small-amplitude plasmawaves, so for the purpose of analyz-
ing SRS thresholds and growth rates, a linear treatment of the
a)§ = w% + Czksz, plasma waves suffices. Furthermore, in the plasmas of interest
WP = w% +3v2K2 = w,%(1+3k2)%), thhere, the mean free paths and collision Fimes are much longer
an the spatial and temporal scales of interest, so the plasma
may be regarded as collisionless. We will therefore be inter-
whereay, is the plasma frequencyy is the electron thermal ested in the collisionless damping of localized small-ampli-
velocity, andip is the Debye length. Short-wavelength scattertude plasma waves. This process is often referred to as
ing requires thatv and thereforey, be small so thady = aw,. “transit-time damping” since it results from the transfer of
Consequently, the thermal dispersion term becomes signifenergy from the wave to particles transiting the localization
cant, withkAp of order 1. Itis well known that for electrostatic volume. Although the analysis presented here is self-con-
waves in homogeneous plasmas Landau damping becom@asned, we treat transit-time damping in filaments using the
very strong whekAp > 0.4. This suggests that the plasma wavenethod presented in greater generality in an earlier atficle.
associated with short-wavelength SRS will be heavily Landau
damped, and, in fact, in this case SRS is more properly referred Since we are interested in filaments, we will analyze plasma
to as stimulated Compton scattering (SCS), which has a muetaves confined in a cylindrical geometry (though the exten-
lower growth rate and correspondingly higher threshold; thussion to other geometries will be evident and the case of slab
significant scattering would not be expected in this range ajeometry is treated in Appendix A). For simplicity, we con-
wavelengths. One possible explanation, recently proposed fsyder only azimuthally symmetric waveguide modes() for
Afeyanet al,11is that thermal transport across steep temperahe electromagnetic and electrostatic waves in the cylinder.
ture gradients, produced by inverse bremsstrahlung absorptidvhile self-consistent radial intensity and density profiles for
inintense hot spots in the laser beam, produces a modified nditaments can be calculated numeric&llyjs adequate for our
Maxwellian electron distribution function (MDF) in the hot purposes to consider a simple filament model consisting of a
spot with a depleted high-energy tail. Since the high-energgircular cylinder with a sharp boundary at radRigs shown
electrons are responsible for Landau damping, this woulth Fig. 76.44. The density, inside the filament is assumed to
result in a reduced damping in the hot spots, allowing SRS toe significantly lower than that outside the filament, so that
occur. The thermal-electron mean free path in these plasmagaveguide modes for the light and plasma waves have negli-
however, is typically much larger than the size of the laser hajible fields extending outside the cylinder. Pressure balance is
spots, and the mean free path for the high-energy electronsgeovided by the ponderomotive potentig} of the laser light
even longer, soitis not clear that the required steep gradientpnopagating in the filament. The size and intensity of filaments
the high-energy electron population could be sustained. Mordikely to form in laser-produced plasmas and the properties
over, recent experimenrfsusing random phase plates suggesbf the corresponding waveguide modes will be discussed
that hot spots alone, without self-focusing, cannot account fdurther below.
the levels of SRS observed.

2 .2 4 212
Wy =wp +C kS,

Inside the filament the electron distribution function is

In this article we propose an alternative explanation. We
investigate the collisionless damping of plasma waves propa- fo(r,v) = Mo e Vi/2v% ,
gating in a bounded region of plasma, such as the interior of a (271)3/2v$
filament, and find that it can be much smaller than expected on
the basis of the infinite-medium Landau theory, even with avherev2 = kgTy/m. Consider a phase-space volume element
Maxwellian electron distribution. Using a simple model of adV containing a group of co-moving particles passing through
filament and its internal modes, we then apply these results the filament. We represent the motion of each particle by the

SRS in filaments. motion of its oscillation center, neglecting the oscillation
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amplitude of the particle in the laser field as small compared to
the length scales over which the fields vary. Since we are taking
the equilibrium ponderomotive potential inside the filament
to be uniform, the particle trajectories can then be represented
as straight lines within the filament, as shown in Fig. 76.44.
Each particle thus acquires an energf in time

At =2\ R2 - p? /VD, whereb is the impact parameter of the Integration of this quantity over the phase space within the
particle andr is the velocity component perpendicular to thefilament then giveswicethe collisionless damping rate of the
cylinder axis. This energy, which may be positive or negativeplasma wave since the phase space is effectively included twice
is acquired as the particle interacts with the plasma wavia the integration (both forward and backward in time).
trapped in the filament. To conceptually simplify the analysis

we take this wave to be a standing wave and we assume that the~irst we calculate the energy acquired by a particle interact-
energy removed from the wave by damping is replaced by iag with the filament. Inside the flament the potential satisfies
driving process, such as SRS, so that the wave has a consténg longitudinal plasma-wave dispersion relation, so assuming
amplitude. Then, sindg is even inv, it is clear that the time- azimuthal symmetry for simplicity, we can write the potential
reversed process, in which the particles in a time-reverseab

phase-space elemai¥" interact with the filament, acquiring

energy-AE in timeAt, is also occurring. Since we are neglect- o(r,z,t) = AJg(kr) COS(kzZ + 0') COS(CUH ﬁ). 1)

ing collisions, phase-space volume is conseriey| =|av],

and the net rate at which energy is transferred to the particleghereA is the infinitesimal wave amplitudd, is the zeroth-
associated witldlV is order Bessel functiofk, andware the axial wave number and
frequency of the wave, anal and 8 are arbitrary constants
representing the spatial and temporal phases of the wave, to be
averaged over below. The boundary conditialy (&R) = 0, so

k may be any of a discrete set of wave numbers determined by
the roots of the Bessel function. We relatandk by the fluid
plasma dispersion relation

AP=AE[fo(E)dV - fo(E+AE)dV*| /At

2
_(EP 010y,
At OE

dv* [
(outgoing phase-spac
volume elemen
w? = wf + 3(kz2 + kz)v% :

The main kinetic correction to this relation is an imaginary
component otw resulting from the damping we are about to
calculate; corrections to the real frequency will result only in
a small shift in the resulting SRS spectrum and will be ne-
glected here. Let= 0 be the time when the particle is closest
to the cylinder axis. Its change in energy in crossing the
filament is then obtained by integrating over the unperturbed

orbit:
_ _flo
(incoming phase-spa: AE=-ef} v [Me(r,t)dt,
volume element)
P1858 wherety =+'R2 —b2 /v, . The total derivative of the potential
is
Figure 76.44 qu[r(t) t] —v [j](p[r(t) t] + iq)[r(t) t]
Geometry of cylindrical filament modeR s the cylinder radius; andb are dt ' ’ ot r

the electron velocity and impact parameter, respectivelydarenotes a

six-dimensional phase-space volume element. so the above integral can be written
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kVRZ-b2 7 2 0
AE:—e° [ - [ t]Edt. ls = j_;sz b Jo (D) +5°
The potential seen by the particle is the same before and after X COS Eh’a tkyv, sEﬂs
passing through the filament, so 0 kvp g
_t d [ t]dt:O :LG%R,kbwikZVZD
kVD ' kV|:| H,

and

AE = eJ, 9 q0[ t] at. where we have defined the function

G(x,y,2) = I‘/ xE-y? ,J (\/y2+52)cos(zs)ds

Substituting the form of the potential, we have U x2-y

. which must be evaluated numerically.
AE = —ewA[S Jo[kr(t)] cos[k,v,t +a]sin(wt + B)dt
° Next we must integrate the above expression<ikE2>

= —ewA%osa sin ﬁﬁ‘;o Jo[kr(t)] cosk,v,t coswt over the six-dimensional phase space inside the cylinder. Note
that it depends on the particle coordinates and velocities only
-sina cosﬁﬁ‘; Jo[kr(t)] sink,vt sinwtdt%_ through the two quantitideb andw,. = (w * kv, )/kvg . The
0 total power being transferred to particles in a lergtbf
filament is

Squaring and averaging over the phasesdf gives L, o 0
quaring ging P Bg P =1 g™, dv, [ dvive

infmW

O 2\ o [
R, 2m, . 21 1<AE >6fo
X [, drr [ d6; [ dBVE—E —él 2)

At 0

< AE2> = # %ﬁ‘;o Jo[kr (t)] cosk,v,t coswtdt

Jﬁﬁo Jo[kr(t)]sink,v,tsin wtdtg

Oopoo

where the factor 1/2 in the integrand compensates for the
double-counting of phase space, as noted above. Because of
the rotational symmetry, all particle orbits with the same
Defining the integrals impact parametds and speedv| must make the same contri-
X bution to <AE2>, so the quantity in square brackets in (2)
l, = _‘;0 Jo[kr (1)] cos[(wi kzvz)t] dt, depends on, 6,, and8, only through the impact parameter
We can therefore transform the last three integrals in the above
we have expression to a single integral olerirst we transform the
anglesg, andg, to
272
o\ _ W2e?A? 5\ _ wleA
(aE?) = —g (12+12)= — % 0,=0,+6,,
6_=6,-6,.
where the last form follows from the symmetry(v,)
= fo(-vy,), SO waves propagating in both directions along th&y shifting portions of the region of angular integration by 2

axis must be equally damped. Changing the integration varin 6, or 8,, the integral over [0,7] in 6, and 6, becomes an
able tos = kv, integral over [0, 4] in 6, and Fr;r in 6_, as shown in
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Fig. 76.45(a). Using the Jacobiaf6,,6,)/d(6..6-)=1/2,
we see that the angular integration is transformed as

[27de, "6, - % [ de.[" de_.

Next we use

o_=gntl 99-__ 1

—=—— for 0<6_<
r ob rz—bz

Ny

As shown in Fig. 76.45(b), there are four valuesfofin \
[T ] for each value of andb. Because of the cylindrical

symmetry these values 6f are all physically equivalent, so (b)

we can combine the above results to obtain the transformation

[27do, (2" de, o A Q
v

1

a4 R R
- 4%1‘0 d0+I0 db.[b drrwz—_bz

- 877_[0Rdb«/ RZ-p2.

After this transformation, the expression for the power is

P=4nf" dv, [y dvovy IoRdb v*)

‘ 0 (AE?) 5. O
vaZ—bZ |:_|_< >a_0u (3)
H At 0 H
P1859
Figure 76.45
where we have done tkeéntegral using the fact théﬂE2> is lllustration of variable and range transformations used in converting the
independent of. integralin Eq. (2) tothe formin Eq. (3). The anglgis (b) are measured from
the dashed extension af
Using
and
ofy _ Ny —v2j2v2 _2JR2-Db? o\ _ WPEPA% w+k,v, 0
=- "3 _¢ T, AM=—— <AE >: ) G R,kb,—H,
0 (27T)/2mv$'- Vg 4k2v3 kv
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this becomes

lim sin? e —
SN gx: ™ (x) with a =vR? -b? v,
a - o ax
b= now?e?A%L
512
4(2")%”NTk we have
x [ dv, [0 dvy IRdbGZ%R ko, O KeVz Domve /2t lim 1 Gzad?,kb w+kpv, O
w0 0 kv H° k- 0kZ Tkvy O
As an aside, we now verify that the above expression gives 4m R2 b2 0 wD
the familiar result for Landau damping of a plane electrostatic Y 5%’2 + k_
Z

wave afR - o. This result can be established in full generality

(including finite radial and azimuthal wave numbers) by meth-

ods analogous to those employed for slab and spherical geos® that

etriesin Ref. 14, butthe analysis is fairly complex. Since we are

interested here in the application to SRS backscatter, we can

simplify matters by considering only the special case where the

R - o limitis a plane wave with wave numbempropagating 41 w2e2 A2L
in thez direction k = 0). To simplify the calculation, we take DN
the limitk - oo first, and then leR - oo, so that the cylinder
contains a plane wavefront for all< R. This means the
boundary conditions will not be satisfied as we take this limit, e R h/pR2 _h2
but this doesn’t affect the result since the boundary’s contribu- XIO dVDVDIO dovRE =D
tion to the damping vanishes as it recedes to infinity. For small

X, y we have 0 g -v2/2v2

X[, V0LV, +k—“Z’Be
G(x,Y,2) D_[ coszsds— %sm(\/ —yzz),

a(2m) 2Bk,

2.2 7\2 _w
© _ (UpO() A“L e_ ZKZZV%
4(27‘[)%V-|5-kz
lim 1 w+k,v, 0
GZE( Ko, — 22 zVz o _ R
Kook S HRO TG TR X[ dvpvpevH/ 2% [dbyR? - b2
4v2 2 _p2 0 2. 22 N
_ V§ , sinZEl\/R b (w+kaZ)D _ wpw AL 7TR2 2
(w+ k) B Vo B (Zn);/Zv%k 4

Now the quantityv R2 —b2 v in the argument of the sine

function above is half the time a particle spends in the cylinder;

it becomes large @& becomes large, except for the relatively The energy density in a traveling electrostatic plasma wave
small number of particles that just graze the boundary of th&g cos(kx — wt) is E§/8rr; superimposing two such waves to
cylinder. Since the relative contribution of the boundary begive a standing wave doubles the amplitude and the energy, so
comes insignificant & — o, we may regard/ R? —bz/vD as the energy density in a standing wats coskxcoscawt is

large for all particles of interest. With this assumption, andEg/16 1. In our casef 4y = KA, so the wave energy in a
using portion of a cylinder of radiuR and lengtt_ is
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1,500 A2 The integral oveu can be carried out using the identfty
= —ksRLAA,
6
y2
and the amplitude damping ratef a plane plasma wave is Io duue™Pu Wi = _—_ o8B Doo— H
then given by 2p B: 2p
whereD is the parabolic cylinder function, which in this case

wz
I w3 PN . .
y_1.P L p% e gerav: can be expressed in terms of the error functamsing

w 2wW \8k3vT
. 7T 2
: e4 / ‘—e 2 —z (DE\_
2 ‘ %

in agreement with the usual expression for Landau damfling

Returning to the finite radius problem, we can perform one
i The remaining integrations must be carried out numerically

more integration analytically by transforming variables
for this purpose it is convenient to make the integration limits
finite by changing the integration variabieto ¢:

V.,V - U,W,

where ;=Y w/kVT_,
26 2,2
| +w
| W+ K,V | k2
u= |—v Zz vp =./-2u Vk
= . O» ’ O — ! ’
kv \ k
k1

Then we have

and due-te @R
Tk (2nege 2\
(k, k[ CELNS
2 - X7 202 _o W
Ve = +—WoUe =2 — WU+,
A R A
i:v_%i%_ kZZ\;'IZ' ZZD
and then 2B Kz w H
2 2n2 . w? Combining these results with the above expressioR famd
po_Mow AL ok letting x = kb gives
4(2n)%w$k2
O
e G2 ) e B kot
XJ'O dbf_deG (kR,kb,w)_[O duue VT
where where
1 [k . k0 k °
10 ko0 0 FW. oA o
p 2v2 Hk k, H Y k,v2 'k, C= 8mk3v3 € !
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and

y_1P _1 whw

20W  am
@ G +1Ek3vT kR)? J2(kR)

In terms of the plane-wave Landau result given above, this is

Y _0Oyo
w Izk’-’ELandau

The average energy density of the plasma waves in the cylinder

(or), =amlloa?),,

=— k2J'2 kr) + k233 (ki
= [K9200) + 1833 0],

so the energy in a lengthof the cylinder is

1

W—§LA2 r [k2362(kr) + k233 (k)] .

Using

F1(95= S [97(9) - Jn-a(9nals)]

Jo() = I-1(s) = ~Ju(9),
and the boundary conditialy(kR) = 0, we have

A2|_ Ek2 0

1H(kR

thus, the amplitude damping rate is given by

258

L1 Kk 1 w O
Jor® 142/ (kRZI2(kR) e vt @

Stimulated Raman Scattering in Filaments

In this section we analyze SRS in filaments using the simple
sharp-boundary cylindrical model of the previous section
(Fig. 76.44). We determine the filament parameters (radius,
etc.) most likely to produce short-wavelength SRS and then
estimate the collisionless damping in these filaments using the
results of the previous section.

We assume that the pump and backscattered electromag-
netic waves propagate as waveguide modes in the filament, so
their dispersion relations can be written

wf = w +c2(kG, +1,). (5)

w§zw%+cz(k§ +k522) (6)

where the subscripts and z denote the radial and axial
wave numbers and the boundary conditions require
Jo(kor R) = Jo(kg R) = 0, whereR is the filament radius. The
ponderomotive force arising from the beating of the pump and
scattered waves drives an electrostatic plasma response. We
assume that this response is largest when the frequency and
wave numbers of the plasma wave satisfy the fluid dispersion
relation
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w2 = w% +3v%(kr2 + kZZ) (7) SRS wavelength, as shown in Figs. 76.46(a)—76.46(b) for the
typical experimental parametely /n. = 0.1, To=3 keV, and
Ao = 351 nm. The SRS spectrum corresponding to these
where againJy(k R) = 0. This approximation will be good as
long as the damping rate is much smaller than the frequency 20— 77—

As in the previous section, we assume that the SRS process is i i
near threshold, i.e., the pump replaces the energy lost to — 1.6 i ]
damping of the scattered waves, so that the frequencies and %_ 121 _
wave numbers of all the modes can be taken as real. Then g - .
the frequencies and axial wave vectors satisfy the matching g 08| 7
conditions o 04l ]
T (@ |
Wy =Wstw, (8) ooL v v
0.10
koz = Kg +k;. 9) 008-— i
Coupling between the modes is strongest for the lowest-order , 0.06F _
(smallest radial wave number) modesince in this simple < - -
model all modes have the same boundary condition S 0.04f .
Jo(kor R) = Jo(ks R) = Jo(k R) = 0, the strongest coupling is 0.02L ]
obtained by taking T 1
0.00
Kor = kg =K = jor/R, x1018 1.5 | ]
wherejg, 12.4048 is the smallest root &j. “g 10 L ]
Light propagates in a waveguide mode in the filament 5;, r ]
because the density inside the filamegt,is lower than that E 05 L h
outside,Ng. The difference in plasma pressures inside and % i i
outside the filament must be balanced by the ponderomotive  — - .
force of the light confined in the filament. The required 0.0 L i
intensity in the filament will be a minimum when the increment — T T T
. . ) . i, o 14+ .
in density across the filament boundary is the minimum re- (A - g
quired to confine the pump wave, or % 13 N ]
S C _
3 L i
212 2 8p i
No _fo - ¥or (10) g e -
Ne  Ne 20) s 4+ 7]
S 2 (o -
Since the scattered waves are of lower frequency than the Z ol v
pump, they are also confined to the filament when condition 440 460 480 500 520 540 560
(6) holds. o166 SRS wavelengthufm)
If we are now given the background temperaligrelensity Figure 76.46

NO! and pump Wavelengtho = 2"0/600, Egs. (5)_(10) are six Parameters of the filament model as determined itstimeulated Raman
equations determining the six UHKHOWD% = 47Tnoez/m, Koz Scattering in Filaments section, plotted against the SRS emission wave-
ksz k21 w, andR in terms of the scattered-light wavelength length. The filament radius is plotted in (a), the interior density in (b) (for
/\s — 27‘&:/(4)3. We can solve them numerically to obtain inan exteriorl.der;sity ofope;:]en:.? critic?!),tf;einteriorlight intensity in (c), and
particular the filament radius and density as a function of'® "°Malized power in the filament in (d).
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parameters extends from about 450 nm to about 550 nm. Thethin this range; smaller filaments cannot form because of
density plot shows that longer wavelengths would requirdiffraction. From Figs. 76.46(a) and 76.46(d) we see that the
No/ne = 0.1, while shorter wavelengths lead to unphysicalfilaments our model predicts for short-wavelength SRS have
negative densities inside the filament. Note that over most gfarameters within this range. So we may conclude that, at least
the spectrum the required filament radii tend to be quitén terms of gross parameters such as size and intensity, our
small—of the order of a few collisionless skin depths or aboutnodel is not an unreasonable representation of the filaments
a micron for these parameters. likely to be involved in SRS.

By using the condition that the ponderomotive force bal- The collisionless damping rate for the plasma mode associ-
ance the difference in plasma pressures inside and outside #@ted with each SRS wavelength, as calculated ithitrear
filament, we can obtain the intensity and power in the filamentCollisionless Dampingsection, is shown in Fig. 76.47. For
The pressure balance conditiomig= Noe_"g/""’%,wherevo comparison we also show the damping rate for a plasma
is the oscillatory velocity of an electron in the electric field ofwave in a homogeneous plasma that would give the same
the filament SRS wavelength. Details of the calculation of the damping
rate in homogeneous plasmas is given in the Appendix. From
Fig. 76.47 we see that for longer wavelengths (corresponding
to filaments of large radius) the damping rates approach the
homogeneous Landau result, but for shorter wavelengths the
with | being the intensity in the filament ag the laser smaller radius results in a much-reduced damping as compared

Vo = €Emax /MW D25.6\;“‘I(W/cm2)/\0(um) emst  (11)

wavelength. Solving for the intensity yields to the homogeneous case.
The growth rate for SRS in a filament is readily calculated
To(eV) , ONyO
|(W/Cm2) 01.1x108 #'na—o : from the coupled wave equations for the waveguide mbies;
A§(um) g

is largest when the plasma response is taken to be the funda-
mental mode (i.e.k = jg;/R) and is then the same as for a
These intensities are plotted in Fig. 76.46(c). Since in oulane-wave pump of the same intensity in a homogeneous
simplified model the intensity is uniform in the interior of the plasma. The linear, undamped, homogeneous SRS growth rate
filament, the power in the filament is obtained by multiplying y at high pump intensities is giveny

the intensity byniR? and is shown in Fig. 76.46(d) as the
normalized powePy, (usually denoted byl in the literature:®

we use the present notation to avoid confusion with the number 1.50
density). The normalized power is in general defined by

3 1.25
o)
e w% ) % 1.00
ANEg——r — [[|E?|axdly, =
maglo € 3 £ 075
_ o _ & 0.50
where the integration is over the cross-sectional area of O
the filament. 0.25
: , . . 0.00
The normalized power and the filament radius normalized 440 460 480 500 520 540 560
to the collisionless skin depth are useful in comparing our . SRS wavelengthum)

simple filament model with what might be expected of actual
filaments. Recently Vidal and Johnstéhave published some
nonlinear simulations of the breakup of laser beams inteigure 76.47

filaments in plasmas. They find that comparatively long-livedbamping rates for plasma waves giving rise to SRS, plotted against the
filaments typically tend to form with radii of a few collisionless Wavelength of the SRS light produced. The upper curve gives the results for
skin depths and normalized pOWE’(@in the range of 2 to 15. a homogeneous plasma, the lower for the filament model igtthmilated

. . . Raman Scattering in Filamentssection.
Larger filaments tend to break up into several smaller filaments
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v W, v pressed by beam smoothing, so that at NIF intensities, for
9 D\/—p 2. example, SRS would not be significant.
wWo @y C
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spatially, i.e., the spatial and temporal length scales of the SRS

interaction are typically much smaller than those of the filaAPPENDIX: Calculation of Collisionless Damping for

ment. This justifies the use of an infinitely long, steady-stat&RS in Homogeneous Plasmas

filament model to study SRS. The high intensities and low

damping within the filament also mean that the SRS threshold For purposes of comparison with our results for the damp-

arising from dampintf ing of longitudinal waveguide modes in filaments, we also
showed in Fig. 76.47 the corresponding damping rates for
lane waves in homogeneous plasmas. Since these dampin
Yo >YeYs g 9 P bing

rates are typically much larger and can be comparable to the

real frequency, the use of the usual small-damping approxima-
is greatly exceeded, wheggandy, are the damping rates of the tionl# to Landau damping is not justified. To calculate these
plasma and electromagnetic waves, respectively. Finally, thrdamping rates we therefore use the exact expression for the
comparatively low damping of the plasma wave justifies th@lasma dielectric response function in a Maxwellian plasma:
use of the plasma-wave dispersion relation for the plasma
response in these calculations, since for low damping SRS will 1
dominate stimulated Compton scattering. e(kw)=1+

>[1+QZ(Q)]; (A1)
(ko)
Conclusions

Discrepancies have long been noted between observationdere
of SRS and theories premised on relatively homogeneous
plasmas and uniform laser irradiation. Foremost among these -
are the onset of SRS at intensities well below the predicted Q=
thresholds and the presence of SRS at short wavelengths,
which should in theory be suppressed by Landau damping.
Many of these discrepancies can be accounted for if the SRSdad whereZ denotes the plasma dispersion funcéiy, is
actually occurring in high-intensity, self-focused light fila- the SRS scattered light frequenay, is the homogeneous
ments, but this interpretation is still open to the objection thgtlasma electron density; is the electron thermal velocityg
the short-wavelength scattering requires low plasma densitiés the Debye length, angl is the critical density at the laser
and thus should still be suppressed by Landau damping. Viieequencyw,. The normal modes are given by the valuels of
have shown that if short-wavelength SRS is generated iandw for which g(k,c) = 0. These are the modes that propa-
filaments, the Landau damping of the corresponding plasmgate in the absence of a driver, and for a Maxwellian plasma
waves is greatly reduced relative to the damping that woulthey are damped, i.eg has an imaginary component, corre-
occur if the SRS were being generated outside the filamentasponding to the Landau damping, and the wave amplitude
context. This removes the primary objection to the filamentatiodecreases with time. Here, however, we are interested in the
hypothesis as the explanation for the anomalous SRS obsengteady-state response of a driven plasma wave, corresponding
tions and suggests that if flamentation is suppressed, fao the situation where SRS is at threshold; i.e., the power
example, by beam-smoothing schemes intended to improywovided by the pump wave (the laser beam) exactly compen-
irradiation uniformity, the SRS instability should then be wellsates for the power lost to damping. (Once above threshold, the
described by classical theories. One especially important iminstability grows so rapidly that the damping becomes irrel-
plication of this is that the effective observational threshold foevant.) The plasma response at a given frequency may then be
SRS should be significantly increased if filamentation is supregarded as a driven damped harmonic oscillator, reaching

. (A2)
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maximum amplitude at that pointinthe plasmawl11.e(dx, a))| Next we can write
is a minimum. SRS can occur at a range of plasma densities
pelow quarter-critical density. Underdque plasmas typically 22 2wl VK2 2 D_l .
include such a range of plasma densities but are close to A St e Il M
isothermal; thus, we regard the temperature as being fixed and w§  v§ wf w% HezH Ne
look for the values oing/n. andkAy that minimizeg(k, w).
From (Al) and (A2), sinceu is known, this minimization
provides arelation between the two unknowggn, andkAy,  and since the temperature, or equivalenty is assumed
which we can write by expressikgy as a function ohg/n.: known, combining (A4) and (A5) gives another relation be-
tweenkAp and ng/n. , which along with (A3) can be solved
[ny O numerically to obtain these unknowns and thus deterkine
kAp H: X suchthat The Landau damping rate, which may also be regarded as the
rate of transfer of energy from the wave to the resonant
particles, is then given by

(KAp)?,  (AS)

o 0O g 0O
£D<,QH<,n—O < sDc,QHc,”— foral X', (A3) ;1
B Ne B Ne - =Elm[£(k,w)].

where we have used (A2) to repres@ras a function okAy  Using (Al) and the formula for th& function of a real
and ng/ne . argument

We obtain another relation between these unknowns from Z(x)
the dispersion relations of the pump and scattered light waves
and the frequency and wave-number matching conditions for
SRS: this is

_ _X2 Y X t2
=e [mn 2_|’0e dt],

2 = )2 4 (22 2 = )2 4 c2K2- 2
w§ = Wi+ kg, wW§ = wp +C°ks;

1:\/5 w%w 2k2v2 (A6)
W =Wy — W, k=ko— ks, ki =kgt+Ksg, W 8 kv '

where (uy,kg) and gugks) are the frequency and wave numberThis is the damping rate for SRS in a homogeneous plasma, as
of the pump and scattered EM waves, respectively. Subtractingdotted in Fig. 76.47. It should be noted that while (A6) is

the two dispersion relations gives identical to the Landau damping rate usually obtained for
normal modes[s (k,w) = O] under the assumption of weak
W2 — 2 damping, for driven modes wittv real it is valid even for
Wi - wZ = cz(kg - ksz) =c?k,k, sok, = %. strong damping.
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