Simulations of Near-Field Intensity Modulations in High-Intensity
Laser Beams due to Self- and Cross-Phase Modulation Between
Orthogonally Polarized Laser Beams Emerging from a
Diamond-Turned KDP Wedge

The near-field intensity modulation due to a diamond-turnednent in the vicinity of linear polarization due to the nonlinear
KDP wedge is investigated through computer simulationgffect of cross-phase modulation.
within the framework of its application to LLE's OMEGA laser
system. KDP wedges will be installed on each OMEGADiamond-Turned KDP Wedge
beamline and mounted 12 m away from the final focusing.. Polarization Smoothing
optics. The wedges will improve the direct-drive inertial con- The concept of polarization smoothing originated from
finement fusion uniformity by a process known as polarizatiorKato! who recognized the uniformity that would result from
smoothing. Diamond turning is the finishing process of choiceotating the polarization through 96n half of the individual
due to the greater cost incurred by installing polished KDPhase-plate elements chosen at random. A more practical
crystals on every beamline. device, first described in Ref. 2, is a wedge of birefringent
material such as KDP. A linearly polarized beam incident
The Nova laser facility at the Lawrence Livermore Nationalupon the KDP wedge is split into two orthogonally polarized
Laboratory (LLNL) reported blast-shield damage that wadeams of equal intensity when the incident beam’s polarization
linked to the mid-range spatial wavelengths (1 to 4 mm) ofrector is oriented at 45with respect to the slow and fast axes
scratch marks on diamond-turned KDP crystals in use at thaf the crystal (see Fig. 76.27). The resultant two orthogonal
time. This motivated LLE to employ polished KDP crystals forbeams co-propagate at a slight angle of separation with respect
frequency tripling on OMEGA during its 24- to 60-beam to each other, determined by the wedge angle and the refractive
upgrade (completed in 1995) because polishing producesirdexes for the slow and fast waves. The current requirements
smoother distribution of spatial wavelengths of lower amplifor OMEGA set the wedge angle to 4.5 min. This causes a
tude. While diamond-turning technology has improved reseparation angle of 4#4rad between the two orthogonal
cently, residual concern has existed regarding the potentibbams and a relative offset of gt after focusing on target.
damaging effects of installing diamond-turned KDP crystalsThe relative offset of 80m achieves an instantaneous theoreti-
This has prompted an investigation, both theoretical and exal 1/v/2 reduction of the nonuniformity through spatial
perimental, into the potential effects of the scratch or millingaveraging, which complements the uniformity achieved by
marks left behind by diamond turning. SSD aloné

This article represents part of the theoretical investigation As a consequence of the separation angle, the combined
of this problem. In particular, the simulations model the nonpolarization state of the two orthogonally polarized beams
linear effects that result from (1) the beam propagation througtontinuously cycles through all elliptical states along any
the 12 m of air that separates the KDP wedge from the finatansverse plane. The rate of change is determined by the trans-
focusing optics, (2) the initial phase perturbation of the beamerse components of the wave vectors. Since the separation
due to the residual scratch marks on the diamond-turned KDdhgle is small, the wavelength of the cycle is given by
surface, and (3) the nonlinear index’s polarization dependence.

The danger here is that small-scale self-focusing might de- A 351 nm
velop high-intensity spikes leading to filamentation damage in Apol = sin(6) = sin(44urad)
the final focusing optics. The simulations reported here dem-

onstrate that KDP wedges, diamond-turned or smooth, are not

a significant source of intensity modulation under OMEGAwhereA =351 nmis the UV operating wavelength of OMEGA.
laser conditions. In addition, for a beam with a varying polarThe resultamd,, =8 mm s the transverse distance required to
ization state, these simulations exhibit an intensity enhanceycle the polarization state from right-handed circular, to

=8 mm, (1)
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linear, to left-handed circular, back to linear, and returning téntensity modulation by virtue of the diffractive process that

right-handed circular. occurs during propagation. Intense beams can develop high-
intensity spikes leading to filamentation damage through the
2. Induced Phase Perturbations coupled process of phase modulation and diffraction.

Two types of phase perturbation result from the introduc-
tion of a diamond-turned KDP wedge. The first is due to th&. Model of Scratch Marks
residual scratch marks left behind by the diamond-turning The pseudorandom behavior of the residual scratch marks
process. The scratch marks cause a beam to acquire a pseudanodeled in this article by bandpass filtering a white noise
random phase perturbation as the beam passes through #ueirce, viz.
front and back faces of the crystal. The pseudorandom phase

perturbation can be described by a thin-optic transformation _
—1%: - ky kYo EH
S(y) =F [:(y)] . rect ——22—[T}
= - 2 E Kyima ™ Ky 5
it = ko(nkpp = 1) Sy), () max Y
whereS(y) is the depth of the scratch mark as a function of the 1
transverse positioy, kg = 277/A is the vacuum wave number, _ ELL | X| s 2 3
andngpp represents the refractive index for either the slow or rect(x) = 0 _ 1’ (3)
fast wave. Bb | x> 5

The second type of phase perturbation arises during propahereF represents the spatial Fourier transfogfy) is the
gation because the nonlinear refractive index is a function afoise sourceky, is the central spatial wave number, &gd_
polarization state and intensity (see subsection 1 dflthe andky,. - representthe maximum and minimum passed spatial
ticity section) together with the fact that the KDP wedgewvave numbers. This result is sometimes referred to as “col-
produces a beam whose combined polarization state varies@®d” noise! Figure 76.28 illustrates an example in which the
a function of transverse positign The nonlinear refractive passband was set 2m/(4 mm) < ky < 2m/(2 mm). These
index is a maximum for linear polarization and a minimum fordata are used in the subsequent illustrative numerical simula-
circular polarization. Therefore, both orthogonally polarizedtiions given in théNumerical Resultssection. This passband
beams accumulate a periodic phase perturbation during propaas selected since it covers the troublesome spatial frequen-
gation that is greatest in the vicinity of linear polarization. cies identified by LLNL. Also, these data closely resemble

surface profile measurements on a qualitative basis. An alter-

Both types of phase perturbation affect the beams by intrarative function that completely describes the power spectral
ducing spatial phase modulation that can then be converted irdensity of the scratch marks could be used in place of the
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rect(y) function. However, an adequate statistical description
ofthe diamond-turned scratch marks is unavailable at this time.  E (y, Z, t)
The rectk,) can be viewed as a worse-case situation that
emphasizes the higher spatial frequencies since the actual 1(r~ . T/
power spectral density would go to zero in a continuous :E{[DRHERH(Y=Z)+DLHELH(V’ z)]e (nt ko)
manner as the spatial frequency increases.
_ _ + cc}, (5)
Nonlinear Wave Equation

The analysis of beam propagation for this problem assumes
that the optical field is monochromatic and the bandwidth ovhereEg(y,2) andE 4(y,2) are the complex amplitudes of
the spatial spectrum is small relative to the vacuum wavthe right-handed and left-handed circular polarization states,
numberky = wq/C, wherewy is the angular frequency aots ~ which are defined in terms of Cartesian components as
the vacuum speed of light. This permits the slowly varying
amplitude to be separated from the rapidly varying part, such

1
that the electric field vector is given by Ern(Y:2) = \/_§[EX(y’ 7) - Ey(y. Z)]
_ (6)
E(y,zt)= 1 PE(y, z)e™ (@t =kono2) 4 .| (4) 1
2 En(.2)= E[Ex(y, 2)+Ey(y, Z)]

whereE(y,2) is the slowly varying complex amplitude as a
function of both the transverse distanc@nd propagation and the polarization vectors are defined as
distancez, p is the polarization vecton, is the refractive
index, andc.c.indicates the complex conjugate. An arbitrary " PR ~ 14 A
- N . Pry =—=(X+1¥), Py =—=(X-1). @)
elliptical polarization state decomposes naturally into a J2 J2
weighted vector sum of right-handed and left-handed circular
polarization states, viz.
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The optical field is assumed to propagate in a lossless, aE(y, z) AR
isotropic nonlinear Kerr-like medium, where the nonlinear dz _(D+ N)E(y,z), (13)
refractive index is given by

where the operatdf) accounts for diffraction and is defined as
n=ng+An. (8)
" . . o D=_02, (14)
e quantityAn represents the change in the refractive index 2k
beyond the low-intensity valug and exhibits a linear depen- A
dence on the optical field intensity. The scalar nonlinear wavihe operatoiN governs media nonlinearities and is defined as
equation for each vector component is then given by

N = ikyAn, (15)

OERH Y,z _ i .

% = ED%ERH (v:2) +iko ARy Erii(¥:2),  (9)  the quantityE(y,2) represents either the right-handed o left-
handed complex amplitude, aAd represents either Eq. (11)
or Eq. (12). The formally exact solution of Eq. (13) is given by

0E Y,z i .

%=ED%ELH(M ) +ikgAny Ep(y,2),  (20)

E(y,z+A7) = oi(D+N)az E(y,2).

wherek = kgng anc®
An important merit of decomposing an arbitrary elliptical
polarization state into right-handed and left-handed circular

Angy = 4_;:’0[)(@“5% (y, z) |2 polarization states is that
2 2
d|Eru(y.2)|" _ OEn(y.29)| _
+(X£§/2(y + Xg)yy)|ELH (v.2) |2§ (11) 9z - and 9z =0

This implies that the intensities of the vector components and
Any = i[X@MELH (v.2) |2 therefore the quantifynare all constants of motion. This is not
4no true for a Cartesian decomposition, due to the well-known
cross-phase modulation effect of ellipse rotation, which causes
3 3 20 the magnitudes along the Cartesian components to change with
+(X£‘y2‘y+xg‘x)yy)|ERH v Z)| g (12) propagation distancé.
and it has been assumed thﬁE(y, z)/az2 =0, i.e.,, the 1. Ellipticity and the Nonlinear Refractive Index
slowly varying envelope approximation. The first terms in  The ellipticity parametejcoverstherange /4 < n < /4,
Egs. (11) and (12) represent self-phase modulation, and tléhere tanf) describes the ratio of the minor and major axes of
second group of terms represents cross-phase modulation. Tthe polarization ellipse with the sign defining its handedness
vector components are coupled through the cross-phase modpesitive ¢+) indicates right-handed and negativiifdicates
lation terms. Due to the symmetry of centrosymmetric Kerrieft-handed]’ Whenn = 0, the polarization state is linear and,
like media and the fact that both vector components share théhen || = 71/4, the polarization state is circular. Equations to
same frequencyy, there are only two independent third- calculate the lengths of the major and minor axes can be found
order susceptibility constantsg&y and X§§2W that obey the in Oughstufi (see Ref. 8, Sec. 4.2.1) and are governed by the
relation Xﬁg&x = 2)(§§,2<y + ngg,y and follow the frequency con- complex amplitudeBgr(y,2) andE, 4(y,2). Consequently, the
ventionx%(—w,—w,w,w).(Notice that it is this convention ellipticity parametern is also a function of the complex
that causes the subtle notational deviation from that odmplitudesEgy(y,2) andE; 4(y,2). The quantitiedngy and
Sutherland) Either scalar nonlinear wave equation, Eq. (9)An; 4 depend on the magnitudégy(y,2)| and |E_ (Y. 2)
or Eqg. (10), can be written in operator forn§ as and are indirectly functions of the polarization state.
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The extrema of the quantiti@ésry andAn, y occur when 0E(y, 2)
the polarization state is either linear or circular. If the polar- dz
ization state is linear, thgBjiy|? = 2E y|? = 2/Eguy|* (where
the factor of 2 comes from the equal intensity split into bothvhich has a solution given by
polarization states), and the change in the nonlinear refractive
index becomes

= NE(y, 2), (22)

E(y,z+ Az) = E(y, )&tz (23)

31,0 (3) ] 2
Anj, = —— +2 Einl - 16
"~ 8ng [XXXW Xigpy[Bin| (16) because the quantifyn is not a function of the propagation

distance for a circular-polarization decomposition. As a result,
If the polarization state is circular, either right-handed or leftthe nonlinear effects of self- and cross-phase modulation,
handed, then acting alone, induce a simple phase accumulation that is a

function of both the polarization state and intensity. This is a

3 3 2 eneralization of the well-knowB-integral.
Angiy :4_%X5<y2<y|Ecir| . (17) g 9
Numerical Approach
In either of these two degenerate stépﬁgf :|Edr|2 so that The numerical split-step Fourier method (see Ref. 6,
Sec. 2.4.1) is used to solve the differential Eq. (13), where the
Anin > Angjy - (18)  total required distance of propagation is divided into small

steps over which the linear effects of diffraction are treated
In a more general sense, the nonlinear refractive index is largeeparately from the nonlinear effects of self- and cross-phase
in the vicinity surrounding, or in the immediate neighborhoodmodulation. This permits the solutions given by Eqgs. (20) and
of, the points of linear polarization relative to the minimum(23) to be used if the chosen step size is sufficiently small that
values attained at the points of right-handed or left-handetthe linear and nonlinear effects are approximately independent
circular polarization. over that step.

2. Angular Spectrum Representation The numerical calculation over one small st&pis
If nonlinear effects can be neglected, the vector componentsferred to as a propagation step. One propagation step entails
become decoupled and obey the scalar Helmholtz wave equae independent calculation of diffraction using the results of
tions given by Eqg. (20) and the independent calculation of the nonlinear
phase accumulation as described by Eq. (23). The detailed
0%E(y,z) +k3n? E(y,2) =0, (19)  manner in which this is carried out greatly affects the overall
error achieved and directly affects the required number of steps
which has an exact solution at any exit planédzgiven by the  needed to obtain a suitable level of accuracy. For example, if a
angular spectrum representation (see Ref. 9, Sec. 3.7), viz.full diffraction step is followed by a full nonlinear step, the
error is O{Azz} , which is equivalent to solving Eq. (13) as

E(y,z+Az) =

N~

Y inz, kgn? kg _ik,y o
n_J;o (ky.2)e Yk, (20) E(y,2+82) DEBEARE(y 7). ”

where E(ky, z) is the spatial Fourier transform at the entrancéHowever, if a half diffraction step is followed by a full nonlin-

planez and is defined by ear step and then by another half diffraction step, the error is
O{Az3} , Which is equivalent to solving Eg. (13) as
~ ® —ik,
E(ky,Z) = IE(y’ Z)e I yydy' (21) .AZﬁ .AZ|5
1— Ay I —
- E(y,z+Az)Oe 2 €bMNe 2 "E(y,z). (25)

3. Self- and Cross-Phase Modulation
If diffraction can be neglected, the scalar nonlinear wavdhe errors associated with Egs. (24) and (25) are found by
equation for either vector component has the simple form comparing these approximate solutions to the formally exact
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solution to Eq. (13) and applying the Baker—Hausdorff for- max{l(y)}

mula for two noncommuting operatdtsThe method de- COﬂtraﬂ:W’ 0
scribed by Eq. (25), known as the symmetrized split-step

Fourier method, is employed for the numerical simulations in

the subsequent section. Figure 76.29 graphically representdere the transverse positignfor this formula only, covers

this particular approach over two small stepAnf the region wherHy) was initially at full value; thus, the region
where the beam intensity tapers to zero is not considered for
Numerical Results this statistic.

The intent of this investigation is to isolate the effects
caused by the nonlinear propagation in air, the scratch markk, Material Parameters
and the wedged shape of the KDP crystal, while ignoring the The material parameters used in the simulations are givenin
nonlinear index of KDP. To this end, only the exit face of thehis subsection. The linear refractive indices for the KDP
KDP crystal is considered to be scratched, and the initialrystal are ngpp =1.532498 for the ordinary wave and
beam shape is regarded as infinitely smooth. As a consew pp, =1.498641 for the extraordinary wave, which propa-
guence, the nonlinear ripple growth within the KDP crystalgates at 59to the optic axis. The third-order nonlinear suscep-

can be neglected. tibility constants for air are
The beam shape is modeled by using spatially offset hyper- X@(y(—w, -, W, w) =28.16 x 10719 esy

bolic-tangent step functions, viz.
and

E(y) =%{tanh[100(y+ 0.14)] - tanhf100(y - 0.14)]},  (26) @ ( ) =172.4 x 10719
Xy (—w, —w, 0, ) =172.4 X esu-

which yields an infinitely smooth, 28-cm-diam beam. The

nominal intensity level for OMEGA equal to 1.3 GWEia  The third-order susceptibility constants are four times those
used. Also, an unrealistic value of 10.3 GW/dsiused to  given in Ref. 10, due to the particular definitions they used for
demonstrate a regime where the nonlinear effects dominatee polarization vector and intensity, as noted by Sutherland
since, as it will be shown, the nonlinear effects are small for thisee Ref. 5, p. 298]. There is a compensatory factor of 1/4 in the
nominal OMEGA intensity level. The measure of intensitydefinition ofAn used in this article, which effectively balances
modulation used in this paper is the contrast defined as  this deviation.

E(rr, z=0) E(rp, z = 2Az)
| Z=0 | | z=022 | |Z:Az| |z=3Az/2| |Z=2Az|
Diffraction Diffraction Diffraction Diffraction
step step step step

A
Nonlinear step; Nonlinear step;
SPM XPM SPM XPM
TC4714
Figure 76.29

Two propagation steps of the symmetrized split-step Fourier method covering a distafize of 2
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2. Enhancement of Linear Polarization of the square symbols. If the intensity were lowered to the
As was mentioned in subsection 1 of Menlinear Wave = nominal OMEGA level, a small contrast of only 1.04 would
Equation section, the phase accumulation is greatest in thiee calculated.
vicinity surrounding points of linear polarization. When dif-
fraction is included, these areas tend to focus and correspond The enhancement of linear polarization may be amplified
to peaks of intensity modulation. To illustrate this effect, eor seeded by the presence of scratch marks on the surface of the
simulation was carried out modeling a KDP wedge with arKDP wedge. This effect can be understood by running a
optically smooth surface, i.e., without an initial pseudorandonsimulation that accounts only for diffraction. In this situation
phase perturbation. Due to the wedge and the dependencetioére is, of course, no correlation between the intensity peaks
the nonlinear refractive index on the polarization state, aripplthat develop during propagation and the polarization state.
is introduced with a wavelength 142, (where the factor of Some intensity peaks, however, are inevitably located in the
1/2 emphasizes that the overall phase perturbation of botieighborhood of linear polarization. These intensity peaks
orthogonal beams has extrema at the transverse positiossed the nonlinear growth by increasing the associated phase
corresponding to linear or circular polarization that are indeaccumulation in these regions as described by Eqg. (23) and, as
pendent of the handedness), which can lead to small-scale self-consequence, induce a greater intensity modulation than
focusing if the beam intensity is high enough. This is contrarpbserved for the optically smooth wedge.
to what would be expected in the absence of a wedge; with a
perfectly smooth beam and an optically smooth KDP surface, A simulation for the nominal OMEGA laser intensity,
one would observe only a rotation of the polarization ellipseéncluding both linear and nonlinear effects, yielded a contrast
(except in the degenerate cases when the whole beam is eitbérl.32 and is presented in Fig. 76.31(a). In this case, only a
linearly or circularly polarized) and possibly whole-beam selfslight correlation exists between the intensity peaks and the
focusing. This simulation was run with an input intensity oflinear polarization state due to the weak nonlinear effect. When
10.3 GW/cn? and yielded a contrast of 1.31. These results arthe intensity level is increased to 10.3 GW/¢chowever, an
presented in Fig. 76.30, where a correlation between the peakpreciable growth is observed in the vicinity of linear polar-
intensities and the linear polarization is evident by the locatioization [as shown in Fig. 76.31(b)], and, consequently, a
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0.2 The simulation of nonlinear propagation through 12 m of
air past a pseudorandomly scratched KDP wedge with
0.0 40-nm peak-to-valley scratch depth and a passband of
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significant correlation exists between the intensity peaks angrofile measurements that were taken on diamond-turned
these regions as indicated by the association of the majority &DP crystals, which yielded peak-to-valley scratch depths of

the square symbols with the intensity peaks. 40 nm (worst case) and 15 nm (best case). These tables also
include calculated contrast data for three additional passband
3. Contrast Calculations at the Nominal OMEGA configurations: the passband is narrowe#yte 277/(3 mm),
Intensity Level widened to277/(100 mm) < k, < 277/(1 mm) and widened to a

Tables 76.1 and 76.11 contain contrast data calculated frorfow pass ofk, < 2m/(1 mm).
simulations of linear and nonlinear propagation, respectively,
in which the same scratch-depth data presented in Fig. 76.28 If the scratch mark model given in Eq. (3) is extended to
was scaled to cover the 10-nm to 50-nm range for an incideitclude another spatial dimension, a 2-D colored noise source
intensity level of 1.3 GW/cth The scratch-depth range pre- is modeled. A 2-D beam is then modeled by extending Eq. (26)
sented here was chosen to correspond to the range of surfagenclude another dimension. Both of these models are then
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used to simulate 2-D nonlinear beam propagation in an analand a passband (2'71/(100 mm) <ky < 27'[/(1 mm) given in
gous manner to the 1-D case. The plot presented in Fig. 76.3able 76.1. The corresponding contrast range in Table 76.11 for
shows three lineouts from a 2-D simulation (taken at th@onlinear propagationis 1.07 to 1.11, which represents a small
center and near the edges of the beam) for a beam with artrease due to the nonlinear effects. Near-field images were
intensity of 1.3 GW/crf, a scratch-mark passband of taken during OMEGA full-power shots on a beamline with and
27'[/(4 mm) <ky, ky < 27'[/(2 mm) , and a peak-to-valley withouta diamond-turned KDP plate at an equivalent plane of
scratch depth of 40 nm. The contrast calculated for the wholike final focusing optics. In this experiment, a negligible
2-D beam is 1.35, compared to the value of 1.32 given iincrease in the intensity modulation was observed, corroborat-
Table 76.1I for the corresponding 1-D case. ing the results of these numerical simulations.

At the nominal OMEGA intensity level of 1.3 GW/éma  Conclusion
contrast ratio of 1.8:1 represents the damage threshold of the On the basis of realistic simulations, including diffraction
final optics. The data in Table 76.11 show that the calculatednd nonlinear self- and cross-phase modulation, and a realistic
contrast values are well below this threshold even for gratingepresentation of scratch marks on diamond-turned KDP, it has
type sinusoidal scratch marks. Recent linear intensity moduldreen found that KDP wedges, diamond-turned or smooth, are
tion measurements taken on diamond-turned KDP crystal®ot a significant source of intensity modulation. These results
yielded a range of contrast values between 1.04 to 1.08, whielie consistent with experimental results from full-power shots.
roughly correlates with the linear propagation simulation reAccordingly, polarization smoothing will be implemented on
sults for peak-to-valley scratch depths between 10 and 20 n@MEGA using diamond-turned rather than polished KDP.

Table 76.1: The calculated value of contrast for linear propagation through 12 m of air past a scratched KDP wedge at an
incident intensity level of 1.3 GW/cm? for different scratch depths and filter types.

Peak-to-Valley Sinusoidal Random L owpass Random Bandpass Random Bandpass
Scratch Depth (nm) | ky = 277(3 mm) ky < 277(1 mm) 27(1 mm) <ky < 277(1 mm) | 277(4 mm) < ky < 277(2 mm)
10 1.08 1.03 1.04 1.06
20 1.16 1.07 1.08 111
30 1.23 111 111 117
40 131 114 114 1.23
50 1.38 1.18 1.19 1.28

Table 76.11: The calculated value of contrast for nonlinear propagation through 12 m of air past a scratched KDP wedge at an
incident intensity level of 1.3 GW/cm? for different scratch depths and filter types.

Peak-to-Valley Sinusoidal Random L owpass Random Bandpass Random Bandpass
Scratch Depth (nm) | ky= 277(3 mm) ky < 277(1 mm) 27(1 mm) < ky < 277(1 mm) | 277(4 mm) < ky < 277(2 mm)
10 1.13 1.07 1.07 111
20 1.23 1.09 111 118
30 1.32 113 116 1.25
40 141 117 119 1.32
50 1.50 1.20 1.25 1.38
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Three lineouts from a 2-D simulation (taken at the center
and near the edges of the beam) of nonlinear beam
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