Landau Damping and Transit-Time Damping of Localized
Plasma Waves in General Geometries

The collisionless damping of electrostatic plasma waves, firsvave-particle energy transfer calculated to second order in the
predicted by Landduin 1946 and since rederived in many field amplitudes. (The reasons for this will be discussed be-
ways and confirmed experimentally, has become perhaps thaw.) Calculation of the perturbed particle orbit in a time-
most well known phenomenon in plasma physics. Landauarying field is rather complicated, even for a plane wave,
damping plays a significant practical role in many plasmanvolving as it does iterated time integrals of the equation of
experiments and applications but has continued to be of greption. Such complications are contrary to the motivation for
interest to theorists as well. Much of this interest stems frora physical derivation of Landau damping, which is to provide
the counterintuitive nature of the result itself (that waves simple, physically intuitive explanation of the phenomenon.
carrying free energy dissipate with no increase in entropyfurthermore, they oughtto be unnecessary since the transform
coupled with the rather abstruse mathematical nature aferivation requires only unperturbed orbits and first-order
Landau’s original derivation. For these reasons there was eveunantities. One of the results that will emerge below is a
some controversy over the reality of the phenomeénantjlit  physical derivation of Landau damping based solely on unper-
was actually observed in experiments. turbed orbits.

The usual derivation of Landau dampiggins by linear- Strictly speaking, the term “Landau damping” applies only
izing the Vlasov equation for an infinite homogeneousto the damping of infinite plane waves in homogeneous plas-
collisionless plasma. The linearized Vlasov equation is Fourienas. Localized electrostatic perturbations in inhomogeneous
transformed in space and Laplace transformed in time, and tipdasmas, however, are also damped by collisionless procdesses.
resulting equations in transform space are then solved algebiRarticles transiting the region containing the wave exchange
ically to yield a relation between the perturbing field and theenergy with it; for a thermal distribution of particles, this
perturbed distribution function. Alternatively, this relation results in a net transfer of energy from the wave to the particles
may be obtained by directly integrating the linearized Vlasowand a consequent damping of the wave. This process is usually
equation in configuration space using the method of charactereferred to as “transit-time damping?Since, in general, the
istics? also known as “integration over unperturbed orbits,”Fourier transform method used by Landau is difficult to apply
and then performing the Fourier and Laplace transformsninhomogeneous plasmas, transit-time damping calculations
Integration of this relation over particle velocities then leads temploy the physical approach described above: the energy
the dielectric response function and a dispersion relation fdransferred to each particle is calculated and then integrated
the plasma waves. Performing the integration over velocitiegsver the particle distribution function. Again, however, this
entails the avoidance of a pole on the real axis by deforming thiequires that the perturbed particle orbits be determined and the
integration contour into the complex velocity plane. (Detailsenergy transfer be calculated to second order in the fields; for
can be found in most introductory plasma physics texts.) Whila localized field in an inhomogeneous plasma, this is much
this derivation is mathematically elegant, it is physically rathemore complicated than for a plane wave. Since Landau damp-
obscure, especially in regard to the introduction of compleing can be calculated based solely on the unperturbed orbits, it
velocities. For this reason, many “physical” derivations ofis natural to inquire if transit-time damping could also be
Landau damping have been published, employing only realalculated without invoking the perturbed orbits. One of the
physical quantities througho®€ In these derivations, the main purposes of this article is to show how this can be done.
energy transferred from the wave to each particle is calculated
directly and then integrated over the particle distribution func- First, we give a physical derivation of transit-time damping
tion to give the damping. In these physical derivations, howin a plasma slab of finite width based on unperturbed orbits and
ever, the perturbed particle orbit must be determined and thievestigate how the damping of a plasma wave confined to the
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slab varies with slab width and mode number. We also shotie localized volume then givéwicethe collisionless power
that the result reduces to the usual Landau-damping expressimansfer to the electrons since the phase space is effectively
as the width becomes large. Next, we present a similar analysiecluded twice in the integration (both forward and backward
for spherical geometry followed by a brief discussion of than time).
cylindrical case, which is covered in more detail in a future
article10 Finally, in an appendix, we show formally that in  Toillustrate, we now calculate the average energy gain rate
general geometries our approach gives results equivalent ébelectrons crossing a one-dimensional slab region containing
those obtained by other methods that require the use of pex-standing-wave electrostatic field. We will obtain a simple
turbed orbits and higher-order terms. expression for the field damping rate as a function of the slab
length (for fixed oscillation frequency and wavelength).

Transit-Time Damping in Slab Geometry

Our approach to transit-time damping may be outlined as Consider a standing-wave electrostatic potengiadf real
follows: Consider a localized oscillating electrostatic field thafrequencycu:
may be regarded as stationary in time, i.e., its oscillation
amplitude is unchanging. In practice, this may correspond to a
situation of weak damping, where the damping rate is much
smaller than the oscillation frequency (as is often the case for
Landau damping), or to a situation where wave energy lost ta the slab region with boundaries<at 0 andx=L. HereC is
damping is replenished by an external source, such as in theconstant inside the slab and vanishes outsideklan@ i
case of stimulated Raman or Brillouin scattering, where thwvith j a positive integer so that the potential is continuous. The
electrostatic wave is driven by interaction with an electromageorresponding electrostatic field is
netic pump wave. We assume that the particle distribution
functionfy depends solely on the particle enekyyand we
further assume that collisional damping is negligible and take
the plasma to be collisionless, so théE) satisfies the Vlasov
equation. Consider a six-dimensional phase-space volunWe also assume that electrons with a constant number density
elementV, which passes through the localization volume inng and a velocity distributiofy(E) are streaming constantly
time At and emerges as the volume elendt. Since the and freely through this region from the lefkat0 and from the
Vlasov equation conserves phase-space volume, we hakight atx=L. The density and temperature are chosen such that
|dV* =|dV|, though the shape of the volume element mayo)‘%e >> 3k2v%,wherewge is the usual plasma frequency and
change. Through interaction with the field, each particth/in vt the thermal velocity, so that weak Landau damping and
acquires an energy incremekiE, which may be positive or quasi-steady-state conditions obtain. The frequenagnd
negative. Since the situation is stationary and the Vlasowave numbek then satisfy the Bohm-Gross dispersion rela-
equation is invariant under time reversal, the time-reversetion w? = w3, +3k?v$ = w3,. We can also treat the case of
process must be occurring simultaneously. In the reversedronger damping, Withwlge ~3k2v%, if we assume that the
process, the volume elemai" enters the localization vol- steady state of the field is maintained by an external source
ume and emerges d¥, each particle in the voluntesingthe  such as the stimulated Raman scattering instability.
energy incremerE in timeAt. The net rate at which energy
is transferred to the particles associated withs then To first order in the field amplitud€, the velocity incre-
ment obtained by an electron of initial velooitgrossing the
slab is simply

Q= —%sin(kx) cos(wt)

E(x,t) = Ccos(kx) cos(wt).

AP = <%[fo(E)dV - fO(E+AE)dV*]>

TeC
, Av = —[— cos(kvt) cos(awt + @)dt,
((2E)?) afy om
At OE

o- dv, 1)

where we have used the unperturbed orbivt. Heregis the
where the angle brackets indicate averaging over the fielghase of the field at the time of entrance of the particle, and
phase. Integration of this quantity over the phase space withih = L/v. To this order, the energy chand& is given by
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AE =mvAv. It is a simple matter to carry out the integral and Itis easy to show that this reduces to the Landau value in the
then average/E)? over the phase. Note thatT = kL = 275 infinite slab-length limit. Without loss of generality, we may

and hence expkvT) = 1. The result is take w andk positive. If v # w/k, the integrand is finite and
thus gives no contribution tpasL — o (keepingk fixed,
<(AE) > (evC) [wT[D 1 1 [7r which means increasing in wavelength steps, grin inte-
2 "oy 2 (Ho+kv a) w-kvB’ gral steps). Fov - w/k, the integrand varies directly &s
and becomes infinite. Clearly, the integrand is proportional to
and Eq. (1) becomes 6(v—w/k) in this limit. Replacing nonresonant values tfy

wkand defining the integration varialses 7i(L/A)(co/kv - 1),
whereA = 277k is the wavelength, yields

(evC)? 2T D

21 020 P
__,2 0w dfy
= S« . ) P V=m0 oy

otk w-kB™

AP =-

1w smzqd
[ 20.) -mL/A q

The net power transferred is obtained by integrating thign the limit of an infinite homogeneous plasinfd - o, we
expression over the phase space within the slab volume, notingtain
that T = L/|v|. The result is

. y = - Tk do ©)
P pC 220t O K2 v e
161 %H K
a1 .1 o vV dfo (2)  Which is the familiar Landau damping rate for electrostatic
§u+ kv w-kvB waves in a homogeneous plasma.

where we have divided by 2 to compensate for the double- Colungaet alll have also obtained an expression for
counting of phase space, as noted earlier. Note also th@ansit-time damping in a slab and noted that it can be repre-
although the familiar resonant denominators appear in thgented as the Landau damping of the Fourier components of the
integrand, they do not represent poles because of the sitexalized electric field, which also gives (5) as the size of the
function, so the difficulties in dealing with poles in the velo- slab increases. Their derivation, however, requires calculation
city integration that arise in Landau’s calculation do notofthe wave-particle energy transfer to second order (i.e., use of
appear here. perturbed orbits.)

The energy damping rate follows by dividing this result by ~We next investigate the damping rate’s dependence on the
the total plasma-wave energy within the slab volume. Thislab size and plasma parameters. Assuming a Maxwellian

energy is distribution forfa(E) and changing the integration variable to
z=w/kv, Eq. (4) becomes
E2(xt)\ ., _C2L
vl O g s{pdesl i)
(2m)¥? Lew 0 (1— 22)223 .

where the angle brackets denote averaging over time; hence,

the fieldamplitudedamping rate isalf of (2) divided by (3): Here, F = w/kvy, with vy the electron thermal velocity.
For values ofF well above unity, we haves = e and

F = (kAp)~L. The integral above is readily evaluated, for fixed

y=-w5ej9n2%g F, and its variation withj is shown in Figs. 75.37(a) and
0 75.37(b) forF = 6 andF = 4, respectively. What is actually
L o1 1 o v2 dfo( )dv @) plotted is the ratio ofto jj , wherey is the infinite slab limit
otk wo-B L v O (L/A - ) of Eq. (6),

202 LLE Review, Volume 75



LANDAU DAMPING AND TRANSIFTIME DAMPING OF LocALIZED PLAsMAWAVESIN GENERAL GEOMETRIES

4000~ b7 ————7——— 1.0 A S XL
—~ . @F=67 |. (b)F=4 et (c)F=2
£ 3000F 147 708 . i
> C 7| B 1
\g)/ 1 3r - 0.6 B
£ 2000f . . : ]
g - . 1 2f - 104t -
8 1000:_ c. _: 1k "o...o..ooocoo _02-_ _

0:....|......'|'.°'.‘.°.'|-.o.on.: 0 U A S E—a— o 1o L 1 L 1 L I
0 100 200 300 400 O 100 200 0 20 40 60
L/A L/A L/A
P1854
Figure 75.37

Damping rates for a standing plasma wave in a slab of léngtbrmalized to the Landau damping rate for an infinite homogeneous pjasimaa)—(c)
results are presented for three values of the paranfetew/kv, , with smaller values df corresponding to stronger Landau damping.

B D7TDV2 stge F20 modes with no angular_ dependencg (angular mo_de numbers
YL = g0 w eXPB > H (7) 1 =m=0); more complicated potentials and density profiles

will give rise to more complicated forms of the functiGn
defined in Eq. (10) below, but can be handled by the same

the usual Landau damping value. The Landau result arisdmsic approach.

from the resonant part of the integral; the nonresonant part

gives rise to the finite geometry transit-time component of The potential inside the sphere is taken to be

the damping.

@(r,t) = Ajg(kr) cos(wt+ a), (8)

Note the monotonic decrease in damping to the usual
Landau value a4/A increases. The value of the ratio atcorresponding to a standing spherical wave, where
L/A = 1increases dincreases and can be quite large; hencejg(x) = sinx/x denotes the spherical Bessel function of order
the transit-time damping can be much larger than the Landaero, andx is an arbitrary constant representing the phase of
rate for finite slabs. Note, however, thaidecreases exponen- the wave, to be averaged over below. The boundary condition
tially with increasingr. isjg(kR) =0, sckmay be any of a discrete set of wave numbers

determined by the roots of the Bessel function.

The nonresonant contribution does not always lead to aug-
mentation of the Landau damping rate. Rslecreases, the Lett=0 be the time when a particle is closest to the center
variation withL/A reverses and the dampimgreasesnono-  of the sphere. We obtain its change in energy by integrating
tonically to the Landau value, as shown in Fig. 75.37(c) foover the unperturbed orbit:
F = 2. The general trend seems to be that the finite geometry
increases the damping when the infinite geometry (Landau)
limit of the damping is small (larg€) and reduces damping
when the infinite geometry limit is large. An analogous trend
appears in the spherical and cylindrical cases, as discusseére 2ty =+ R? —bz/v is the time required to cross the
below, and a qualitative interpretation is presented in thephere, wherkis the distance of closest approach to the center
Conclusionssection. of the sphere. The total derivative of the potential is

AE = -¢[° vDg(r t)ct.
0

Transit-Time Damping in Spherical Geometry d 3
As an example of a finite three-dimensional calculation, we a(p[r(t),t] =V DD(p[r(t),t] + qu[r(t),t] ,
now examine the damping of electrostatic modes trapped in a
sphere of radiuR with a homogeneous internal densigy To
illustrate the method as simply as possible, we consider onlyo the above integral can be written
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AE = —ef " t° Dd r(t),t]—icl’[r(t),t]%dt- P= 4””0{.[0 drr 3 dw? [ dero "dg,
[ﬂt ot 0
2
The potential seen by the particle is the same before and after < g_} <AE >% . (12)
passing through the sphere, so 02 At oE

6,=¢, =0

_[ " d o[r(t).t]dt=0 For 6, = ¢ = 0 we can use the relatidyr =siné, to convert
t the integral oveB, to an integral ovel:

and [7'de, siné, - 2[7"%d8, sing, - ZIOdbL. (13)

\r2 -p?

From Egs. (9) and (10) we see thAE2) is independent af
for fixed b, 50 using Eq. (13) andt = 2V R2 -b2 /v, we can
Substituting the form of the potential, changing the integratioperform ther andg, integrals in Eq. (12):

variable tos = kvt, and averaging over the phasgives

AE = eI [ ).t]dt.

2mw?e? An
2.2 A2 — o
<AE > 2k2y2 G %Rkb kT ©) K 0 (E)D
o0 R w(d
x [ dvw =2 =L “dbbG2 kR kb, ——. (14
where fo v T S0 Ho abG? KR kb (14)
) s The amplitude-damping rate is now given oyt = P/2wW,
G a(R, kb, — J’k: RR2 bbz whereW is the wave energy contained in the sphere:
"

x jo(xf k2b? + 2 ) cosé%gds (10)

)
W=]y{—) dVv.
v 4 t
a function that must be evaluated numerically.

From Eg. (8) we have

Next we mustintegrate Eq. (1), the power loss in an element

of phase-space volume, over the six-dimensional phase space (E2), = lkZAz"z(kr)
inside the sphere. The total power being transferred to particles tTy lo '
in the sphere is then
so

= [7'd6, sin, [2" dgy

E2 R
w={, 1max av== k2A2J'Or21 2(kr)dr = 4RA2 (15)

d

xé:drrzjgdwzjgda\,_[g”d E—%< ~ > jé% (11)
As R - oo with k fixed, the electrostatic wave will locally

where the factor 1/2 in the integrand compensates for theome to look like a plane wave with wave numibérrough-
double-counting of phase space, as noted earlierimahsit- out most of the volume of the sphere, so we might expect that
Time Damping section. Because of the spherical symmetryjn this limit Eq. (14) should give the usual Landau damping
the term in braces must be independenf,ciind ¢, so for  rate for such a wave. In Appendix A we show that this is indeed
convenience we can evaluate ifat ¢ = 0 and obtain the case.
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As in the slab geometry, we can characterize the wavedial. The cylindrical case is analyzed in detail in a forthcom-
parameters by the quantify= w/kv and calculate the damp- ing articlel? where the results are applied to the problem of
ing rates obtained from Eqgs. (14) and (15) as the radius of tltimulated Raman scattering in a self-focused light filament in
sphere changes. Figures 75.38(a)—75.38(c) show the results éolaser-produced plasma. Here we merely note that the damp-
F=6, 4,and 2, respectively. As in the slab case, we find that theg rate can be shown both analytically and numerically to
results lie above the Landau limit when the damping is weak (approach the Landau value as the radius becomes large, and we

large), and below when the damping is strdagrfall). show some results for the case of a purely radial wave vector
for the same values df = w/kvy as in the slab and spherical
Cylindrical Geometry cases [Figs. 75.39(a)-75.39(c)]. Once again, we find that the

The case of cylindrical geometry is somewhat more complifinite radius results lie below the Landau valueF@mall and
cated than the slab and spherical geometries because thereatveve forF large.
two independent components of the wave vector: axial and
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Figure 75.39
Figure 75.38 Same as Fig. 75.37, but for a cylinder of radRublere F = w/kv, , wherek
Same as Fig. 75.37, but for a sphere of raRius is the radial wave number of the oscillation and the axial wave number is zero.

LLE Review, Volume 75 205



LANDAU DAMPING AND TRANSIFTIME DAMPING OF LocALIzED PLAsMAWAVESIN GENERAL GEOMETRIES

Conclusions time damping of the finite system is larger than the Landau
In summary, we have demonstrated a new, simplified apdamping of the corresponding infinite system. This picture is
proach to calculating transit-time damping. Our approach usés qualitative agreement with the results we have obtained
the time-reversal invariance of the Vlasov equation to avoid thabove for the slab, cylinder, and spherical geometries.
necessity of calculating the wave—particle energy exchange to
second order in the wave fields. We have illustrated the method It should be noted that the essential advantage of the time-
by analyzing the damping of electrostatic oscillations in slabreversal invariance approach—the need to calculate the wave—
cylindrical, and spherical geometries, both analytically angarticle energy transf&k to only first order—is not dependent
numerically. In general, our results seem to show that finiten the particular geometry of the system under consideration.
geometry effects tend to augment Landau damping when Ror purposes of illustration, we have chosen simple geom-
would be small in an unbounded geometry, and reduce it wheatries; in more complex geometries and inhomogeneous plas-
it would be large. mas the phase-space integrals such as Eq. (13) will have to be
carried out numerically, but the simplification in the calcula-
These results suggest a qualitative physical interpretaticion of AE will then be even more valuable. In Appendix B we
based on regarding the particles interacting with the electreghow that the time-reversal invariance approach can be applied
static wave as falling into two classes: resonant and nonresonaint.quite general geometries, and verify that it gives results
Resonant particles are those whose (unperturbed) motion keagentical to the perturbed orbit approach.
them in a constant phase relationship with the wave; depending
on this phase they continuously either gain or lose energy frodCKNOWLEDGMENT
their interaction with the wave. As is well known, these are the This work was supported by the U.S. Department of Energy Office of
particles responsible for Landau damping in infinite homogel_nertial Confinement- Fus-ion under Cooperative Agreement No. DE-FCO03-
neous plasmas. Nonresonant particles, on the other hand, se8g -0+60 the University of Rochester, and the New York State Energy
. . Research and Development Authority. The support of DOE does not consti-
varying wave phase as they propagate, and alternately gain %UFS an endorsement by DOE of the views expressed in this article.
lose energy as this phase changes. In the case of an infinite
geometry, these gains and losses cancel out over the infinigpendix A: Large-Radius Limit of Collisionless
“transittime,” and the nonresonant particles make no contribusyamping in Spherical Geometry
tion to Landau damping. In the case of a finite system, the
“resonant” particles can be regarded as those that do not getTo evaluate the damping rate for large radii, we first inves-
significantly out of phase with the wave while passing througliigate the nature of the function
the system; since their transit time decreases as the system
becomes smaller, the number of particles that can be regarded
asresonantincreases as the confinement volume shrinks. It can
be showrf however, that the contribution of these nearly
resonant particles to the damping goes as the fourth power wbm which Egs. (14) and (15) contain fRdependence of the
the time, so that the net contribution to the damping of the neadlamping rate (here = w/kv and the factok is included for
resonant particles diminishes as the confinement volume amdnvenience to make the function dimensionless). From
the transit time become smaller. On the other hand, for a finitéq. (10) we have, usinjg(x) = sin(x)/x and definingt = s/kR
volume the energy gains and losses of the nonresonant pand x = b/R,
ticles no longer average to zero, and as the volume becomes
smaller, the contribution of these nonresonant particles to th&(kR,x 7) = ZJ,Ji—XZ sinkRyt2 + x2
damping becomes larger. Thus, the damping in a finite system ' 0
contains a smaller resonant componentand a larger nonresonant
component than in the corresponding infinite system. Wher: Im -
the Landau damping is large in the infinite systénsrhall), 0 Vt2 + x2
the decrease inthe reso.nant damping dominatgs the incre.ag,e in DikR(yW—zt) ikR(\;mm)
the nonresonant damping, so that the damping in the finite (e +e
system decreases from the Landau rate as the system size
pllmmlshe_s. When Landta(;J dar_nplr:jg is sr?ﬂllérgdeih thte o Imgd_xz ;[eika-(t) +eika+(t)]th A2)
increase in nonresonant damping dominates, and the transit- 0 W g

S(KR 2) = % [ dbbG2(KR kb,2), (AL)

cos(zkRt)dt

\fftz + x2

\‘:].—X2 1

e
88
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where Using t = s/kR and x = b/R, this can be written
(,U+(t) = \/tz + X2 +zt. G(kR kb Z) ~ ZIKRM COS(ZS) ds
N ’ 0 /k2p2 +g2
We next use the method of stationary phase to determine the
dominant behavior o6(kRx,z) askR - . Using the Rie- _o® sinvk2b? +s2 (29d
mann-Lebesgue lemma, it is readily shown that the integral in 0 Jk2p2 + <2 cos{z)ds
Eq. (A2) vanishes a¥/kR askR - o unless the functions
Al 15 s t _ ( ﬁz) obef .,
) == = = mJglkbVl-2z2| for =—= +z°<1.
Wi(t) dt[\/t +Xx%tzt NEIe™ +7 o[ Kb ‘RO
vanish at some point in theéntegration interva[O, V1- xz], Substituting in Eqg. (A4), we obtain
in which case the integral will vanish more slowly thadRHS
kR - . Clearly ¢/, (t) cannot vanish in this interval, so the 1 kRy1-22 >
dominant behavior o& is given by S(kR 2) ~ Rlo d(kb) (kb) G*(kR kb, 2)
/1-x2 1 kR = ;
G(KR x,2) ~ Im{ " ———— &kR¥-(git T kR\1-22
%0 2+x2 : ~ &l d(kb)(kb)Jg(kb\/l— 22)
for x2+z2<1. (A3)  forz<1.Using

The inequality in Eqg. (A3).is the necessary and sufficient
condition thay” (t) vanishin|0, \rxzj .Whenthisinequal-

ity is not satisfiedG vanishes more rapidly &R — o and
hence may be neglected; thus, the dominant behavior tiis becomes
Eq. (Al) akR - o is given by

[ J3(ax)dx= X—:[Jg(ax) + le(ax)] ,

m?kR
f1- AR 2
SKR 2) ~ kR, 7 dxxG2(kR x,2). (A4) S(kR2)~-— 1-2)
The dominant contribution_to the integral in Eq. (A3) comes {Jg[kR(l— 22)] + le[kR(l— zz)]}
from the point in[rZ),\ll—x2 where /. (t) vanishes, so we

may extend the upper limit of the range of integration without

changing the leading behavior Gf ~mas kR - wforz<l,

kR[N 12 +x2 - where we have used the formula
GIR x,2) ~Im{-———¢ qieeex Zt)dt%
\ﬁt2+X2 E 2

lim x[JZ(x)+J2(x)| = =.

lim x[33(x) + ()] =~

for x2+z2<1,
Forz> 1, since the conditiox? + Z2 < 1 cannot be satisfied,

1sin(kR\/t2 + X2) S(kR,2) must vanish akR - . Defining
~2f[j— cos(zkRt) dt
V2 + x2 T ’ " gm,z<1
2)= lim 7) = :
(2) Jim kR 2) Uo.251
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we see thal(2) is a step function im. y _ 2m?€e’ny dg(u)
lim £=-=-20
. . KR_ o0 kem du |,.@
Thus, using Egs. (14) and (15), the damping rate for large k
kR becomes _ g dg(u)
2k?  du [_@’
lim L= lim —— “

kRoo W kR-o 20W

_ 47'[2(1)62 00 0 afo 0
= —k3 nOJ'O dvv E_O_EHT DED

_ 4mwe? w 0
= Tnonfw/k dVVE’ a—EE (A5)

Note from Egs. (12) thafy here is the normalized three-
dimensional distribution function, assumed isotropic:

anf'v2fo(v)dv =1.

Using

oty _ 1 oy
dE mv av’

the integral in Eq. (A5) is readily evaluated to give

lim Y = 2TW nofog%g. (A6)

which is just the Landau damping rate for plane waves of
frequencyw and wave numbék This is to be expected since,

as the radius of the sphere increases, an increasingly large
fraction of the volume of the sphere contains waves that are
locally planar, so that particles gain energy from them at the
same rate as from a plane wave.

Appendix B: Equivalence of Perturbed Orbit and
Time-Reversal Invariance Approaches to
Transit-Time Damping

Transit-time damping of a confined electrostatic wave in a
plasma arises from the transfer of energy from the wave to
particles passing through the confinement region. In many
cases of interest it may be assumed for purposes of calculating
the damping that the wave properties (amplitude, frequency,
etc.) are stationary in time. This means that background plasma
properties such as the size and density of the confinement
region are either constant or their variation is small during the
wave period and the particle transit time. It also means that the
wave energy lost to the damping is either replaced by another
process, such as stimulated scattering, or again is small during
the wave period and particle transit time.

Previous calculations of transit-time damping have taken a
straightforward approach: the energy gained or lost by a
particle transiting the confinement region is calculated, aver-

This result can be expressed in a more familiar form in termaged over the phase of the wave, and integrated over the flux of

of the one-dimensional velocity distributigndefined by

g(u) =2, dvvfo(\s‘”‘u2 + VZ)

=271 dwvfo(v). (A7)

Differentiating this expression gives

1 dg

dg
—= = =2mufy(u), f =- .
du ™ O(U) o O(u) 27mu du

In terms of the one-dimensional distribution function,

Eq. (A6) becomes
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particles weighted by the velocity distribution function. This
approach can be represented in general by Fig. 75.40(a), and
the power transferred from the wave to particles can be written

P =[5 dvx vx[dsfo(E)(AE(E,0,5.9))

—IiodvxVXJ’dst(E)<AE(E,I,a(p)>(p. (B1)
Here the angle brackets denote averaging over the giase
the wave, ands represents the coordinates and velocities

perpendicular to the arbitrarily chosen x axis:

ds = dydzdv,dv, .
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(a) (b)

Ep+ L(r2, Vo) (T2 Vo @)

Eq(ry v) (ry, vy, @)

Ez(rz, V2) (r v (pz) _','
2 V2,

By + L(ry, vq) (1 v, @)

Eq(rq, v
3( 3 3) Figure 75.40

E4+ L(r4, V4) Schematic of transit-time damping calculation for a wave confined to an

arbitrarily shaped volume, as presented in Appendix B. The volume (shaded)

is enclosed within a slab. In (a) the enelglpst by the wave to particles

entering from the left and from the right is calculated separately to second

E3+ L(r3, V3) order and averaged over phase. In (b) each particle entering from the left is

E4(r4’ V4) matched with the time-reversed particle entering from the right and the net
energy change calculated to first order.

P1857

We include in our analysis all particles passing through a slab The energyAE gained or lost by a specific particle is first
extending fromx = 0 tox = | and containing the confinement order in the field amplitude, but the gains and losses cancel to
volumeV. (Of course, only those particles following trajecto- first order after phase averaging, so that the loss fundtiares

ries passing throug¥i actually contribute to the damping, but second order in the field. Evaluation of the loss functions thus
describing only these trajectories is difficult for a volume ofrequires that the energy changss also be calculated to
arbitrary shape. Including all trajectories passing through theecond order, which in turn means that the perturbed trajecto-
slab greatly simplifies the representation of the particle flux imies must be determined and integrated over. This can lead to
the general case and does not change the result since tmmplicated calculations in general. Details of the calculation
additional trajectories do not contribute to the damping.) Thef the loss functions and the resulting damping rates are given
functionsAE (E,0,s,¢) andAE (E,|,s,¢) give the energy change for some simple cases in Robinson.

for particles entering the slabyat 0 andx = I, respectively,

with energyE, phasep, and other parametessThe distribu- Our purpose here is to show that the integrations in Eq. (B1)
tion functionfy is assumed uniform and isotropic and dependsan be rearranged so thisE need only be calculated to first
only on the energ\e = m(vX +vy +vz)/2 order, which can be accomplished by integration over the

unperturbed orbits.
The next step is to calculate the phase-averaged energy
change: First we take the phase average outside the integrations and
write it explicitly as an integral oves

L(E.0,5) = (AE(E,0,5.9)),, for x=0, vy >0;
_ 1 on
L(E,|,s):<AE(E,|,S,(p)>¢for X =1, VX<0- P—2 IO dfpfo de xIdeO( )

_Zlnj.zﬂdqoj' av vxj’dsfo( ) _(E'Lg,_)' (B2)

E(E,0,59)
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where we have also denoted the integration parameters f8ince the process is assumed to be stationary, Eq. (B8) must be

particles entering the slab from the righkatl by an overbar

invariant under time reversal. The only effect of the time-

(this amounts only to a change of dummy variable at this poirreversal operator on Eq. (B8) is to change the sigp(sfrictly

and has no physical significance). We could, however, just agpeaking, it also changes the phase by a constant, but since we
well calculate the second integral in Eq. (B2) by integratingare integrating over a), this is irrelevant). The time-reversed
over the parameters with which these particles leave the slabfatm of Eq. (B8) is thus

x=0. Since we are dealing with a collisionless plasma, we can

invoke Liouville’s theorem to say that an element of phasey, _

space volume is invariant on passing through the slab:
dxdydzav,dvydv, = dxdydzdv, dv, dv, . (B3)

Using dg=wdt, dg=wdf, dx=v,dt, and dx=Vv,df,
wherewis the wave frequency, Eq. (B3) becomes

vy dydzdv, dv, dv,de = v, dy dz dv, dvy dv, do

or

vydv,dsdg = v,dV,dsdg . (B4)

Thus, the transformation from the integration parameters at
x =1 to those ak = 0 has unit Jacobian, and we can write

Eq. (B2) as
_ 1 on
P—an df, dvy vy [ ds fo(E) AE(E, 0,5, ¢)
1 on

- f dey> dv, vy [ds fo(E) AE(E.1,5.9), (BS)

where E is now a function of the = 0 parameters:

E=2m(vZ+v +v2)+AE(E0,59)

N

=E+AE(E,0509). (B6)
Also, from the definitions oAE and AE, we have

AE(El59)=E-E=-AE(E0s@). (B7)

Substituting Egs. (B6) and (B7) in Eq. (B5), we get

1 2
= — [ d@[5 dvy vy [ ds fo(E) AE(E, 0,5, ¢)

+2171]2"d(pj dvy vy [ds fo(E + AE) AE(E, 0,5, ¢). (B8)
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1 on
~52Jo dqoj dvy vy [ds fo(E) AE(E, 0,5 ¢)

1 2
anondq’fo dvy vy [ ds fo(E + AE) AE(E, 0,5,¢). (B9)

Adding Egs. (B8) and (B9) and dividing by 2 gives

1 o
= —Ignd(p_[_m dvy |vx|

[ds] fo(E) - fo(E + AE)| AE(E, 0,5,¢)

oo

. B10
¢ dE (B10)

3 onpsleeosd)

Note that although this expression is second order in the field,
as it should be, it achieves second order only through the
squaring ofAE, so thatAE itself need only be calculated to
first order.

Equation (B10) is a surface integral, i.e., the values, of
ands in the integral are evaluated on the O surface of the
slab. It is useful to rewrite Eq. (B10) in a form involving a
volume integral rather than a flux. The integration in Eq. (B10)
is shown schematically in Fig. 75.40(b). Since we are calculat-
ing AE to first order, we can represent the particle trajectories
by their unperturbed orbits. Consider the six-dimensional
“flux tube” traced out by a phase-space volume element
crossing the slab along an unperturbed orbit (which need not be
a straight line). The rate at which phase-space volume enters
the tube isv,ds, and since in a collisionless process phase-
space volume is conserved, the volume of the flux tube is given

by
AV =t4(E, s)v,ds, (B11)

wheretg(E,s) is the time taken for a particle following the orbit
to cross the slab. Since phase-space volume moves as an
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incompressible fluid, flux tubes cannot intersect, and a set ®EFERENCES

these flux tubes whose collective cross section comprises the
x =0 plane will exactly fill the phase-space volume within the

slab. Furthermore, the (unperturbed) fiuds through the 2.

tube is a constant, so we may deform the slab boundary as
shown by the dotted contour in Fig. 75.40(b) without affecting
the validity of Eq. (B11); the volume of the tube and the time

taken to pass along it are reduced in the same proportion. As*

long as the deformed boundary is outside the volwhie

which the potential is nonvanishinyi is also unaffected, so s,

we may deform the original slab boundary to conform to the
boundary ofV and use Eqg. (B11) to convert Eq. (B10) to an

integral over the phase space witkin 6.

__1 3 3
P= EId rJ’dv

=%J’d3rj'd3vAP, (B12)

whereAP is the expression for the energy loss for a volume of
phase space we wrote down immediately on the basis of time-

reversalinvariance in Eq. (1) at the beginning of this article. Wel1.

have derived Eq. (B12) from Eg. (B1) here to demonstrate the
equivalence of our approach to earlier formulations of transit-
time damping, which are also based on Eq. (B1).
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