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The collisionless damping of electrostatic plasma waves, first
predicted by Landau1 in 1946 and since rederived in many
ways and confirmed experimentally, has become perhaps the
most well known phenomenon in plasma physics. Landau
damping plays a significant practical role in many plasma
experiments and applications but has continued to be of great
interest to theorists as well. Much of this interest stems from
the counterintuitive nature of the result itself (that waves
carrying free energy dissipate with no increase in entropy)
coupled with the rather abstruse mathematical nature of
Landau’s original derivation. For these reasons there was even
some controversy over the reality of the phenomenon,2 until it
was actually observed in experiments.

The usual derivation of Landau damping3 begins by linear-
izing the Vlasov equation for an infinite homogeneous
collisionless plasma. The linearized Vlasov equation is Fourier
transformed in space and Laplace transformed in time, and the
resulting equations in transform space are then solved algebra-
ically to yield a relation between the perturbing field and the
perturbed distribution function. Alternatively, this relation
may be obtained by directly integrating the linearized Vlasov
equation in configuration space using the method of character-
istics,4 also known as “integration over unperturbed orbits,”
and then performing the Fourier and Laplace transforms.
Integration of this relation over particle velocities then leads to
the dielectric response function and a dispersion relation for
the plasma waves. Performing the integration over velocities
entails the avoidance of a pole on the real axis by deforming the
integration contour into the complex velocity plane. (Details
can be found in most introductory plasma physics texts.) While
this derivation is mathematically elegant, it is physically rather
obscure, especially in regard to the introduction of complex
velocities. For this reason, many “physical” derivations of
Landau damping have been published, employing only real
physical quantities throughout.5,6 In these derivations, the
energy transferred from the wave to each particle is calculated
directly and then integrated over the particle distribution func-
tion to give the damping. In these physical derivations, how-
ever, the perturbed particle orbit must be determined and the
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wave-particle energy transfer calculated to second order in the
field amplitudes. (The reasons for this will be discussed be-
low.) Calculation of the perturbed particle orbit in a time-
varying field is rather complicated, even for a plane wave,
involving as it does iterated time integrals of the equation of
motion. Such complications are contrary to the motivation for
a physical derivation of Landau damping, which is to provide
a simple, physically intuitive explanation of the phenomenon.
Furthermore, they ought to be unnecessary since the transform
derivation requires only unperturbed orbits and first-order
quantities. One of the results that will emerge below is a
physical derivation of Landau damping based solely on unper-
turbed orbits.

Strictly speaking, the term “Landau damping” applies only
to the damping of infinite plane waves in homogeneous plas-
mas. Localized electrostatic perturbations in inhomogeneous
plasmas, however, are also damped by collisionless processes.7

Particles transiting the region containing the wave exchange
energy with it; for a thermal distribution of particles, this
results in a net transfer of energy from the wave to the particles
and a consequent damping of the wave. This process is usually
referred to as “transit-time damping.”8,9 Since, in general, the
Fourier transform method used by Landau is difficult to apply
in inhomogeneous plasmas, transit-time damping calculations
employ the physical approach described above: the energy
transferred to each particle is calculated and then integrated
over the particle distribution function. Again, however, this
requires that the perturbed particle orbits be determined and the
energy transfer be calculated to second order in the fields; for
a localized field in an inhomogeneous plasma, this is much
more complicated than for a plane wave. Since Landau damp-
ing can be calculated based solely on the unperturbed orbits, it
is natural to inquire if transit-time damping could also be
calculated without invoking the perturbed orbits. One of the
main purposes of this article is to show how this can be done.

First, we give a physical derivation of transit-time damping
in a plasma slab of finite width based on unperturbed orbits and
investigate how the damping of a plasma wave confined to the
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slab varies with slab width and mode number. We also show
that the result reduces to the usual Landau-damping expression
as the width becomes large. Next, we present a similar analysis
for spherical geometry followed by a brief discussion of the
cylindrical case, which is covered in more detail in a future
article.10 Finally, in an appendix, we show formally that in
general geometries our approach gives results equivalent to
those obtained by other methods that require the use of per-
turbed orbits and higher-order terms.

Transit-Time Damping in Slab Geometry
Our approach to transit-time damping may be outlined as

follows: Consider a localized oscillating electrostatic field that
may be regarded as stationary in time, i.e., its oscillation
amplitude is unchanging. In practice, this may correspond to a
situation of weak damping, where the damping rate is much
smaller than the oscillation frequency (as is often the case for
Landau damping), or to a situation where wave energy lost to
damping is replenished by an external source, such as in the
case of stimulated Raman or Brillouin scattering, where the
electrostatic wave is driven by interaction with an electromag-
netic pump wave. We assume that the particle distribution
function f0 depends solely on the particle energy E, and we
further assume that collisional damping is negligible and take
the plasma to be collisionless, so that f0(E) satisfies the Vlasov
equation. Consider a six-dimensional phase-space volume
element dV, which passes through the localization volume in
time ∆t and emerges as the volume element dV* . Since the
Vlasov equation conserves phase-space volume, we have
dV dV* = , though the shape of the volume element may

change. Through interaction with the field, each particle in dV
acquires an energy increment ∆E, which may be positive or
negative. Since the situation is stationary and the Vlasov
equation is invariant under time reversal, the time-reversed
process must be occurring simultaneously. In the reversed
process, the volume element dV*  enters the localization vol-
ume and emerges as dV, each particle in the volume losing the
energy increment ∆E in time ∆t. The net rate at which energy
is transferred to the particles associated with dV is then
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where the angle brackets indicate averaging over the field
phase. Integration of this quantity over the phase space within

the localized volume then gives twice the collisionless power
transfer to the electrons since the phase space is effectively
included twice in the integration (both forward and backward
in time).

To illustrate, we now calculate the average energy gain rate
of electrons crossing a one-dimensional slab region containing
a standing-wave electrostatic field. We will obtain a simple
expression for the field damping rate as a function of the slab
length (for fixed oscillation frequency and wavelength).

Consider a standing-wave electrostatic potential, φ, of real
frequency ω:

φ ω= − ( ) ( )C

k
kx tsin cos

in the slab region with boundaries at x = 0 and x = L. Here C is
a constant inside the slab and vanishes outside, and kL = 2πj
with j a positive integer so that the potential is continuous. The
corresponding electrostatic field is

E x t C kx t, cos cos .( ) = ( ) ( )ω

We also assume that electrons with a constant number density
n0 and a velocity distribution f0(E) are streaming constantly
and freely through this region from the left at x = 0 and from the
right at x = L. The density and temperature are chosen such that
ωpe

2 2 23>> k Tv , where ωpe
2  is the usual plasma frequency and

vT  the thermal velocity, so that weak Landau damping and
quasi-steady-state conditions obtain. The frequency ω and
wave number k then satisfy the Bohm-Gross dispersion rela-
tion ω ω ω2 2 2 2 23= + ≈pe pek Tv . We can also treat the case of
stronger damping, with ωpe

2 2 23~ k Tv , if we assume that the
steady state of the field is maintained by an external source
such as the stimulated Raman scattering instability.

To first order in the field amplitude C, the velocity incre-
ment obtained by an electron of initial velocity v crossing the
slab is simply

  
∆v v= − ( ) +( )∫

eC

m
k t t dt

T

0

cos cos ,ω φ

where we have used the unperturbed orbit x = vt. Here φ is the
phase of the field at the time of entrance of the particle, and
T = L/v. To this order, the energy change ∆E is given by
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∆E = mv∆v. It is a simple matter to carry out the integral and
then average (∆E)2 over the phase. Note that kvT = kL = 2πj
and hence exp(±kvT) = 1. The result is

  
∆E

e C T

k k
( ) = ( ) 



 +

+
−







2
2

2
2

2 2

1 1v
v v

sin ,
ω

ω ω

and Eq. (1) becomes
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The net power transferred is obtained by integrating this
expression over the phase space within the slab volume, noting
that   T L= v . The result is
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where we have divided by 2 to compensate for the double-
counting of phase space, as noted earlier. Note also that
although the familiar resonant denominators appear in the
integrand, they do not represent poles because of the sine
function, so the difficulties in dealing with poles in the velo-
city integration that arise in Landau’s calculation do not
appear here.

The energy damping rate follows by dividing this result by
the total plasma-wave energy within the slab volume. This
energy is

W
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where the angle brackets denote averaging over time; hence,
the field amplitude damping rate is half of (2) divided by (3):
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It is easy to show that this reduces to the Landau value in the
infinite slab-length limit. Without loss of generality, we may
take ω and k positive. If   v ≠ ω k , the integrand is finite and
thus gives no contribution to γ as L → ∞ (keeping k fixed,
which means increasing L in wavelength steps, or j in inte-
gral steps). For   v → ω k , the integrand varies directly as L
and becomes infinite. Clearly, the integrand is proportional to

  δ ωv −( )k  in this limit. Replacing nonresonant values of v by
ω/k and defining the integration variable q L k≡ ( ) −( )π λ ω v 1 ,
where λ = 2π/k is the wavelength, yields
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In the limit of an infinite homogeneous plasma L/λ → ∞, we
obtain
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, (5)

which is the familiar Landau damping rate for electrostatic
waves in a homogeneous plasma.

Colunga et al.11 have also obtained an expression for
transit-time damping in a slab and noted that it can be repre-
sented as the Landau damping of the Fourier components of the
localized electric field, which also gives (5) as the size of the
slab increases. Their derivation, however, requires calculation
of the wave-particle energy transfer to second order (i.e., use of
perturbed orbits.)

We next investigate the damping rate’s dependence on the
slab size and plasma parameters. Assuming a Maxwellian
distribution for f0(E) and changing the integration variable to

  z k≡ ω v , Eq. (4) becomes
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Here, F k T= ω v , with vT the electron thermal velocity.
For values of F well above unity, we have ω ≈ ωpe and
F ≈ (kλD)−1. The integral above is readily evaluated, for fixed
F, and its variation with j is shown in Figs. 75.37(a) and
75.37(b) for F = 6 and F = 4, respectively. What is actually
plotted is the ratio of γ to γL, where γL is the infinite slab limit
(L/λ → ∞) of Eq. (6),
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the usual Landau damping value. The Landau result arises
from the resonant part of the integral; the nonresonant part
gives rise to the finite geometry transit-time component of
the damping.

Note the monotonic decrease in damping to the usual
Landau value as L/λ increases. The value of the ratio at
L/λ = 1 increases as F increases and can be quite large; hence,
the transit-time damping can be much larger than the Landau
rate for finite slabs. Note, however, that γL decreases exponen-
tially with increasing F.

The nonresonant contribution does not always lead to aug-
mentation of the Landau damping rate. As F decreases, the
variation with L/λ reverses and the damping increases mono-
tonically to the Landau value, as shown in Fig. 75.37(c) for
F = 2. The general trend seems to be that the finite geometry
increases the damping when the infinite geometry (Landau)
limit of the damping is small (large F) and reduces damping
when the infinite geometry limit is large. An analogous trend
appears in the spherical and cylindrical cases, as discussed
below, and a qualitative interpretation is presented in the
Conclusions section.

Transit-Time Damping in Spherical Geometry
As an example of a finite three-dimensional calculation, we

now examine the damping of electrostatic modes trapped in a
sphere of radius R with a homogeneous internal density n0. To
illustrate the method as simply as possible, we consider only

modes with no angular dependence (angular mode numbers
l = m = 0); more complicated potentials and density profiles
will give rise to more complicated forms of the function G,
defined in Eq. (10) below, but can be handled by the same
basic approach.

The potential inside the sphere is taken to be

φ ω αr t Aj kr t, cos ,( ) = ( ) +( )0 (8)

corresponding to a standing spherical wave, where
j x x x0 ( ) = sin  denotes the spherical Bessel function of order

zero, and α is an arbitrary constant representing the phase of
the wave, to be averaged over below. The boundary condition
is j0(kR) = 0, so k may be any of a discrete set of wave numbers
determined by the roots of the Bessel function.

Let t = 0 be the time when a particle is closest to the center
of the sphere. We obtain its change in energy by integrating
over the unperturbed orbit:

∆E e t dt
t

t
= − ∇ ( )⋅−∫ v rφ , .

0

0

Here   2 0
2 2t R b= − v  is the time required to cross the

sphere, where b is the distance of closest approach to the center
of the sphere. The total derivative of the potential is

d

dt
t t t t

t
t tφ φ φr v r r( )[ ] = ⋅ ∇ ( )[ ] + ∂

∂
( )[ ], , , ,

so the above integral can be written
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Figure 75.37
Damping rates for a standing plasma wave in a slab of length L, normalized to the Landau damping rate for an infinite homogeneous plasma γL. In (a)–(c)
results are presented for three values of the parameter   F k t= ω v , with smaller values of F corresponding to stronger Landau damping.
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passing through the sphere, so
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Substituting the form of the potential, changing the integration
variable to s = kvt, and averaging over the phase α gives
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a function that must be evaluated numerically.

Next we must integrate Eq. (1), the power loss in an element
of phase-space volume, over the six-dimensional phase space
inside the sphere. The total power being transferred to particles
in the sphere is then
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where the factor 1/2 in the integrand compensates for the
double-counting of phase space, as noted earlier in the Transit-
Time Damping section. Because of the spherical symmetry,
the term in braces must be independent of θr and φr, so for
convenience we can evaluate it at θr = φr = 0 and obtain

P n drr d d d

E

t

f

E

R

r r

= {

× −















∞

= =

∫∫ ∫∫4

1

2

0
2

00
2

0
2

0

2
0

0

π θ φ

∂
∂

ππ

θ φ

vv v v

∆
∆

. (12)

For θr = φr = 0 we can use the relation   b r = sinθv  to convert
the integral over θv to an integral over b:
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From Eqs. (9) and (10) we see that ∆E2  is independent of r
for fixed b, so using Eq. (13) and   ∆t R b= −2 2 2 v , we can
perform the r and φv integrals in Eq. (12):
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The amplitude-damping rate is now given by γ ω ω= P W2 ,
where W is the wave energy contained in the sphere:

W
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As R → ∞ with k fixed, the electrostatic wave will locally
come to look like a plane wave with wave number k through-
out most of the volume of the sphere, so we might expect that
in this limit Eq. (14) should give the usual Landau damping
rate for such a wave. In Appendix A we show that this is indeed
the case.
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As in the slab geometry, we can characterize the wave
parameters by the quantity F k T= ω v  and calculate the damp-
ing rates obtained from Eqs. (14) and (15) as the radius of the
sphere changes. Figures 75.38(a)–75.38(c) show the results for
F = 6, 4, and 2, respectively. As in the slab case, we find that the
results lie above the Landau limit when the damping is weak (F
large), and below when the damping is strong (F small).

Cylindrical Geometry
The case of cylindrical geometry is somewhat more compli-

cated than the slab and spherical geometries because there are
two independent components of the wave vector: axial and

radial. The cylindrical case is analyzed in detail in a forthcom-
ing article,10 where the results are applied to the problem of
stimulated Raman scattering in a self-focused light filament in
a laser-produced plasma. Here we merely note that the damp-
ing rate can be shown both analytically and numerically to
approach the Landau value as the radius becomes large, and we
show some results for the case of a purely radial wave vector
for the same values of F k T= ω v  as in the slab and spherical
cases [Figs. 75.39(a)–75.39(c)]. Once again, we find that the
finite radius results lie below the Landau value for F small and
above for F large.
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Figure 75.39
Same as Fig. 75.37, but for a cylinder of radius R. Here   F k t= ω v , where k
is the radial wave number of the oscillation and the axial wave number is zero.
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Same as Fig. 75.37, but for a sphere of radius R.



LANDAU DAMPING AND TRANSIT-TIME DAMPING OF LOCALIZED PLASMA WAVES IN GENERAL GEOMETRIES

206 LLE Review, Volume 75

Conclusions
In summary, we have demonstrated a new, simplified ap-

proach to calculating transit-time damping. Our approach uses
the time-reversal invariance of the Vlasov equation to avoid the
necessity of calculating the wave–particle energy exchange to
second order in the wave fields. We have illustrated the method
by analyzing the damping of electrostatic oscillations in slab,
cylindrical, and spherical geometries, both analytically and
numerically. In general, our results seem to show that finite
geometry effects tend to augment Landau damping when it
would be small in an unbounded geometry, and reduce it when
it would be large.

These results suggest a qualitative physical interpretation
based on regarding the particles interacting with the electro-
static wave as falling into two classes: resonant and nonresonant.
Resonant particles are those whose (unperturbed) motion keeps
them in a constant phase relationship with the wave; depending
on this phase they continuously either gain or lose energy from
their interaction with the wave. As is well known, these are the
particles responsible for Landau damping in infinite homoge-
neous plasmas. Nonresonant particles, on the other hand, see a
varying wave phase as they propagate, and alternately gain and
lose energy as this phase changes. In the case of an infinite
geometry, these gains and losses cancel out over the infinite
“transit time,” and the nonresonant particles make no contribu-
tion to Landau damping. In the case of a finite system, the
“resonant” particles can be regarded as those that do not get
significantly out of phase with the wave while passing through
the system; since their transit time decreases as the system
becomes smaller, the number of particles that can be regarded
as resonant increases as the confinement volume shrinks. It can
be shown,6 however, that the contribution of these nearly
resonant particles to the damping goes as the fourth power of
the time, so that the net contribution to the damping of the near-
resonant particles diminishes as the confinement volume and
the transit time become smaller. On the other hand, for a finite
volume the energy gains and losses of the nonresonant par-
ticles no longer average to zero, and as the volume becomes
smaller, the contribution of these nonresonant particles to the
damping becomes larger. Thus, the damping in a finite system
contains a smaller resonant component and a larger nonresonant
component than in the corresponding infinite system. When
the Landau damping is large in the infinite system (F small),
the decrease in the resonant damping dominates the increase in
the nonresonant damping, so that the damping in the finite
system decreases from the Landau rate as the system size
diminishes. When Landau damping is small (F large), the
increase in nonresonant damping dominates, and the transit-

time damping of the finite system is larger than the Landau
damping of the corresponding infinite system. This picture is
in qualitative agreement with the results we have obtained
above for the slab, cylinder, and spherical geometries.

It should be noted that the essential advantage of the time-
reversal invariance approach—the need to calculate the wave–
particle energy transfer ∆E to only first order—is not dependent
on the particular geometry of the system under consideration.
For purposes of illustration, we have chosen simple geom-
etries; in more complex geometries and inhomogeneous plas-
mas the phase-space integrals such as Eq. (13) will have to be
carried out numerically, but the simplification in the calcula-
tion of ∆E will then be even more valuable. In Appendix B we
show that the time-reversal invariance approach can be applied
in quite general geometries, and verify that it gives results
identical to the perturbed orbit approach.
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Appendix A: Large-Radius Limit of Collisionless
Damping in Spherical Geometry

To evaluate the damping rate for large radii, we first inves-
tigate the nature of the function

S kR z
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( , ) , , ,≡ ( )∫ 2

0
(A1)

from which Eqs. (14) and (15) contain the R dependence of the
damping rate (here   z k≡ ω v  and the factor k is included for
convenience to make the function dimensionless). From
Eq. (10) we have, using j x x x0 ( ) ≡ ( )sin  and defining t s kR=
and x b R= ,
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where

ψ ± ( ) ≡ + ±t t x z t2 2 .

We next use the method of stationary phase to determine the
dominant behavior of G(kR,x,z) as kR → ∞. Using the Rie-
mann–Lebesgue lemma, it is readily shown that the integral in
Eq. (A2) vanishes as 1 kR  as kR → ∞ unless the functions

′ ( ) = + ±[ ] =
+

±±ψ t
d

dt
t x zt

t

t x
z2 2

2 2

vanish at some point in the t integration interval 0 1 2, −[ ]x ,
in which case the integral will vanish more slowly than 1/kR as
kR → ∞. Clearly ′ ( )+ψ t  cannot vanish in this interval, so the
dominant behavior of G is given by
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The inequality in Eq. (A3) is the necessary and sufficient
condition that ′ ( )−ψ t  vanish in 0 1 2, −[ ]x . When this inequal-
ity is not satisfied, G vanishes more rapidly as kR → ∞ and
hence may be neglected; thus, the dominant behavior of
Eq. (A1) as kR → ∞ is given by
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The dominant contribution to the integral in Eq. (A3) comes
from the point in 0 1 2, −[ ]x  where ′ ( )−ψ t  vanishes, so we
may extend the upper limit of the range of integration without
changing the leading behavior of G:
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Substituting in Eq. (A4), we obtain
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we see that T(z) is a step function in z.

Thus, using Eqs. (14) and (15), the damping rate for large
kR becomes

lim lim
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Note from Eqs. (12) that f0 here is the normalized three-
dimensional distribution function, assumed isotropic:
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the integral in Eq. (A5) is readily evaluated to give
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This result can be expressed in a more familiar form in terms
of the one-dimensional velocity distribution g, defined by
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Differentiating this expression gives
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In terms of the one-dimensional distribution function,
Eq. (A6) becomes
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which is just the Landau damping rate for plane waves of
frequency ω and wave number k. This is to be expected since,
as the radius of the sphere increases, an increasingly large
fraction of the volume of the sphere contains waves that are
locally planar, so that particles gain energy from them at the
same rate as from a plane wave.

Appendix B:  Equivalence of Perturbed Orbit and
Time-Reversal Invariance Approaches to
Transit-Time Damping

Transit-time damping of a confined electrostatic wave in a
plasma arises from the transfer of energy from the wave to
particles passing through the confinement region. In many
cases of interest it may be assumed for purposes of calculating
the damping that the wave properties (amplitude, frequency,
etc.) are stationary in time. This means that background plasma
properties such as the size and density of the confinement
region are either constant or their variation is small during the
wave period and the particle transit time. It also means that the
wave energy lost to the damping is either replaced by another
process, such as stimulated scattering, or again is small during
the wave period and particle transit time.

Previous calculations of transit-time damping have taken a
straightforward approach: the energy gained or lost by a
particle transiting the confinement region is calculated, aver-
aged over the phase of the wave, and integrated over the flux of
particles weighted by the velocity distribution function. This
approach can be represented in general by Fig. 75.40(a), and
the power transferred from the wave to particles can be written
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Here the angle brackets denote averaging over the phase φ of
the wave, and s represents the coordinates and velocities
perpendicular to the arbitrarily chosen x axis:

  
d dydzd dy zs = v v .
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Figure 75.40
Schematic of transit-time damping calculation for a wave confined to an
arbitrarily shaped volume, as presented in Appendix B. The volume (shaded)
is enclosed within a slab. In (a) the energy L lost by the wave to particles
entering from the left and from the right is calculated separately to second
order and averaged over phase. In (b) each particle entering from the left is
matched with the time-reversed particle entering from the right and the net
energy change calculated to first order.

We include in our analysis all particles passing through a slab
extending from x = 0 to x = l and containing the confinement
volume V. (Of course, only those particles following trajecto-
ries passing through V actually contribute to the damping, but
describing only these trajectories is difficult for a volume of
arbitrary shape. Including all trajectories passing through the
slab greatly simplifies the representation of the particle flux in
the general case and does not change the result since the
additional trajectories do not contribute to the damping.) The
functions ∆E (E,0,s,φ) and ∆E (E,l,s,φ) give the energy change
for particles entering the slab at x = 0 and x = l, respectively,
with energy E, phase φ, and other parameters s. The distribu-
tion function f0 is assumed uniform and isotropic and depends
only on the energy 

  
E m x y z= + +( )v v v2 2 2 2 .

The next step is to calculate the phase-averaged energy
change:
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The energy ∆E gained or lost by a specific particle is first
order in the field amplitude, but the gains and losses cancel to
first order after phase averaging, so that the loss functions L are
second order in the field. Evaluation of the loss functions thus
requires that the energy changes ∆E also be calculated to
second order, which in turn means that the perturbed trajecto-
ries must be determined and integrated over. This can lead to
complicated calculations in general. Details of the calculation
of the loss functions and the resulting damping rates are given
for some simple cases in Robinson.9

Our purpose here is to show that the integrations in Eq. (B1)
can be rearranged so that ∆E need only be calculated to first
order, which can be accomplished by integration over the
unperturbed orbits.

First we take the phase average outside the integrations and
write it explicitly as an integral over φ:
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where we have also denoted the integration parameters for
particles entering the slab from the right at x = l by an overbar
(this amounts only to a change of dummy variable at this point
and has no physical significance). We could, however, just as
well calculate the second integral in Eq. (B2) by integrating
over the parameters with which these particles leave the slab at
x = 0. Since we are dealing with a collisionless plasma, we can
invoke Liouville’s theorem to say that an element of phase-
space volume is invariant on passing through the slab:

  
dxdydzd d d dx dydz d d dx y z x y zv v v v v v= . (B3)

Using d d tφ ω= , d d tφ ω= ,   dx dtx= v , and dx dtx= v ,
where ω is the wave frequency, Eq. (B3) becomes

  
v v v v v v v vx x y z x x y zdydzd d d d dy dz d d d dφ φ=

or

  v v v vx x x xd d d d d ds sφ φ= . (B4)

Thus, the transformation from the integration parameters at
x = l to those at x = 0 has unit Jacobian, and we can write
Eq. (B2) as
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where E  is now a function of the x = 0 parameters:
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Also, from the definitions of ∆E and ∆E , we have

∆ ∆E E l E E E E, , , , , , .s sφ φ( ) = − = − ( )0 (B7)

Substituting Eqs. (B6) and (B7) in Eq. (B5), we get
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Since the process is assumed to be stationary, Eq. (B8) must be
invariant under time reversal. The only effect of the time-
reversal operator on Eq. (B8) is to change the sign of vx (strictly
speaking, it also changes the phase by a constant, but since we
are integrating over all φ, this is irrelevant). The time-reversed
form of Eq. (B8) is thus
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Adding Eqs. (B8) and (B9) and dividing by 2 gives
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Note that although this expression is second order in the field,
as it should be, it achieves second order only through the
squaring of ∆E, so that ∆E itself need only be calculated to
first order.

Equation (B10) is a surface integral, i.e., the values of vx
and s in the integral are evaluated on the x = 0 surface of the
slab. It is useful to rewrite Eq. (B10) in a form involving a
volume integral rather than a flux. The integration in Eq. (B10)
is shown schematically in Fig. 75.40(b). Since we are calculat-
ing ∆E to first order, we can represent the particle trajectories
by their unperturbed orbits. Consider the six-dimensional
“flux tube” traced out by a phase-space volume element
crossing the slab along an unperturbed orbit (which need not be
a straight line). The rate at which phase-space volume enters
the tube is vxds, and since in a collisionless process phase-
space volume is conserved, the volume of the flux tube is given
by

  ∆V t E dx= ( )0 , ,s sv (B11)

where t0(E,s) is the time taken for a particle following the orbit
to cross the slab. Since phase-space volume moves as an
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incompressible fluid, flux tubes cannot intersect, and a set of
these flux tubes whose collective cross section comprises the
x = 0 plane will exactly fill the phase-space volume within the
slab. Furthermore, the (unperturbed) flux vxds through the
tube is a constant, so we may deform the slab boundary as
shown by the dotted contour in Fig. 75.40(b) without affecting
the validity of Eq. (B11); the volume of the tube and the time
taken to pass along it are reduced in the same proportion. As
long as the deformed boundary is outside the volume V in
which the potential is nonvanishing, ∆E is also unaffected, so
we may deform the original slab boundary to conform to the
boundary of V and use Eq. (B11) to convert Eq. (B10) to an
integral over the phase space within V:
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where ∆P is the expression for the energy loss for a volume of
phase space we wrote down immediately on the basis of time-
reversal invariance in Eq. (1) at the beginning of this article. We
have derived Eq. (B12) from Eq. (B1) here to demonstrate the
equivalence of our approach to earlier formulations of transit-
time damping, which are also based on Eq. (B1).
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