Accurate Formulas for the Landau Damping Rates
of Electrostatic Waves

Laser—plasma instabilitiéare important in the field of inertial g(a)’ k) =1+ Xe(w’ k) + X (w, k), (4)
confinement fusiohbecause they scatter laser light away from

the target, which reduces the laser energy available to drive the

compression of the nuclear fuel, or generate energetic eleshere x, and; denote the electron and ion susceptibilities,
trons that preheat the fuel, which makes the fuel harder tespectively. For each species

compress. In stimulated Raman scattering an incident, or

pump, light wave (0) decays into a frequency-downshifted, or w2 0 o O
Stokes, light 1) and lectron-pl 2). 1 wk)=-—5 Z' 00—~ 5
okes, light wave (1) and an electron-plasma wave (2). In Xs(w,K) 2v§k2 E\EZVSKE (5)

stimulated Brillouin scattering a pump light wave decays into

a Stokes light wave and an ion-acoustic wave (2). The initial

evolution of both instabilities is governed by the linearizedvherewsis the plasma frequenay is the thermal speed, and

equation$ Zis the plasma dispersion functi®he electrostatic disper-
sion equation is simply

(0 +v19;) A = yohs, (1)
£(w,k) =0. (6)

(0 +v2) Ao = oA, (2)

The solution of this dispersion equation has two branches: the
high-frequency (electron-plasma) branch and the low-frequency
whereA, andv; are the amplitude and group speed of thgion-acoustic) branch, both of which are studied in this article.
Stokes wave, respectivelf, andv, are the amplitude and Inboth cases our approximate analytical solution of the disper-
damping rate of the plasma wave (electron-plasma or iorsion equation is compared to the numerical solution. Our
acoustic), respectively, and the coupling consggistpropor-  analytical solutions are more accurate than the standard ana-
tional to the amplitude of the pump wave. The convectivéytical solutions found in textboolés8
amplification of an existing Stokes wave and the generation of
a Stokes wave by plasma fluctuations are both characterized Byectron-Plasma Waves

the gain exponeft The electron Debye length = vo/we. For the case in
whichkA, << 1, Krall and Trivelpiecé Ichimaru/ and Chef
9=y3l s, (3) allassert that
212
| | = kA (7)
wherel is the plasma length. Because the aforementioned Wy = We 1+3( e) ] '

parametric instabilities are important only wiggr>1, a small

error in the damping rate of the plasma wave can produce a

large error in the predicted amplitude of the Stokes wave. For ) 0O 0
this reason, it is important to determine accurately the Landau w = - DEDU We exp 1 __ §|:| (8)
contribution to the damping rates of plasma waves. bgU (k/\e)3 H

The properties of electrostatic plasma waves are determined
by the dielectric function
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To gauge the accuracy of these formulas, we considered aIf one assumes thz*ﬂi|/§2r is less than any power &f
numerical example. Whe))2 = 0.1, formula (7) predicts required for an accurate solution of Eq. (11), tifgnis
that w, /we =1.140. The correct value of this frequency ratio, determined by the equation

obtained by solving Eqg. (4) numerically, with the ion term

omitted, is 1.179. Formula (8) predicts that/ w, = 0.02979, D (Qr) =0 (14)
whereas the correct value is 0.01845. Although the predicted

frequency is in error by only 3.3%, the predicted damping rate

is in error by 61%. Clearly there is room for improvement. andQ; is given by the formula

In the aforementioned parameter regime= w, and D
w/Vvek =1/(kAg) >>1. The electron-plasma dispersion func- Q=-— /IdQ : (15)
tion has the asymptotic expansion ' Q,

® By using Eg. (12) to evaluate the derivative in Eq. (13), one
Z(g) ~iom¥? exp(—cz) -5r(n +J/2)/[F(J/Z)C2”+1], (9)  finds that
n=0

2 2
- ogrf?c(e) O Q20
where Q= g0 K3 eXpB_ZKZH' (16)
0, g >]/|Cf|' where the coefficient function
o= if ¢ <Yg|, (10)
, if¢ <-— , [Joo 0
P 6 <Yl c()= Q‘/ 05 n(2n-1)K212/Q2025  (17)
(h=1 O
M (n+2)=(n-22)r (n-12) andr(y2) = V2. Itis con-
venient to introduce the dimensionless paraméterkl, and It is clear from Eqgs. (12) and (17) that the dispersion
Q = w/w,. Ifone neglects the iontermin Eq. (4), the electronequation (14) is an equation f@? that involves the small
plasma dispersion equation can be written as parameteK2, and formula (16) depends @¢. The efficient
way to proceed is to solve Eq. (14) and evaluate formula (16)
D, (Q)+iD;(Q) =0, (11) perturbatively, by expanding? andD, in powers oK2. We

chose to expan@, andD, in powers ofk? to facilitate the
analysis in théon-Acoustic Wavessection. Specifically, we

where made the third-order expansions
% Q=1+K2Q; +K*Q, +K®Qg, (18)
D (Q) =1~ F (2n-1)1K2""2/Q2n, (12)
n=1

(2n-1)1 = (20-1)(2n-3) .9 (1), and D(Q) = Do) + KZDy(0) + K*Dy(2) +K*D5().  (19)

2 2 where Dy(Q) = 1-1/Q2, D1(Q) = -3/Q%, D,(Q) = -15/Q5,
2 Q@ 0 Q20
Di (Q) = DED FeXpH'WH (13) and D3(Q) = —10508, and

D,(Q)=D,(1) + DH(1)(Q -1
Because the exponent in Eq. (13) is proportional/#?, ()= Da(l)+ Dr(1(@ -2)

D, /D;| and|Q;]/Q, are exponentially small wheé¢? << 1. +Dh(@-1?/2+Dy()(Q-1)°/6.  (20)

114 LLE Review, Volume 74



ACCURATEFORMULASFOR THE LANDAU DAMPING RATESOF ELECTROSTATIQNAVES

We substituted these expansions in Eq. (14) and collected C=1-6K%4. (29)
terms of like order.

The zeroth-order equation is satisfied identically. The firstit follows from Egs. (16), (28), and (29) that
order equation is

2
D4Q, + Dy =0, (21) Q :_ggg/ g%"GKB

from which it follows that
o1 3 .0 40
X exp K2 3 3K -12K . (30)

Q; =3/2. (22)
We refer to formulas (27) and (30) as the third-order formulas,
The second-order equation is even though the latter formulais only accurate to second order.
In a similar way, one could refer to the textbook formulas as the
DpQ, + D§QZ /2 + Dj0Q, + D, =0, (23) first-order formulas. Notice, however, that the textbook for-

mulaQ, = (1+ 3K)]/2 is less accurate than the true first-order
formula Q, =1+ 3K/2.
from which it follows that
The approximate analytical solutions of the electron-plasma
Q, =15/8. (24)  dispersion equation are compared to the numerical solution in
Fig. 74.51. The dashed lines represent the textbook solution,
the solid lines represent the third-order solution, and the dotted

The third-order equation is lines represent the numerical solution. R8r= 0.1 the third-
order formulas predict th&X, =1.178 and; =0.01840. These
DyQ + DY Q,Q; + DY Qf/6+ DIQ, values ofQQ, andQ; differ from the correct values by 0.085%
and 0.27%, respectively. For the displayed rang&<fthe
+D{'Qf 2+ DyQ; + D3 =0, (25)  maximal error associated with the third-order formul&Xgis
0.57% and the maximal error associated with the third-order
from which it follows that formula for Q; is 14%. The third-order formulas are more
accurate than the textbook formulas, even though the assump-
Q5 =147/16. (26)  tion onwhich they are based, th@t|/Q, << K®, is only valid

for K2< 0.04. Neither pair of formulas is accurate wK&ns
significantly larger than 0.1.
By combining Eqgs. (22), (24), and (26), one finds that
lon-Acoustic Waves
Q, =1+3K?2/2+15K*/8+147K%/16, (27) The electron contribution to the ion-acoustic speed
Ce = (ZTo/m )", whereZ is the ionization number. For the
case in whictkAg << 1 andT, /ZT, <<1, we define the base-

from which it follows that line formulas

Q7 =1+3K2 +6K* +24K5. (28) o, = cek (1+3T /T2, (31)
Since the exponent in Eq. (16) is proportionallf&?, the ) 2 32
third-order formula forQ?2 determines the exponential term % - _ o izme LT,

g + € exp O ﬂ — § (32)
correct to second order. Consequently, one need only detefeK Ug Ul m H ETi H EF 2T, 2
mine C correct to second ord@he result is
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1.25— T T . . room for improvement in the accuracy of the formula for the
- damping rate and the self-consistency of the method by which
e 1.20F " it is derived.
%)
c
o 1.15- 7 In the aforementioned parameter regime= cgk,
S 1100 | w/vek = (zmg/m )¥? <<1, and wyvik = (ZTg/T)¥? >> 1.
e One can use the expansion

1.05- .

W Zg=iner?) ¢ (T2 @

: n=0

& 102} :
© for the electron-plasma dispersion function and expansion (9)
> 103} 3 for the ion-plasma dispersion function. It is convenient to
g introduce the dimensionless parametdis T, /ZT, and
S 10°¢ 3 Q = w/ck.

105 L L L If one makes the assumption thﬂ(ce) = =2, which omits

0.04 0.06 0.08 0.10 0.12 the electron contribution to the ion-acoustic damping rate, the
P1851 Debye length (K) ion-acoustic dispersion relation can be written in the form of
Eq. (11), where

Figure 74.51
(a) Normalized frequenc;(oor /we) and (b) damping ratéwi /we) of an ®
— 2 _ _ n-1/02n

electron-plasma wave plotted as functions of the square of the normalized Dr (Q) =1+K Z (Zn 1)!!T /Q ’ (34)
Debye length KAe). The dashed lines represent the textbook formulas (7) n=1
and (8), the solid lines represent the third-order formulas (27) and (30),
and the dotted lines denote numerical solutions of the electron-plasma sz )
di [ tion. T Q 0 Q<O

ispersion equation D (Q) — gt = eXpE'_E- (35)

20 79 2T

Krall and Trivelpiec€ omit the ion-temperature contribution

to the frequency (31) and the associated factor of&@)in  Since the dispersion functions can be rewritten as
the ion contribution to the damping rate (32). Ichimfaand

Cher?® retain these ion-temperature contributions. They agree

n-1
on formula (31) for the frequency but differ on the formula for D (Q) - (2”‘1)”[T(1+ KZ)] (36)
the damping rate. Ichimaru multiplies formula (32) by a factor ‘14. sz - nzl [Q2(1+ KZ)]n '
of (1+ 3T /ZTe)]/z, whereas Chen, who considers only the ion
contribution to the damping rate, multiplies the ion term in
formula (32) by a factor af + 3T, /ZT, . In a recent pap&fwe 12
showed empirically that Ichimaru’s formula for the damping D, (Q) _ o2 [92(1+ Kz)] B_ Qz(1+ Kz)g
rate is the better of the two. To gauge the accuracy of Ichimarug + k2| ~ 020 [T(1+ Kz)]3/2 pH 2T(1+ K2) g (37)
formulas, we considered a numerical example: When
Ti /ZTe = 0.1, formula (31) predicts thab, /c.k =1.140. The
correctvalue of the frequency ratio, obtained by solving Eq. (492, andQ; satisfy the equation
numerically withkAg :]/02.001, is 1.181. Formula (32), multi-
plied by (1+ 3T /ZT, , predicts thatw /c.k = 0.05064, 12
whereas t(he colr/recf)value is 0.03219. Allt{m?ugh the predicted Q[K’T] = Q[O'T(1+ KZ)]/(l+ Kz) : (38)

frequency is only in error by 3.4%, the predicted damping rate
is in error by 57%. [For comparison, the damping rate preThus, one need only solve the ion-acoustic dispersion equation
dicted by formula (32) is in error by 38%.] Clearly there isfor the case in whick? = 0. In this case Eq. (34) has the same
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form as Eq. (12), withK? replaced byT. It follows from this  contribution forT < 0.06 and is comparable to the electron
observation, and Egs. (27) and (30), that the third-order sol@ontribution for 0.08< T < 0.12. In the latter range, both

tion is contributions toQ; are of ordef2. To make a perturbation
expansion based on this ordering, we defined the damping
Q, =1+3T/2+15T2/8+147T3/16, (39) Parameters
_gn? M2
r=0- . (44)
0gd T2
0 00?01 o0
T Og0 Or32 0
2
or?? 1 g 130
A== ——sexpr———-= 45
x expL = -3 _37-10720 (40) og0 772 *P0er 20 “9
oot 2 u

and made the approximation
Equations (38)—(40) apply to all valuesk# that satisfy the
inequality T(1 +K?) << 1.
qualityT( ) 0 020 01

exp = exp T 2+— (46)
If one makes the approximatioﬁ'(ce)z—2—irr1/2ce, H ZTE 02t 2% gfl %

which retains the electron contribution to the ion-acoustic
damping rate, one must add to Eq. (35) the term
which allowed us to write the real dispersion function as

2
ot
D(Q)=ig,, oM¥?, (41) D (Q) = Do, + Dy, +T2Dy, +T3Dg,, (47)

where M = Zm,/my andZ is the ionization number. Since  whereDg,—D,, were defined after Eq. (19) and

2 2 12 D3 = —105-2AQ,;, (48)
() ree [ we
1+ K2 DZD (l K2)3/2 ,
and the imaginary dispersion function as
Q, andQ; satisfy the equation D;(Q) = T2D, + 3Dy, (49)
Q[K,M,T]
5 where
=0, M/ (1+K2)*,T(L+ K2)5/(1+ K2)*2. (43)
Dy =2(I +4), (50)
Thus, one need only solve the ion-acoustic dispersion equation
. . 2 -
for the case in whickK< = 0. Dy = 2[er(r +1) _A(er +er /2)] (51)

Unlike the ion contribution t®;, the electron contribution
is not exponentially small whéin<< 1, so one cannot evaluate We then proceeded as described in Eiectron-Plasma
formula (15) correct to an arbitrary powerTofThis formula  Wavessection.
suggests, however, that the electron contributiof;tes of
order 0.01. It follows from Eg. (40) and Fig. 74.51(b) that the The zeroth-order and first-order equations are identical to
ion contribution toQ; is much smaller than the electron the corresponding equations of the previous sectiof;se
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3/2 andQ,; = 0 as we assumed in Eq. (46). The second-order DHDU

equation is

D('Jr (QZr +iQZi)
Dgr QF; /2+ Di; Qy, + Dy +iDy =0, (52)

from which it follows that

ar =15/8, (53)

Q, =—(T +4). (54)

Q =- v2 4 01 3 50
'~ O8O é" T3/2 P gr T2 T 0

Notice that the algebraic factors of Ichimaru and Chen are both
absent. We refer to formulas (58) and (60) as the third-order
formulas, even though the exponentin the latter formulais only
accurate to first order.

The approximate analytical solutions of the ion-acoustic
dispersion equation are compared to the numerical solution in
Fig. 74.52. The dashed lines represent Ichimaru’s solution, the
solid lines represent the third-order solution, and the dotted
lines represent the numerical solution. Fer0.1 formula (58)
predicts thaf), = 1.191, which differs from the correct value

Formula (54) is equivalent to the base-line formula (32). ThefQ, by 0.85%. Itis clear from Figs. 74.51(a) and 74.52(a) that

third-order equation is

Dor (Qar +iQ3)
+D6r (QZr +iQ2i )er
D305, /6
+Dyy (QZr +IQ2i)
Df; Q% /2+ D5 Qy, + D3 +iDg =0, (55)

from which it follows that
Qg =147/16+A(T +4), (56)
Qg =A(Qy +03 /2). (57)
By combining Egs. (53) and (56), one finds that
Q, =1+3T/2+15T2/8+[147/16 + A(T +A)[T3. (58)
By combining Egs. (54) and (57), one finds that

Q = —T2{r +A[1 T(Qq +02 /2)]} (59)

the additional third-order term improves the accuracy of the
formula in the rang@ < 0.09 but decreases the accuracy in the
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Figure 74.52

(a) Normalized frequenc‘mr /cek) and (b) damping ratéwi /cek) ofanion-
acoustic wave plotted as functions of the temperature (a’ﬂtZTe). The
dashed lines represent Ichimaru’s formulas (31) and (32) multiplied by

Itis clear from Eq. (46) that tieterms represent the exponen- (1+ 3T, /ZT, )1/2 the solid lines represent the third-order formulas (58) and
tial exp( QZ/ZT) with the exponent evaluated correct to fII’St(GO) and the dotted lines denote numerical solutions of the ion-acoustic

order; thus, one can rewrite Eq. (59) as

118

dispersion equation.
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rangeT > 0.09. Formula (60) predicts tf@t= 0.03670, which REFERENCES

differs from the correct value 6f; by 14%. For the displayed
range ofT the maximal error associated with the third-order
formula forQ, is 2.7% and the maximal error associated with
the third-order formula fa®; is 14%. The third-order formulas
are more accurate than Ichimaru’s formulas. Neither pair of
formulas is accurate whdhnis significantly larger than 0.1.

Summary
We used systematic perturbation methods to derive formu-

las for the Landau damping rates of electron-plasma waves4

[Eqg. (30)] and ion-acoustic waves [Eq. (60)]. The predictions .

of these formulas were compared to the predictions of the

textbook formula®® and numerical solutions of the electro-
static dispersion equation. Whekn§)2 < 0.1 (for electron-
plasma waves) and;/ZT, <0.1 (for ion-acoustic waves),

our formulas are more accurate than the textbook formulas.7.

When gAg)? > 0.1 andT; /ZT, > 0.1, no pair of formulas is

accurate and the electrostatic dispersion equation must bg;

solved numerically.
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