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Laser–plasma instabilities1 are important in the field of inertial
confinement fusion2 because they scatter laser light away from
the target, which reduces the laser energy available to drive the
compression of the nuclear fuel, or generate energetic elec-
trons that preheat the fuel, which makes the fuel harder to
compress. In stimulated Raman scattering an incident, or
pump, light wave (0) decays into a frequency-downshifted, or
Stokes, light wave (1) and an electron-plasma wave (2). In
stimulated Brillouin scattering a pump light wave decays into
a Stokes light wave and an ion-acoustic wave (2). The initial
evolution of both instabilities is governed by the linearized
equations3

  ∂ ∂ γt z A A+( ) =v1 1 0 2 , (1)

∂ ν γt A A+( ) =2 2 0 1 , (2)

where A1 and v1 are the amplitude and group speed of the
Stokes wave, respectively, A2 and ν2 are the amplitude and
damping rate of the plasma wave (electron-plasma or ion-
acoustic), respectively, and the coupling constant γ0 is propor-
tional to the amplitude of the pump wave. The convective
amplification of an existing Stokes wave and the generation of
a Stokes wave by plasma fluctuations are both characterized by
the gain exponent3

  g l= γ ν0
2

1 2v , (3)

where l is the plasma length. Because the aforementioned
parametric instabilities are important only when g >>1, a small
error in the damping rate of the plasma wave can produce a
large error in the predicted amplitude of the Stokes wave. For
this reason, it is important to determine accurately the Landau
contribution to the damping rates of plasma waves.4

The properties of electrostatic plasma waves are determined
by the dielectric function

Accurate Formulas for the Landau Damping Rates
of Electrostatic Waves
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where ωs is the plasma frequency, vs is the thermal speed, and
Z is the plasma dispersion function.5 The electrostatic disper-
sion equation is simply

ε ω, .k( ) = 0 (6)

The solution of this dispersion equation has two branches: the
high-frequency (electron-plasma) branch and the low-frequency
(ion-acoustic) branch, both of which are studied in this article.
In both cases our approximate analytical solution of the disper-
sion equation is compared to the numerical solution. Our
analytical solutions are more accurate than the standard ana-
lytical solutions found in textbooks.6–8

Electron-Plasma Waves
The electron Debye length   λ ωe e e= v . For the case in

which kλe << 1, Krall and Trivelpiece,6 Ichimaru,7 and Chen8

all assert that

ω ω λr e ek≈ + ( )[ ]1 3
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To gauge the accuracy of these formulas, we considered a
numerical example. When (kλe)

2 = 0.1, formula (7) predicts
that ω ωr e ≈ 1 140. . The correct value of this frequency ratio,
obtained by solving Eq. (4) numerically, with the ion term
omitted, is 1.179. Formula (8) predicts that ω ωi e ≈ 0 02979. ,
whereas the correct value is 0.01845. Although the predicted
frequency is in error by only 3.3%, the predicted damping rate
is in error by 61%. Clearly there is room for improvement.

In the aforementioned parameter regime ω ≈ ωe and

  ω λve ek k≈ ( ) >>1 1. The electron-plasma dispersion func-
tion has the asymptotic expansion5
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Γ Γn n n+( ) = −( ) −( )1 2 1 2 1 2  and Γ 1 2 1 2( ) = π . It is con-
venient to introduce the dimensionless parameters K = kλe and
Ω = ω ωe .   If one neglects the ion term in Eq. (4), the electron-
plasma dispersion equation can be written as

D iDr iΩ Ω( ) + ( ) = 0, (11)

where
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Because the exponent in Eq. (13) is proportional to 1 2K ,
D Di r  and Ω Ωi r  are exponentially small when K2 << 1.

If one assumes that Ω Ωi r  is less than any power of K
required for an accurate solution of Eq. (11), then Ωr is
determined by the equation

Dr rΩ( ) = 0 (14)

and Ωi is given by the formula
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By using Eq. (12) to evaluate the derivative in Eq. (13), one
finds that
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where the coefficient function

C n n K n n
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It is clear from Eqs. (12) and (17) that the dispersion
equation (14) is an equation for Ωr

2  that involves the small
parameter K2, and formula (16) depends on Ωr

2 . The efficient
way to proceed is to solve Eq. (14) and evaluate formula (16)
perturbatively, by expanding Ωr

2  and Dr in powers of K2. We
chose to expand Ωr and Dr in powers of K2 to facilitate the
analysis in the Ion-Acoustic Waves section. Specifically, we
made the third-order expansions

Ω Ω Ω Ω≈ + + +1 2
1
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6
3K K K , (18)
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where D0(Ω) = 1−1/Ω2, D1(Ω) = −3/Ω4, D2(Ω) = −15/Ω6,
and D3(Ω) = −105/Ω8, and
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We substituted these expansions in Eq. (14) and collected
terms of like order.

The zeroth-order equation is satisfied identically. The first-
order equation is

′ + =D D0 1 1 0Ω , (21)

from which it follows that

Ω1 3 2= . (22)

The second-order equation is

′ + ′′ + ′ + =D D D D0 2 0 1
2

1 1 22 0Ω Ω Ω , (23)

from which it follows that

Ω2 15 8= . (24)

The third-order equation is
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from which it follows that

Ω3 147 16= . (26)

By combining Eqs. (22), (24), and (26), one finds that

Ωr K K K≈ + + +1 3 2 15 8 147 162 4 6 , (27)

from which it follows that

Ωr K K K2 2 4 61 3 6 24≈ + + + . (28)

Since the exponent in Eq. (16) is proportional to 1 2K , the
third-order formula for Ωr

2  determines the exponential term
correct to second order. Consequently, one need only deter-
mine C correct to second order.9 The result is

C K≈ −1 6 4 . (29)

It follows from Eqs. (16), (28), and (29) that
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We refer to formulas (27) and (30) as the third-order formulas,
even though the latter formula is only accurate to second order.
In a similar way, one could refer to the textbook formulas as the
first-order formulas. Notice, however, that the textbook for-
mula Ωr K≈ +( )1 3 1 2  is less accurate than the true first-order
formula Ωr K≈ +1 3 2.

The approximate analytical solutions of the electron-plasma
dispersion equation are compared to the numerical solution in
Fig. 74.51. The dashed lines represent the textbook solution,
the solid lines represent the third-order solution, and the dotted
lines represent the numerical solution. For K2 = 0.1 the third-
order formulas predict that Ωr ≈ 1.178 and Ωi ≈ 0.01840. These
values of Ωr and Ωi differ from the correct values by 0.085%
and 0.27%, respectively. For the displayed range of K2 the
maximal error associated with the third-order formula for Ωr is
0.57% and the maximal error associated with the third-order
formula for Ωi is 14%. The third-order formulas are more
accurate than the textbook formulas, even though the assump-
tion on which they are based, that Ω Ωi r K<< 6 , is only valid
for K2 < 0.04. Neither pair of formulas is accurate when K2 is
significantly larger than 0.1.

Ion-Acoustic Waves
The electron contribution to the ion-acoustic speed

c ZT me e i= ( )1 2
, where Z is the ionization number. For the

case in which kλe << 1 and T ZTi e << 1, we define the base-
line formulas

ωr e i ec k T ZT≈ +( )1 3
1 2

, (31)
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Krall and Trivelpiece6 omit the ion-temperature contribution
to the frequency (31) and the associated factor of exp(−3/2) in
the ion contribution to the damping rate (32). Ichimaru7 and
Chen8 retain these ion-temperature contributions. They agree
on formula (31) for the frequency but differ on the formula for
the damping rate. Ichimaru multiplies formula (32) by a factor
of 1 3

1 2+( )T ZTi e , whereas Chen, who considers only the ion
contribution to the damping rate, multiplies the ion term in
formula (32) by a factor of 1 3+ T ZTi e . In a recent paper10 we
showed empirically that Ichimaru’s formula for the damping
rate is the better of the two. To gauge the accuracy of Ichimaru’s
formulas, we considered a numerical example: When
T ZTi e = 0 1. , formula (31) predicts that ωr ec k ≈ 1 140. . The
correct value of the frequency ratio, obtained by solving Eq. (4)
numerically with kλe = 0.001, is 1.181. Formula (32), multi-
plied by 1 3

1 2+( )T ZTi e , predicts that ω i ec k ≈ 0 05064. ,
whereas the correct value is 0.03219. Although the predicted
frequency is only in error by 3.4%, the predicted damping rate
is in error by 57%. [For comparison, the damping rate pre-
dicted by formula (32) is in error by 38%.] Clearly there is

room for improvement in the accuracy of the formula for the
damping rate and the self-consistency of the method by which
it is derived.

In the aforementioned parameter regime ω ≈ cek,

  ω ve e ik Zm m≈ ( ) <<1 2
1, and   ω vi e ik ZT T≈ ( ) >>1 2

1 .
One can use the expansion5
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for the electron-plasma dispersion function and expansion (9)
for the ion-plasma dispersion function. It is convenient to
introduce the dimensionless parameters T T ZTi e=  and
Ω = ω c ke .

If one makes the assumption that ′( ) ≈ −Z eς 2 , which omits
the electron contribution to the ion-acoustic damping rate, the
ion-acoustic dispersion relation can be written in the form of
Eq. (11), where
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Since the dispersion functions can be rewritten as
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Ωr and Ωi satisfy the equation

Ω ΩK T T K K, , .[ ] = +( )[ ] +( )0 1 12 2 1 2
(38)

Thus, one need only solve the ion-acoustic dispersion equation
for the case in which K2 = 0. In this case Eq. (34) has the same
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Figure 74.51
(a) Normalized frequency ω ωr e( )  and (b) damping rate ω ωi e( )  of an
electron-plasma wave plotted as functions of the square of the normalized
Debye length (kλe). The dashed lines represent the textbook formulas (7)
and (8), the solid lines represent the third-order formulas (27) and (30),
and the dotted lines denote numerical solutions of the electron-plasma
dispersion equation.
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form as Eq. (12), with K2 replaced by T. It follows from this
observation, and Eqs. (27) and (30), that the third-order solu-
tion is

Ωr T T T≈ + + +1 3 2 15 8 147 162 3 , (39)
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Equations (38)–(40) apply to all values of K2 that satisfy the
inequality T(1 + K2) << 1.

If one makes the approximation ′( ) ≈ − −Z ie eς π ς2 1 2 ,
which retains the electron contribution to the ion-acoustic
damping rate, one must add to Eq. (35) the term
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Ωr and Ωi satisfy the equation
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Thus, one need only solve the ion-acoustic dispersion equation
for the case in which K2 = 0.

Unlike the ion contribution to Di, the electron contribution
is not exponentially small when T << 1, so one cannot evaluate
formula (15) correct to an arbitrary power of T. This formula
suggests, however, that the electron contribution to Ωi is of
order 0.01. It follows from Eq. (40) and Fig. 74.51(b) that the
ion contribution to Ωi is much smaller than the electron

contribution for T ≤ 0.06 and is comparable to the electron
contribution for 0.08 ≤ T ≤ 0.12. In the latter range, both
contributions to Ωi are of order T2. To make a perturbation
expansion based on this ordering, we defined the damping
parameters
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and made the approximation
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which allowed us to write the real dispersion function as

D D TD T D T Dr r r r rΩ( ) ≈ + + +0 1
2

2
3

3 , (47)

where D0r−D2r were defined after Eq. (19) and

D r i3 2105 2= − − ∆Ω , (48)

and the imaginary dispersion function as

D T D T Di i iΩ( ) ≈ +2
2

3
3 , (49)

where

D i2 2= +( )Γ ∆ , (50)

D i r r r3 1 2 1
22 2= +( ) − +( )[ ]Ω Γ ∆ ∆ Ω Ω . (51)

We then proceeded as described in the Electron-Plasma
Waves section.

The zeroth-order and first-order equations are identical to
the corresponding equations of the previous section, so Ω1r =



ACCURATE FORMULAS FOR THE LANDAU DAMPING RATES OF ELECTROSTATIC WAVES

118 LLE Review, Volume 74

3/2 and Ω1i = 0 as we assumed in Eq. (46). The second-order
equation is

′ +( )
+ ′′ + ′ + + =

D i
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from which it follows that
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Formula (54) is equivalent to the base-line formula (32). The
third-order equation is
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from which it follows that

Ω ∆ Γ ∆3 147 16r = + +( ) , (56)
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By combining Eqs. (53) and (56), one finds that

Ω ∆ Γ ∆r T T T≈ + + + + +( )[ ]1 3 2 15 8 147 162 3 . (58)

By combining Eqs. (54) and (57), one finds that
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It is clear from Eq. (46) that the ∆ terms represent the exponen-
tial exp −( )Ωr T2 2 , with the exponent evaluated correct to first
order; thus, one can rewrite Eq. (59) as
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Notice that the algebraic factors of Ichimaru and Chen are both
absent. We refer to formulas (58) and (60) as the third-order
formulas, even though the exponent in the latter formula is only
accurate to first order.

The approximate analytical solutions of the ion-acoustic
dispersion equation are compared to the numerical solution in
Fig. 74.52. The dashed lines represent Ichimaru’s solution, the
solid lines represent the third-order solution, and the dotted
lines represent the numerical solution. For T = 0.1 formula (58)
predicts that Ωr ≈ 1.191, which differs from the correct value
of Ωr by 0.85%. It is clear from Figs. 74.51(a) and 74.52(a) that
the additional third-order term improves the accuracy of the
formula in the range T ≤ 0.09 but decreases the accuracy in the
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Figure 74.52
(a) Normalized frequency ω r ec k( )  and (b) damping rate ω i ec k( ) of an ion-
acoustic wave plotted as functions of the temperature ratio T ZTi e( ) . The
dashed lines represent Ichimaru’s formulas (31) and (32) multiplied by
1 3

1 2+( )T ZTi e , the solid lines represent the third-order formulas (58) and
(60), and the dotted lines denote numerical solutions of the ion-acoustic
dispersion equation.
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range T > 0.09. Formula (60) predicts that Ωi ≈ 0.03670, which
differs from the correct value of Ωi by 14%. For the displayed
range of T the maximal error associated with the third-order
formula for Ωr is 2.7% and the maximal error associated with
the third-order formula for Ωi is 14%. The third-order formulas
are more accurate than Ichimaru’s formulas. Neither pair of
formulas is accurate when T is significantly larger than 0.1.

Summary
We used systematic perturbation methods to derive formu-

las for the Landau damping rates of electron-plasma waves
[Eq. (30)] and ion-acoustic waves [Eq. (60)]. The predictions
of these formulas were compared to the predictions of the
textbook formulas6–8 and numerical solutions of the electro-
static dispersion equation. When (kλe)2 ≤ 0.1 (for electron-
plasma waves) and T ZTi e ≤ 0 1.  (for ion-acoustic waves),
our formulas are more accurate than the textbook formulas.
When (kλe)

2 > 0.1 and T ZTi e > 0 1. , no pair of formulas is
accurate and the electrostatic dispersion equation must be
solved numerically.
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