Growth Rates of the Ablative Rayleigh—Taylor Instability
in Inertial Confinement Fusion

In recent years, several authbrs' have studied the linear If the density is smoothly varying between the two fluids
growth of the Rayleigh—Taylor (RT) instability in ablation and the minimum density-gradient scale length
fronts accelerated by laser irradiations. The determination ok, = min|p/(dp/dx)| is finite, then a distinction must be
the instability growth rate is crucial to the success of inertialnade between those modes with wavelength larger and smaller
confinement fusion (ICEP-16because an excessive distortionthan L, The long-wavelength mode&L(, << 1) are not

of the front could lead to a severe degradation of the capsusdfected by the finité,, and grow according to Eq. (1), while
performance with respect to the final core conditions bythe short-wavelength modelslL(, >> 1) are localized inside
seeding the deceleration-phase RT instability and preventirthe smooth interface and grow at the ¥ate

the onset of the ignition process.

For a successful implosion, ICF targets must be designed to y= 9. 2)
keep the RT growth at an acceptable level. Because of the
complexity of 2-D or 3-D codes and the mesh refinement
needed to simulate hydro-instabilities, 2-D or 3-D simulation#An asymptotic formula reproducing the results at short and
cannot be routinely used to study the capsule stability andng wavelengths can be easily generated by inspection of
mixing. The best approach to target design is to carry out Bgs. (1) and (2) leading to
preliminary analysis by using 1-D simulations to study the

main characteristics of the implosion and then processing the | A‘f' kg
data with a mixing model to study the evolution of the instabil- y= \“‘—1+ A%' K (3)
‘ m

ity and the induced rms deviations. Once the preliminary

design is completed, the optimization can be carried out by

using 2-D or 3-D codes. Since the mixing model predictions In laser-accelerated targets, the ablation process and the

are based on the initial perturbation amplitude and lineahermal transport add a great deal of complication to the

growth rates, it is very important to generate an accurate amgolution of the instability. The overdense target material (with

reliable growth-rate formula to be used in conjunction with thelensity p,) is ablated at a raten= p,V,, whereV, is the

1-D code output. ablation velocity. The latter represents the penetration speed

of the ablation front in the overdense target. The ablated

According to the linear classical thediythe interface material blowing off the target rapidly expands inside the

between a heavy fluid of constant dengifyand a light fluid  ablation front and accelerates to large velocities relative to the

of constant density, in a gravitational fieldy pointing toward  overdense targets.

the light fluid is unstable. A small perturbation would grow

exponentially in time,~ e¥d!, at a rate Several authofs14 have shown that the ablation process
leads to a reduction of the instability growth rate. The so-called
Vo =+ A%I kg, (1) ablative stabilization was first discussed in Ref. 1 and thereaf-

ter extensively studied in Refs. 2—13. Because of the math-

ematical complexity of the problem, simplified analytic models
where A%' = (ph -0 )/(ph + p|) is the Atwood humber arkd  such as the sharp boundary model have been used to describe
is the perturbation wave number. the linear phase of the instability. However, such models are
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heuristic in hatu_re as they lack a proper closu_re, which is left Poo. " B (Z/V)]/v 012
to the physical intuition. For such reasons, different authors — = llo(kl-o) , Ho=—r——~+t—>
o : : Pa r+yv) v

using different closure equations have produced different

growth-rate formulas (see Refs. 1, 5, and 12). Numerical

simulations have confirmed the stabilizing effect of ablation (x) is the gamma function and, ,, is the velocity of the

and indicated that, in some cases (as described later), thlowoff material at the distancel<rom the ablation front.

growth rate can be approximated by the following formula: Observe that the cutoff wave number obtained by sefting
in Eq. (5) occurs at long wavelengths,

(6b)

y =09,/kg -3.1kV,. (4)

[1+O (kLO)J/V } <1, (7)

kelo =

(o (v) /=
Fr E

Equation (4) was derived in Ref. 3 by fitting the numerical
solution of the linearized conservation equations including
ablation and electronic heat conduction. As stated in thand short-wavelength modes are stable. As shown in Refs. 9
Growth Rates section, Eq. (4) does not correctly reproduceand 10, Eq. (5) can be accurately fitted by Eq. (4Vfer2.5
the growth rates in the presence of a significant radiatioand 0.1 <=r < 5, thus suggesting that the latter can be applied
energy transport leading to smooth density profiles. It igo ablation fronts with large Froude numbers.
important to observe that Eq. (4) does not include the stabiliz-
ing effect of finite density-gradient scale length and it can only When the Froude number is less than urfity<< 1), the
be applied to very sharp ablation fronts or modes witlanalytic stability theory becomes more complicated and can be
KL, << 1. carried out only in the limits of] = kLg << 1 and >> 1.
The analysis of Ref. 11 has shown that long-wavelength
Only very recently, the analytic stability theory of acceler-modes with wave numberd << 1 have a growth rate
ated ablation fronts has been carried out in the limit of suby:\;‘m—ﬁkva, where 1 <3 < 2 is a function ofv,
sonic ablation flow&12(i.e., fronts with ablation velocity less =T (1+2/v)/I 2(1+1/v). Short-wavelength modeld.(,> 1)
than the sound speed at the ablation front) by using complare unstable, and the corresponding perturbations are miti-
cated asymptotic matching techniques. Subsonic ablatiogated by ablative convection, finite density gradient, and
fronts are characterized by two dimensionless param&ters:thermal smoothing. Their growth rate can be written as
the Froude numbefFr =V2 /gL, and the power index for
thermal conduction/(K ~ TV). Here L is the characteristic
thickness of the ablation front, which is proportional to the
minimum value of the density-gradient scale lefgth
Lm[LO =LV /(v +1)V+1L. The analytic theory developed in for 1 <<kl << Fr=1/3 and
Refs. 8-11 shows that the instability growth rate is strongly
dependent on the magnitude of the Froude number. For large y = olg/(VakzL%) - CokV,
Froude number310the main stabilizing effects are ablation
and blowoff convection, and the growth rate can be written ifior the wave numbers near the cutéf(k.). The parameters
the following form®:12 a andcg_, have lengthy expressions described in Ref. 11, and
a complete summary of the growth-rate formulas is given in
B Ko — A2 K2 _ K ) Table 1 of Ref. 11. The cutoff wave numbgrof ablation
V= \/AT 9= Afk“Va Vo, (1+ AT) Va fronts with small Froude numbers occurs at short wavelengths
and scales dglLg~Fr1/83>> 1.

y =Jag/Lo + GBKALEVZ ~ cokPLoV,

where
The growth-rate formulas obtained in Ref. 11 for small
1- (Pbo /Pa) P4 Froude numbers and short/long wavelengths can be combined
Ar Em’ Vbo. = Va oo’ (6a)  with the formula (5) for large Froude numbers into a single

expression that reproduces the analytic results in the appropri-
ate limits Er << 1,Fr >> 1,00 << 1,0 >> 1). According to
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Ref. 11, the asymptotic formula can be written in the following

form:
\/ Arkg +62kAL3V2 + gu |<2v2
- 5K2LoV, - BKV,,
where
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A detailed comparison of the growth rates obtained by using
Eqg. (8) and the numerical solutions of the conservation equa-
tions has demonstrated a remarkable agreement over a wide
range of values fdfr, v, and(] (see Ref. 11).

Despite its lengthy expression, the asymptotic formula can
be easily computed once the Froude nunfbgthe length_,
the acceleratiory, the ablation velocity/,, and the power
index for thermal conductiomare known. The main difficulty
in using Eq. (8) lies in the determination of the equilibrium
parameters whose values are strongly dependent on the domi-
nant energy transport mechanism. In this article, we describe
a simple procedure to be used in conjunction with existing one-
dimensional hydrodynamic codes to deterntingl g, g, V,,
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andv. In addition, we apply this procedure to accelerated flamnodel. In other words, one should fit the multigroup hydro-
foils commonly used in ICF experiments and determine therofiles with the one-group profiles by properly selecting the
unstable spectrum using Eq. (8). We also compare the analytialue of v andLg. This is an essential requirement for the
growth rates with the results of two-dimensional simulationstability analysis, assuring that the linearization is performed
obtained using the cod@RCHID.1® Numerical fits of Eq. (8) about the right equilibrium. Of course, there is no guarantee
are also studied for different ablators, and simplified formulashat the two-dimensional effects are correctly included in the
are generated for a fast growth-rate estimate. It is the aim ohe-group model, even though the one-dimensional profiles
this article to simplify the theoretical result of Bedti al are correctly reproduced. However, the RT is mainly a hydro-

(Refs. 8-11) to make it useful to ICF target design. dynamic instability, and one could hope that if the 1-D hydro-
dynamic profiles are correctly included, then the 2-D/3-D
Equilibrium Parameters stability analysis would be independent of the heat transport

One-dimensional simulations are commonly used in ICEnodel. This speculation could be verifiedposteriori by
target design, and several 1-D codes describing laser-accelesmparing the analytic results with 2-D simulations including
ated targets are available at universities and national laboratawultigroup radiation transport.
ries. Among them, the most frequently used are the codes
LILAC,20 HYADES?! LASNEX22 etc. In this article, the au-  In summary, the analytic analysis is based on the one-
thors have extensively used the cbtleAC, a 1-D Lagrangian group subsonic diffusive transport model (or isobaric model).
code including laser absorption, classical flux-limited thermallhe parameters, Fr, andLq of such a model are determined
transport, and multigroup radiation diffusive transport. Theby fitting the analytic hydro-profiles with those obtained from
equation-of-state package availableLilLAC includes the 1-D simulations including multigroup radiation transport.
ideal gas, Thomas—Fermi, and SESAME tables. The results of the analytic stability theory are then compared

with the full 2-D simulations including multigroup radia-

The analytic stability analyses are usually based on a singl&en transport.
temperature (or one-group) diffusive model for the heat trans-
port, i.e., the heat flux is proportional to the temperature As shown in Ref. 6, the density profile of subsonic ablation
gradient, and the thermal conductivity follows a power law offronts, described by the one-temperature diffusive transport
the temperatureg :Ka(T/Ta)V, wherekj,, T, are the thermal model, obeys the following first-order differential equation:
conductivity and temperature calculated at the peak density,
and v is the power index. These simplifications make the
problem solvable with analytic techniqu&s2:14If the radi-
ated energy is negligible (lo&-materials, such as DT), the
energy is transported mainly by electronic heat conduction. lwhere¢ is the density normalized to its peak valéies p/p, .
this case, the power index= 2.5 (as given by Spitz&) and  andv is the power index for thermal conduction. The equilib-
Lo =(vh —1)/vnAKa/(0aVa), Wherey, is the ratio of the rium pressure is determined by the momentum-conservation
specific heatsA=m /(1+ Z) is the average particle mapg, equation d(p+ pUz)/dy = pg and the mass conservation
is the maximum density, and, is the ablation velocity, equation[d pU)/dy:O], which can be rewritten in the fol-
respectively (see Ref. 8). However, if a significant amount ofowing dimensionless form:
energy is present in the radiation field, then an accurate
estimate of the energy transport requires the use of multigroup 1 dn_,dé ¢ -

- e — ——=&_=+—=— (y)=Va, (10
radiation transport models. In such models, the radiation Mn, dy dy Frlg
energy spectrum is divided into several groups. Each group is
described by a radiation temperature obeying an energy diffuvherel = p/p,, M, = a/q/ Pa/Pa is the normalized abla-
sion equation. Because of the complexity of such models, &ion velocity, and, is the pressure at the location of the peak
analytic stability analysis would be intractable. For such readensityp,. Observe that Egs. (9) and (10) for the unknogns
son, the analytic theories are based on a single-group modeidi1 depend on the four parametBig Fr, Lg, andv. Keeping
(one temperature). However, if the one-group diffusive transn mind that our goal is to reproduce the hydro-profiles of the
port model is used in the stability analysis, then one should 4tD simulations, we determine these parameters by fitting the
least make sure that such a model reproduces the one-dimamalytic hydro-profiles with the numerical ones. Let’s define
sional hydrodynamic profiles obtained using the multigroupwith &5 = p/p, and Ng = p/p, the normalized simulated

dé/dy = -1 (1-¢)/Ly, 9)
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density and pressure profiles. If the predictions of the one-

. . — (Emax) D dgs 1 Ddgs
group model were exact, then the simulated profiles would G —_[ (Emin) O dy 1-2.H dy
represent an exact solution of Eqgs. (9) and (10); however, this " 0% s D
is not the case, and replaciégvith & in Eq. (9) leads to an
error. For convenience, we take the logarithm of Eq. (9) and V()
define the error as Co :J'y(f'fax) Infsln

—>dy,  (15b)

Ddes 1 Ddg

15
dy 1-&Hay O (59

ODde, 1 O
dy 1-&.0

er=(v+1)In&—InLy—In F oy (11)  andH(&)]=H(Emaw—H(Emin)- In the same fashion, the Froude
number and dimensionless ablation velo€lfycan be deter-
mined by minimizing the integrated quadratic emon the
Observe that er 0 if £ = ¢. In order to reproduce the simu- momentum conservation equation
lated profiles over the entire ablation front, it is useful to
minimize the integrated quadratic errdy (lefined as
g q 9 d n(Fr.n,)
M) 01 oy 1 d&, & O

_ dns 16
fyém.n Fz oy Z oy FrigHY (16)

5(v.Lo) =

dég 1 ot

J.Emax év +1)In&—InLy - |nE_ d&;,, (12) wherells = ps/p, is the simulated normalized pressure pro-
Smin dy 1- Es% file. After some straightforward algebra, the minimization with

respect td1, andFr yields

whereépin, émax are the minimum and the maximum values asb, + b2 1
: o . - : _ aghy +bs

of the density of the fitting region defining the extension of the Fr=——m——
ablation front i, = 0.01 and&,,, = 0.99 are two possible

values). The minimization @fis obtained by setting to zero the

nz= 2% *bs b5 (17a)
by +a5Cs Lo’ C3hy —C4bg

partial derivatives with respect toandL: where
96 _ 00
S2=22 =0, (13) = lena) NS "
0 8 Iy(fmin) dy H %
(17b)
Substituting Eq. (12) into Eqg. (13) leads to the following Wema) . dM
estimates of andv: by = ‘_[y( Er@) s dys :
_ 0131 Coby Draye —aycp U
-1 pgi (14) y(& ) V) 1 dMg dé
a a H - max 2 max S Y5s
A by i by =~y &y, 0o = [l Zay oy
where (17¢c)
Cq = In—émax :
a =[&(In&-1)], &min
(15a)
a = [[E(In{—l)z + 5]], by =[£], The integration limit§(&min), Y(émax representthe location of

the points with densit§i, andé, respectively. Using the
peak densityp, and the pressure at the location of the peak
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densityp,, the acceleration and ablation velocity can be easilyhicknessd = 120um irradiated by the pulse described above.

determined from Eqs. (14) and (17): Substituting the simulated profiles into Egs. (9) and (10) yields
v =2,Lg=0.03um, andFr = 5. This result indicates that
. 2 radiation transport has a small effect in cryogenic DT targets.
_ | Pa _Vg 1
Vo=MNg4 ==, g= —. (18)
| Py Lo Fr

Tables 73.1 and 73.11 show the time-averaged valu€s,of
v, Lo, andV, for several plastic (CH) and DT targets of dif-
This technique has been tested on the hydrodynamic profilésrent thicknesses (Th) and laser intensitigdt(is important
obtained using the coddLAC. We consider a planar CH foil to observe that plastic targets have smooth density profiles
of thicknessd = 18 um irradiated by a 0.3hm-wavelength  (large density-gradient scale length), low ablation velocity,
laser of 50-TW/crf intensity with a 1-ns linear ramp. The v < 1, and small Froude numbers while solid-DT targets
pulse duration is 3 ns. The profiles obtained from the simuldhave sharp profiles, large ablation velocitys 2, and large
tion are slowly varying in time. For the test, we consider thé-roude numbers.
profiles at timé =2 ns and substitute the simulated density and
pressure into Egs. (14), (17), and (18) and obt&®.7,Ly=
0.24um,Fr=0.032g=36um/ng, andV,=0.54um/ns. Then,
using these values, we solve Egs. (9) and (10) to determine the 0.036
analytic density and pressure profiles. Figure 73.27 shows the
simulated and the analytic profiles for the CH target. The Fr
excellent agreement between the profiles shows the accuracy ~ 0.032 -
of the fitting procedure described above. In Fig. 73.28, the
fitting parameters, Lg, andrFr are plotted as functions of time, 0.028
and the dashed lines represent the corresponding average
values. Itisimportant to notice that the power index for thermal
conduction to be used in the one-group modet 0.7) is
well below the SpitzéB (v = 2.5) or the ZeldovickH value
(v = 6.5), thus showing the importance of the multigroup 0.76
treatment of the radiation transport in plastic targets.

\Y)
Lower-Z materials such as solid DT are a good test of the 0.72
fitting procedure because they are expected to produce a very
low level of radiation and to approximately follow the Spitzer 0.68
model withv = 2.5. We have considered a planar DT foil of
0.32
T T T T
1.0 . . —
Pressure
% 08, . 0.23
o Lo
T 06 . (um)
é 0.24
a 04r ; 7
= Density
0.2 0.20
I I I I I I
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Figure 73.28
Figure 73.27 Temporal evolution (solid lines) and average values (dashed lines) of the
Normalized density and pressure profiles obtained by using isobaric mod&roude numbeffr, power index for thermal conductionand the character-
(solid lines) and 1-D numerical simulation (dots). istic thickness of ablation fromi for a CH target.
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Growth Rates conductivity and a finite Mach number. This test is useful
1. Comparison with Numerical Results because it validates the assumption of subsonic flow and the
Once the equilibrium parameters are calculated, Eq. (8) caimplification leading to the isobaric modeTakabe’s for-
be used to determine the growth rates. As discussed in theula can be written in the following dimensionless férm:
previous section, there is no guarantee that the analytic stabil-
ity analysis using the one-temperature model would reproduce
the results of the 2-D simulations using the multigroup radia-
tion diffusion treatment even though the 1-D simulated and
analytic hydrodynamic profiles are identical. Itis necessary twvhere yy = Vng is the classical growth rates = V kVa2 /g,
validate the formula by comparing the analytic and the numerigt = 0.9, and3t = 3.1. Similarly, Eq. (8) can also be rewritten

y=Y =ar - X, (19)
Ya

cal growth rates. in dimensionless form:

As afirst test of the analytic theory, we compare the analytic A X6 O 10 N
growth rates with Takabe’s formuaThe latter has been 9:\/AT +02 = + w2 __BXZ -5=—-pX. (20)
derived by fitting the numerical solution of the exact, linear- Fr d Fr

ized, single-fluid conservation equations including Spitzer

Table 73.1: CH targets.

Th | (Fr) (v) (Lo) (Lm) (Va) (g) Growth Rate
(um) | (Twicm?) (um) (um) (um/ns) | (umins2) [fit of Eq. (8)]
10 50 003 | 08 0.2 0.7 0.8 95 1.01 / K1 A
V1+kLly
18 50 003 | 08 0.3 1.0 0.6 50 101 -9 18 KV,
V1+kly,
20 100 004 | 09 | 03 11 0.9 76 099 |—9 17k,
1+KkLpy,
20 240¢ 005 | 09 | o2 07 13 130 097 —9 16Ky,
V1+kLly
25 240* 005 | 09 0.2 0.7 1.2 123 46 KV,
V1+kLp

*Linear-rise laser pulse

Table 73.11: DT targets.

Th | (Fr) (v) (Lo) (Lm) (Va) (g) Growth Rate
(um) | (Twicm?) (um) (um) (um/ns) | (umins2) [fit of Eq. (8)]
100 50 41 20 | 002 0.13 2.8 97 0.94./kg — 2.6 KV,
190 50 38 20 | 003 0.20 2.7 60 0.94./kg - 2.6 KV,
190 100 40 21 | o007 0.49 46 77 0.94./kg - 2.6 KV,
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The growth rates calculated using Eq. (19) and Eq. (20) for modified Takabe’'s (dashed line) formulas. The latter is the

= 2.5 and different Froude numbers are shown in Fig. 73.29akabe’s formula including the stabilizing effects of finite

Observe that the two formulas approximately agree for Froud#ensity-gradient scale length in a heuristic fashion,

numbers between 0.1 and 5. This result is not surprising as

Takabe’s formula has been derived using Spitzer conductivity kg

leading to sharp profiles (sma}j and therefore relatively large YmT. =07 Trkl. BrkVa, (21)

Froude numbers). We conclude that the RT growth rate in low- m

Z materials withFr > 0.1, such as solid DT, is well described

by Takabe’s formula over a wide rangd-0{0.1 <Fr <5). For  whereL,, is the minimum density-gradient scale lendgih~=

small Froude numbers or different values \gf Takabe's 0.93um. Observe that Takabe'’s and modified Takabe’s formu-

formula doesn’t provide an accurate estimate of the growth ratas fail to reproduce the simulation results in the short-wave-

so Eq. (8) or its fitting formulas must be used. length regime. Instead, the growth rates obtained with Eqg. (8)
are in excellent agreement with the simulated ones over the

When the ablation velocity is small or the density profile isentire unstable spectrum.

smooth—as inthe case of large radiation energy transport—we

expect the Froude number to decrease. As shown in Fig. 73.29, Furthermore, we study different pulse shapes and different

Takabe’s formula and Eq. (8) yield very different results fortarget materials. We consider a @thick CH target irradi-

this case. In addition, radiative transport causes the deviati@ied by a square pulse with an intensity of 200 TV¢/and

of the power indey from the Spitzer value requiring a more 100-ps linearrise time. According to tB® CHIDsimulations,

general formula than Takabe’s. For such targets, Eq. (8) can bee hydrodynamic profiles reach a steady state after 1.3 ns. The

compared only with the results of full 2-D simulations includ-growth rates of 3Q#m and 15um wavelength perturbations

ing a multigroup radiation-transport model. We consider thare determined from the 2-D simulations yieldj§tf (15um)

same 184m plastic target described in the previous section= 4.9 ns andySi™ (30 um) = 4.1 nsl. Using theORCHID

and we simulate it with the co@RCHID. We then calculate hydrodynamic profiles and Egs. (14), (17), and (18), we

the parameters, Fr, Ly, andV, to be used in Eqg. (8) by estimate the relevant hydrodynamic parameters.2,Ly =

substituting ORCHID density and pressure profiles into 0.22 um, V, = 2.0 um/ns,Fr = 0.12, andg = 144 um/ng.

Egs. (14), (17), and (18) and fifkd = 0.043,L5 = 0.24um,  Substituting such parameters into the asymptotic formula

V,=0.66um/ns,v=0.96, and)=43um/n<. In Fig. 73.30, the  [Eq. (8)] yields the theoretical growth ratg& (15 um) =

growth rates obtained usif@RCHID (dots) are compared 4.9 ns!andyt" (30um)=4.06 ns?, reproducing the simula-

with Eqg. (8) (solid line), Takabe’s (dot—dashed line), andion results.

1oy atl o e ORCHID -
L — il N E
0.8] ? ol
g o Tt
o 067 o
2 o} E
= 04 2
i o
0.2f
ool b N1 :
0.0 0.1 0.2 0.3 0.4 0 10 20 30 40 50
TC4540 kVa/ Vkg TC4541 Wavelengthim)
Figure 73.30
Figure 73.29 Unstable spectrum calculated using the analytic formula (8) (solid line)

Normalized growth rate| y/VTg versus normalized wave number compared with the numerical results (dots) of 2-D hydrodd&&EHID,
H\fkvf/ggcalculated using the Takabe’s formula (dashed line) and Eq. (8T akabe’s formula (dot-dashed line) and modified Takabe’s formula
(solid line) for different values of the Froude number amd2.5. (dashed line).
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Next, we simulate the evolution of(@n-wavelength sur- the value oty, Bfor differentFr andv. The solid section of the
face perturbation on a 2@m-thick beryllium foil irradiated by curves represents the region of optimum fit, i.e., the region
a square pulse with an intensity of 50 TWfcand 100-ps where each formula fits the data at its best. According to the
linear rise time. The steady state is reached after 1.5 ns and tladue ofFr andv, one should use the formula corresponding to
ORCHID simulation yields the mode growth raj™ =  a solid curve.
2.27 nsL. The simulated and analytic hydrodynamic profiles
match forv=0.63,Ly=0.36pum, V, = 0.73um/ns,Fr = 0.06, As an example, we consider the plastic target used in the
andg=25um/n, thus yielding the theoretical growth rgi8 ~ ORCHID simulations described in the previous section. The
=2.28 nslin good agreement with the numerical simulationsvaluesFr = 0.043 and’ = 0.96 are obtained by processing the
ORCHID hydro-profiles with the procedure described in the
These tests are a clear indication that Eq. (8) can be usedEquilibrium Parameters section. Using Fig. 73.32, we deter-
determine the RT growth rates for ablation fronts with largemine the optimum fit by using with a, = 0.98 ang3, = 1.64.
small Froude numbers and short-/long-wavelength perturbationSigure 73.33 shows a plot of the unstable spectrum obtained
using Eqg. (8) (solid line) and the fitting formua (dashed
2. Fitting Formula for the Growth Rate line). The excellent agreement between the two curves indi-
Although Eq. (8) provides an accurate estimate of theates that the fitting formula represents a good approximation
ablative RT growth rates, its expression is too complicated fasf Eq. (8).
practical applications. Without a doubt, a simplification of
Eq. (8) would greatly help the target designers in the choice of

the ablator material and the implementation of the RT mixing ST rrrn e
models. For this purpose, we simplify Eq. (8) using two well- T~~~ \\\\ 2.0
known fitting formulas: S ~<_ T~ ~1\
09 r- Te——__ -
y1 = aq(Fr,v) kg = By (Fr,v) kv, (22) oy /
15
0.8 -
JTg v=1.0
Vo ZGZ(Fr'V)\J“‘1+kLm =B (Fr,v)kVy,, (23)
where L, = Lo (v +1)V+1/v" is the minimum density-gradi- 6 — T —— T —
ent scale length, and tleés andf's are functions ofr andv. C i
It turns out that Eq. (22) is particularly accurate in fitting the 5F 15 4
large Froude number results, while Eq. (23) is suitable for low C ]
Froude numbers. This is not surprising as ablation fronts wit 4 =
small Froude numbers are unstable to modes with wavelengthst - 20 ]
smaller than the density-gradient scale length whose growth is 3 ' -
strongly affected by the finitel, - ]
R <—1.0
The calculation of the coefficients;, B; and a,, 3, is == ——/——— ]
carried out using the standard fitting procedures of the 0.01 0.1 1 10
Mathematica software packag@We define a range of inter-
est for the mode wavelength from the cuthffto about 200  T¢442 Fr
times the cutoff wavelength,,,= 200A. (the parameters
andg have shown little sensitivity to the valueXf,,). The  Figure 73.31

a’s and Bs are determined by fitting the growth rateb-

Plot of coefficientsry, B1 of the fitting formula (22) versus Froude number

tained using Eq (8) with the formulas (22) and (23) over t},]éordif'ferent values of the power indexSolid line represents the regions of
) . the best fit of the analytical formula (8) with Eq. (22).
wavelength rangé; <A <A, 5y Figures 73.31 and 73.32 show
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We have determined the optimum fit for several plastic andesults indicate that the growth rate of solid-DT targets is well
solid-DT targets commonly used in direct-drive ICF experi-approximated by a Takabe-like formula
ments. Table 73.1 shows the results of the fitting procedure
dgscribed above for different laser pglses and pIas.tic target Vor = 0.94\’,‘79 —2.7 KV, (25)
thicknesses. It appears that over a wide range of thicknesses
and laser powers, the growth rate of the RT instability for
directly driven CH targets can be approximated by The RT growth rate for different ablator materials can be
determined in the same fashion by using 1-D hydro-simulations
kg to reproduce the density and pressure profiles; Egs. (14), (17),
Ycn =0.98 TT kL 17 kV,, (24)  and (18) to calculate the equilibrium parameters; and Figs.
m 73.31 and 73.32 to generate the growth-rate formulas.

where 0.6 4,,<1um. The same formula has been derived for It is very important that the 1-D hydrodynamic analytic
the aluminum-coated CH and beryllium targets. The correprofiles be carefully matched with the simulation results when
sponding time-averaged values &, v, Ly, g, andV, are  determining the relevant equilibrium parameters. Even though
shown in Tables 73.111 and 73.1V, respectively. The growth ratéhe analytic theory yields satisfactory results for DT, CH, and
for cryogenic DT targets is better represented by thyg ind ~ Be targets, it might fail to reproduce the profiles of other
Table 73.11 shows the optimum fit for different flat targets materials. For instance, the hydrodynamic profiles of plastic
driven by a 1-ns linear ramp followed by a flat-top pulse. Thestargets with highZ dopants are not well reproduced by the
single temperature model, and Eq. (8) cannot be applied to
determine the RT growth rate. The study of the RT instability
in such targets is currently under investigation.

1.1 T IIIIIII| T IIIIIII| T T T TTTTT

v =0.7

1.0F1.0 m An interesting result of the analytic theory concerns those
1. /// equilibria withv = 1 andFr > 2. Figure 73.31 shows that
— Rod . o . .
a, 09l 2.0 —~—— =T decreases dramatically with increasing Froude numbers. This
' < =T result is not surprising as the same conclusion can be reached
\
\
B \

using the results of the self-consistent stability analysis of

0.8 . n Ref. 9 reported in Eq. (5). The growth-rate formula (5) yields
\ zero growth rate for equilibria with=1 andFr > 2 when the
0.7 1 1 1 1 111 II 1 1 1 1 11 II\ 1 1 11 1111
4 I I I I I I
. T T L || T T LI || |I /ll LI |-
/

2.0 -_\07 / 7/ .

- )/ /) ] 4‘@‘ 3F
1.8”N1 0 y 7 =

co- //j/ %

By 165 S 2 . = 2r

15 e £
142, - . 3

C ' \_/ ] O] 1r ]
1.2F .

: 1 1 1111 II 1 1 1111 II 1 1 1111 I-

0 | | | | | |
0.01 0.1 1 10 0 10 20 30 40 50
TC4543 Fr TCA544 Wavelength |im)
Figure 73.32 Figure 73.33

Plot of coefficientsag, B2 of the fitting formula (23) versus Froude number Unstable spectrum of the target described inggeilibrium Parameters
for different values of the power indexSolid line represents the regions of section calculated using the analytic formula (8) (solid line) and the fitting
the best fit of the analytical formula (8) with Eq. (23). formula (23) (dashed line).
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Table 73.111: Betargets.

Th I (Fr) | (v) (Lo) (Lm) (Va) (g) Growth Rate

(um) | (TWicm?) (um) (um) (um/ns) | (um/ins2) [fit of Eq. (8)]

16 50 005 | 0.7 | 02 0.6 0.6 40 100 —9 17Ky,
V1+kLy,

16 100 006 | 0.7 0.2 0.6 0.8 60 0.99 | kg 47 KV,
V1+kLpy

32 100 006 | 06 0.4 1.2 0.8 28 1.00 J“A -17 kV,
V1+kLpy

o | kg

16 240 0.10 | 08 0.1 0.4 11 28 0.95 | -1.7 kV,

V1+kLpy

*Linear-rise laser pulse

Table 73.1V: CH targets with aluminum coating.

Th | (Fry | vy | (Lo) (Lm) (Va) (9) Growth Rate
(um) (TW/cm?) (um) (um) (um/ns) | (um/ins2) [fit of Eq. (8)]
20+0.5 100 0.07 0.9 0.7 2.6 1.9 72 0.97 kg 1.7 KV,
1+kLp,
20+1.0 100 0.08 0.7 16 5.0 2.8 63 0.98 kg -1.7 KV,
V1+kLly

second term in the square roem%kzvavb_o_ (caused by rate formula of Goncharost al (Ref. 11). The accuracy of
overpressure of the blowoff region with respect to the overdenseich a procedure has been tested by comparing the analytic
region) is larger than the instability-drive teAwkg for any  growth rates for a plastic target with the ones obtained using
wave number. This result has also been confirmed by solvingvo-dimensional simulations. This theory suggests that Takabe’s
the system (2)—(4) of Ref. 9 using an initial value code and i®rmula represents a good approximation of the growth rates
also in agreement with the numerical results of Kull (sedor only relatively large Froude numbers (0.FK< 5) and

Ref. 6). In addition, the numerical results seem to indicate tha&lectronic heat conductiom & 2.5) but fails for small Froude
such a stabilization occurs for any< 1. In conclusion, numbers and radiative materials. The complicated asymptotic
hydrodynamic profiles witlv< 1 andFr > 2 are RT stable for formula of Ref. 11, which is valid for arbitrary Froude num-

all wavelengths. bers, has been simplified by using simple fits over a wide range
of Froude numbers and power indices for thermal conduction.
Conclusions In addition, simple growth-rate formulas for solid DT, plastic

The growth rate of the ablative Rayleigh—Taylor instability (CH), and beryllium targets have been derived. Even though
is calculated using the analytic theory of Gonchagb\al the analytic theory yields satisfactory results for DT, CH, and
(Ref. 11) and the output of one-dimensional simulations oBe targets, it might not be adequate for other materials such as
laser-accelerated targets. The simulated density and pressetdorinated plastic. The hydrodynamic profiles of plastic tar-
profiles are used to determine the equilibrium paraméters gets with highZ dopants are not well reproduced by the single
Va4, 0, v, andLg via a newly developed fitting procedure. Thosetemperature model and Eq. (8) cannot be applied to determine
parameters are then substituted into the self-consistent growttive RT growth rate.
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