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In recent years, several authors1–14 have studied the linear
growth of the Rayleigh–Taylor (RT) instability in ablation
fronts accelerated by laser irradiations. The determination of
the instability growth rate is crucial to the success of inertial
confinement fusion (ICF)15,16 because an excessive distortion
of the front could lead to a severe degradation of the capsule
performance with respect to the final core conditions by
seeding the deceleration-phase RT instability and preventing
the onset of the ignition process.

For a successful implosion, ICF targets must be designed to
keep the RT growth at an acceptable level. Because of the
complexity of 2-D or 3-D codes and the mesh refinement
needed to simulate hydro-instabilities, 2-D or 3-D simulations
cannot be routinely used to study the capsule stability and
mixing. The best approach to target design is to carry out a
preliminary analysis by using 1-D simulations to study the
main characteristics of the implosion and then processing the
data with a mixing model to study the evolution of the instabil-
ity and the induced rms deviations. Once the preliminary
design is completed, the optimization can be carried out by
using 2-D or 3-D codes. Since the mixing model predictions
are based on the initial perturbation amplitude and linear
growth rates, it is very important to generate an accurate and
reliable growth-rate formula to be used in conjunction with the
1-D code output.

According to the linear classical theory,17 the interface
between a heavy fluid of constant density ρh and a light fluid
of constant density ρl in a gravitational field g pointing toward
the light fluid is unstable. A small perturbation would grow
exponentially in time, ~ e tγ cl , at a rate

γcl
cl= A kgT , (1)

where AT h l h l
cl = −( ) +( )ρ ρ ρ ρ  is the Atwood number and k

is the perturbation wave number.

Growth Rates of the Ablative Rayleigh–Taylor Instability
in Inertial Confinement Fusion

If the density is smoothly varying between the two fluids
and the minimum density-gradient scale length
L d dxm = ( )min ρ ρ  is finite, then a distinction must be
made between those modes with wavelength larger and smaller
than Lm. The long-wavelength modes (kLm << 1) are not
affected by the finite Lm and grow according to Eq. (1), while
the short-wavelength modes (kLm >> 1) are localized inside
the smooth interface and grow at the rate18

γ = g

Lm
. (2)

An asymptotic formula reproducing the results at short and
long wavelengths can be easily generated by inspection of
Eqs. (1) and (2) leading to

γ =
+

A kg

A kL
T

T m

cl

cl1
. (3)

In laser-accelerated targets, the ablation process and the
thermal transport add a great deal of complication to the
evolution of the instability. The overdense target material (with
density ρa) is ablated at a rate ̇m Va a= ρ , where Va is the
ablation velocity. The latter represents the penetration speed
of the ablation front in the overdense target. The ablated
material blowing off the target rapidly expands inside the
ablation front and accelerates to large velocities relative to the
overdense targets.

Several authors1–14 have shown that the ablation process
leads to a reduction of the instability growth rate. The so-called
ablative stabilization was first discussed in Ref. 1 and thereaf-
ter extensively studied in Refs. 2–13. Because of the math-
ematical complexity of the problem, simplified analytic models
such as the sharp boundary model have been used to describe
the linear phase of the instability. However, such models are
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heuristic in nature as they lack a proper closure, which is left
to the physical intuition. For such reasons, different authors
using different closure equations have produced different
growth-rate formulas (see Refs. 1, 5, and 12). Numerical
simulations have confirmed the stabilizing effect of ablation
and indicated that, in some cases (as described later), the
growth rate can be approximated by the following formula:

γ = −0 9 3 1. . .kg kVa (4)

Equation (4) was derived in Ref. 3 by fitting the numerical
solution of the linearized conservation equations including
ablation and electronic heat conduction. As stated in the
Growth Rates section, Eq. (4) does not correctly reproduce
the growth rates in the presence of a significant radiation
energy transport leading to smooth density profiles. It is
important to observe that Eq. (4) does not include the stabiliz-
ing effect of finite density-gradient scale length and it can only
be applied to very sharp ablation fronts or modes with
kLm << 1.

Only very recently, the analytic stability theory of acceler-
ated ablation fronts has been carried out in the limit of sub-
sonic ablation flows8–12 (i.e., fronts with ablation velocity less
than the sound speed at the ablation front) by using compli-
cated asymptotic matching techniques. Subsonic ablation
fronts are characterized by two dimensionless parameters:10

the Froude number Fr V gLa= 2
0  and the power index for

thermal conduction ν κ ν~ T( ) . Here, L0 is the characteristic
thickness of the ablation front, which is proportional to the
minimum value of the density-gradient scale length6

L L Lm m0
11= +( )[ ]+ν νν ν . The analytic theory developed in

Refs. 8–11 shows that the instability growth rate is strongly
dependent on the magnitude of the Froude number. For large
Froude numbers,9,10 the main stabilizing effects are ablation
and blowoff convection, and the growth rate can be written in
the following form:9,12

γ = − − +( )A kg A k V V A kVT T a T a
2 2 1b.o. , (5)

where

A V VT
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Γ(x) is the gamma function and Vb.o. is the velocity of the
blowoff material at the distance ~λ from the ablation front.
Observe that the cutoff wave number obtained by setting γ = 0
in Eq. (5) occurs at long wavelengths,8

k L
Fr

O kLc 0
0

1

0
1

1 1= ( )





+ ( )[ ]{ } <<
−( )µ ν ν ν

ν
 , (7)

and short-wavelength modes are stable. As shown in Refs. 9
and 10, Eq. (5) can be accurately fitted by Eq. (4) for ν = 2.5
and 0.1 < Fr < 5, thus suggesting that the latter can be applied
to ablation fronts with large Froude numbers.

When the Froude number is less than unity (Fr << 1), the
analytic stability theory becomes more complicated and can be
carried out only in the limits of ∈ = kL0 << 1 and ∈ >> 1.
The analysis of Ref. 11 has shown that long-wavelength
modes with wave numbers ∈ << 1 have a growth rate

  γ β. A kg kVT a− , where 1 < β < 2 is a function of ν,
β ν ν= +( ) +( )Γ Γ1 2 1 12 . Short-wavelength modes (kL0 > 1)
are unstable, and the corresponding perturbations are miti-
gated by ablative convection, finite density gradient, and
thermal smoothing. Their growth rate can be written as

γ α= + −g L c k L V c k L Va a0 0
2 4

0
2 2

0
2

0

for 1 << kL0 << Fr−1/3, and

γ = ( ) −c g V k L c kVa a1
2

0
2

2

for the wave numbers near the cutoff (k ≈ kc). The parameters
α and c0−2 have lengthy expressions described in Ref. 11, and
a complete summary of the growth-rate formulas is given in
Table 1 of Ref. 11. The cutoff wave number kc of ablation
fronts with small Froude numbers occurs at short wavelengths
and scales as kcL0 ~ Fr−1/3 >> 1.

The growth-rate formulas obtained in Ref. 11 for small
Froude numbers and short/long wavelengths can be combined
with the formula (5) for large Froude numbers into a single
expression that reproduces the analytic results in the appropri-
ate limits (Fr << 1, Fr >> 1, ∈ << 1, ∈ >> 1). According to
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Ref. 11, the asymptotic formula can be written in the following
form:

γ δ ω
ξ

δ β

= + + −
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A detailed comparison of the growth rates obtained by using
Eq. (8) and the numerical solutions of the conservation equa-
tions has demonstrated a remarkable agreement over a wide
range of values for Fr, ν, and ∈ (see Ref. 11).

Despite its lengthy expression, the asymptotic formula can
be easily computed once the Froude number Fr, the length L0,
the acceleration g, the ablation velocity Va, and the power
index for thermal conduction ν are known. The main difficulty
in using Eq. (8) lies in the determination of the equilibrium
parameters whose values are strongly dependent on the domi-
nant energy transport mechanism. In this article, we describe
a simple procedure to be used in conjunction with existing one-
dimensional hydrodynamic codes to determine Fr, L0, g, Va,



GROWTH RATES OF THE ABLATIVE RAYLEIGH–TAYLOR INSTABILITY

LLE Review, Volume 73 23

and ν. In addition, we apply this procedure to accelerated flat
foils commonly used in ICF experiments and determine the
unstable spectrum using Eq. (8). We also compare the analytic
growth rates with the results of two-dimensional simulations
obtained using the code ORCHID.19 Numerical fits of Eq. (8)
are also studied for different ablators, and simplified formulas
are generated for a fast growth-rate estimate. It is the aim of
this article to simplify the theoretical result of Betti et al.
(Refs. 8–11) to make it useful to ICF target design.

Equilibrium Parameters
One-dimensional simulations are commonly used in ICF

target design, and several 1-D codes describing laser-acceler-
ated targets are available at universities and national laborato-
ries. Among them, the most frequently used are the codes
LILAC,20 HYADES,21 LASNEX,22 etc. In this article, the au-
thors have extensively used the code LILAC, a 1-D Lagrangian
code including laser absorption, classical flux-limited thermal
transport, and multigroup radiation diffusive transport. The
equation-of-state package available in LILAC includes the
ideal gas, Thomas–Fermi, and SESAME tables.

The analytic stability analyses are usually based on a single-
temperature (or one-group) diffusive model for the heat trans-
port, i.e., the heat flux is proportional to the temperature
gradient, and the thermal conductivity follows a power law of
the temperature, κ κ ν= ( )a aT T , where κa, Ta are the thermal
conductivity and temperature calculated at the peak density,
and ν is the power index. These simplifications make the
problem solvable with analytic techniques.8–12,14 If the radi-
ated energy is negligible (low-Z materials, such as DT), the
energy is transported mainly by electronic heat conduction. In
this case, the power index ν = 2.5 (as given by Spitzer23) and
L A Vh h a a a0 1= −( ) ( )γ γ κ ρ , where γh is the ratio of the
specific heats, A m Zi= +( )1  is the average particle mass, ρa
is the maximum density, and Va is the ablation velocity,
respectively (see Ref. 8). However, if a significant amount of
energy is present in the radiation field, then an accurate
estimate of the energy transport requires the use of multigroup
radiation transport models. In such models, the radiation
energy spectrum is divided into several groups. Each group is
described by a radiation temperature obeying an energy diffu-
sion equation. Because of the complexity of such models, an
analytic stability analysis would be intractable. For such rea-
son, the analytic theories are based on a single-group model
(one temperature). However, if the one-group diffusive trans-
port model is used in the stability analysis, then one should at
least make sure that such a model reproduces the one-dimen-
sional hydrodynamic profiles obtained using the multigroup

model. In other words, one should fit the multigroup hydro-
profiles with the one-group profiles by properly selecting the
value of ν and L0. This is an essential requirement for the
stability analysis, assuring that the linearization is performed
about the right equilibrium. Of course, there is no guarantee
that the two-dimensional effects are correctly included in the
one-group model, even though the one-dimensional profiles
are correctly reproduced. However, the RT is mainly a hydro-
dynamic instability, and one could hope that if the 1-D hydro-
dynamic profiles are correctly included, then the 2-D/3-D
stability analysis would be independent of the heat transport
model. This speculation could be verified a posteriori by
comparing the analytic results with 2-D simulations including
multigroup radiation transport.

In summary, the analytic analysis is based on the one-
group subsonic diffusive transport model (or isobaric model).
The parameters ν, Fr, and L0 of such a model are determined
by fitting the analytic hydro-profiles with those obtained from
1-D simulations including multigroup radiation transport.
The results of the analytic stability theory are then compared
with the full 2-D simulations including multigroup radia-
tion transport.

As shown in Ref. 6, the density profile of subsonic ablation
fronts, described by the one-temperature diffusive transport
model, obeys the following first-order differential equation:

d dy Lξ ξ ξν= − −( )+1
01 , (9)

where ξ is the density normalized to its peak value, ξ ρ ρ= a ,
and ν is the power index for thermal conduction. The equilib-
rium pressure is determined by the momentum-conservation
equation d p U dy g+( ) =ρ ρ2  and the mass conservation
equation d U dyρ( ) =[ ]0 , which can be rewritten in the fol-
lowing dimensionless form:

1 2

0Π
Π

a
a

d

dy

d

dy Fr L
U y V= + ( ) =ξ ξ ξ ξ,      , (10)

where Π = p pa , Πa a a aV p= ρ  is the normalized abla-
tion velocity, and pa is the pressure at the location of the peak
density ρa. Observe that Eqs. (9) and (10) for the unknowns ξ
and Π depend on the four parameters Πa, Fr, L0, and ν. Keeping
in mind that our goal is to reproduce the hydro-profiles of the
1-D simulations, we determine these parameters by fitting the
analytic hydro-profiles with the numerical ones. Let’s define
with ξ ρ ρs a=  and Πs ap p=  the normalized simulated
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density and pressure profiles. If the predictions of the one-
group model were exact, then the simulated profiles would
represent an exact solution of Eqs. (9) and (10); however, this
is not the case, and replacing ξ with ξs in Eq. (9) leads to an
error. For convenience, we take the logarithm of Eq. (9) and
define the error as

er = +( ) − − −
−







ν ξ ξ
ξ

1
1

10ln ln ln .s
s

s
L

d

dy
(11)

Observe that er = 0 if ξs = ξ. In order to reproduce the simu-
lated profiles over the entire ablation front, it is useful to
minimize the integrated quadratic error (δ) defined as
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where ξmin, ξmax are the minimum and the maximum values
of the density of the fitting region defining the extension of the
ablation front (ξmin = 0.01 and ξmax = 0.99 are two possible
values). The minimization of δ is obtained by setting to zero the
partial derivatives with respect to ν and L0:

∂δ
∂

∂δ
∂νL0

0= = . (13)

Substituting Eq. (12) into Eq. (13) leads to the following
estimates of L0 and ν:
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and vH(ξ)b = H(ξmax)−H(ξmin). In the same fashion, the Froude
number and dimensionless ablation velocity Πa can be deter-
mined by minimizing the integrated quadratic error η in the
momentum conservation equation
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where Πs s ap p=  is the simulated normalized pressure pro-
file. After some straightforward algebra, the minimization with
respect to Πa and Fr yields
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The integration limits y(ξmin), y(ξmax) represent the location of
the points with density ξmin and ξmax, respectively. Using the
peak density ρa and the pressure at the location of the peak
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density pa, the acceleration and ablation velocity can be easily
determined from Eqs. (14) and (17):

V
p

g
V

L Fra a
a

a

a= =Π
ρ

,      .
2

0

1
(18)

This technique has been tested on the hydrodynamic profiles
obtained using the code LILAC. We consider a planar CH foil
of thickness d = 18 µm irradiated by a 0.35-µm-wavelength
laser of 50-TW/cm2 intensity with a 1-ns linear ramp. The
pulse duration is 3 ns. The profiles obtained from the simula-
tion are slowly varying in time. For the test, we consider the
profiles at time t = 2 ns and substitute the simulated density and
pressure into Eqs. (14), (17), and (18) and obtain ν = 0.7, L0 =
0.24 µm, Fr = 0.032, g = 36 µm/ns2, and Va = 0.54 µm/ns. Then,
using these values, we solve Eqs. (9) and (10) to determine the
analytic density and pressure profiles. Figure 73.27 shows the
simulated and the analytic profiles for the CH target. The
excellent agreement between the profiles shows the accuracy
of the fitting procedure described above. In Fig. 73.28, the
fitting parameters ν, L0, and Fr are plotted as functions of time,
and the dashed lines represent the corresponding average
values. It is important to notice that the power index for thermal
conduction to be used in the one-group model (ν = 0.7) is
well below the Spitzer23 (ν = 2.5) or the Zeldovich24 value
(ν . 6.5), thus showing the importance of the multigroup
treatment of the radiation transport in plastic targets.

Lower-Z materials such as solid DT are a good test of the
fitting procedure because they are expected to produce a very
low level of radiation and to approximately follow the Spitzer
model with ν ≈ 2.5. We have considered a planar DT foil of

thickness d = 120 µm irradiated by the pulse described above.
Substituting the simulated profiles into Eqs. (9) and (10) yields
ν = 2, L0 = 0.03 µm, and Fr = 5. This result indicates that
radiation transport has a small effect in cryogenic DT targets.

Tables 73.I and 73.II show the time-averaged values of Fr,
ν, L0, and Va for several plastic (CH) and DT targets of dif-
ferent thicknesses (Th) and laser intensities (I). It is important
to observe that plastic targets have smooth density profiles
(large density-gradient scale length), low ablation velocity,
ν < 1, and small Froude numbers while solid-DT targets
have sharp profiles, large ablation velocity, ν ≈ 2, and large
Froude numbers.
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Figure 73.27
Normalized density and pressure profiles obtained by using isobaric model
(solid lines) and 1-D numerical simulation (dots).

Figure 73.28
Temporal evolution (solid lines) and average values (dashed lines) of the
Froude number Fr, power index for thermal conduction ν, and the character-
istic thickness of ablation front L0 for a CH target.
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Growth Rates
1. Comparison with Numerical Results

Once the equilibrium parameters are calculated, Eq. (8) can
be used to determine the growth rates. As discussed in the
previous section, there is no guarantee that the analytic stabil-
ity analysis using the one-temperature model would reproduce
the results of the 2-D simulations using the multigroup radia-
tion diffusion treatment even though the 1-D simulated and
analytic hydrodynamic profiles are identical. It is necessary to
validate the formula by comparing the analytic and the numeri-
cal growth rates.

As a first test of the analytic theory, we compare the analytic
growth rates with Takabe’s formula.3 The latter has been
derived by fitting the numerical solution of the exact, linear-
ized, single-fluid conservation equations including Spitzer

conductivity and a finite Mach number. This test is useful
because it validates the assumption of subsonic flow and the
simplification leading to the isobaric model.5 Takabe’s for-
mula can be written in the following dimensionless form:3

ˆ ,γ γ
γ

α β= = −
cl

T T X (19)

where γ cl = kg  is the classical growth rate, X kV ga= 2 ,
αT . 0.9, and βT . 3.1. Similarly, Eq. (8) can also be rewritten
in dimensionless form:
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Table 73.I:  CH targets.

Th

(µm)

I

(TW/cm2) (µm) (µm) (µm/ns) (µm/ns2)

Growth Rate

[fit of Eq. (8)]

10 50 0.03 0.8 0.2 0.7 0.8 95

18 50 0.03 0.8 0.3 1.0 0.6 50

20 100 0.04 0.9 0.3 1.1 0.9 76

20 240* 0.05 0.9 0.2 0.7 1.3 130

25 240* 0.05 0.9 0.2 0.7 1.2 123

*Linear-rise laser pulse

Fr ν L0 Lm Va g

1 01
1

1 8. .
kg

k L
kV

m
a+

−

1 01
1

1 8. .
kg

k L
kV

m
a+

−

0 99
1

1 7. .
kg

k L
kV

m
a+

−

0 97
1

1 6. .
kg

k L
kV

m
a+

−

0 98
1

1 6. .
kg

k L
kV

m
a+

−

Table 73.II:  DT targets.

Th

(µm)

I

(TW/cm2) (µm) (µm) (µm/ns) (µm/ns2)

Growth Rate

[fit of Eq. (8)]

100 50 4.1 2.0 0.02 0.13 2.8 97

190 50 3.8 2.0 0.03 0.20 2.7 60

190 100 4.0 2.1 0.07 0.49 4.6 77

Fr ν L0 Lm Va g

0 94 2 6. .kg kVa−

0 94 2 6. .kg kVa−

0 94 2 6. .kg kVa−
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The growth rates calculated using Eq. (19) and Eq. (20) for ν
= 2.5 and different Froude numbers are shown in Fig. 73.29.
Observe that the two formulas approximately agree for Froude
numbers between 0.1 and 5. This result is not surprising as
Takabe’s formula has been derived using Spitzer conductivity
leading to sharp profiles (small L0 and therefore relatively large
Froude numbers). We conclude that the RT growth rate in low-
Z materials with Fr > 0.1, such as solid DT, is well described
by Takabe’s formula over a wide range of Fr (0.1 < Fr < 5). For
small Froude numbers or different values of ν, Takabe’s
formula doesn’t provide an accurate estimate of the growth rate
so Eq. (8) or its fitting formulas must be used.

When the ablation velocity is small or the density profile is
smooth—as in the case of large radiation energy transport—we
expect the Froude number to decrease. As shown in Fig. 73.29,
Takabe’s formula and Eq. (8) yield very different results for
this case. In addition, radiative transport causes the deviation
of the power index ν from the Spitzer value requiring a more
general formula than Takabe’s. For such targets, Eq. (8) can be
compared only with the results of full 2-D simulations includ-
ing a multigroup radiation-transport model. We consider the
same 18-µm plastic target described in the previous section,
and we simulate it with the code ORCHID. We then calculate
the parameters ν, Fr, L0, and Va to be used in Eq. (8) by
substituting ORCHID density and pressure profiles into
Eqs. (14), (17), and (18) and find Fr = 0.043, L0 = 0.24 µm,
Va = 0.66 µm/ns, ν = 0.96, and g = 43 µm/ns2. In Fig. 73.30, the
growth rates obtained using ORCHID (dots) are compared
with Eq. (8) (solid line), Takabe’s (dot–dashed line), and

Figure 73.29
Normalized growth rate γ kg( )  versus normalized wave number

kV ga
2



  calculated using the Takabe’s formula (dashed line) and Eq. (8)

(solid line) for different values of the Froude number and ν = 2.5.

Figure 73.30
Unstable spectrum calculated using the analytic formula (8) (solid line)
compared with the numerical results (dots) of 2-D hydrocode ORCHID,
Takabe’s formula (dot-dashed line) and modified Takabe’s formula
(dashed line).

modified Takabe’s (dashed line) formulas. The latter is the
Takabe’s formula including the stabilizing effects of finite
density-gradient scale length in a heuristic fashion,

γ α βm.T. T=
+

−T
m

a
kg

kL
kV

1
, (21)

where Lm is the minimum density-gradient scale length, Lm =
0.93 µm. Observe that Takabe’s and modified Takabe’s formu-
las fail to reproduce the simulation results in the short-wave-
length regime. Instead, the growth rates obtained with Eq. (8)
are in excellent agreement with the simulated ones over the
entire unstable spectrum.

Furthermore, we study different pulse shapes and different
target materials. We consider a 20-µm-thick CH target irradi-
ated by a square pulse with an intensity of 200 TW/cm2 and
100-ps linear rise time. According to the ORCHID simulations,
the hydrodynamic profiles reach a steady state after 1.3 ns. The
growth rates of 30-µm and 15-µm wavelength perturbations
are determined from the 2-D simulations yielding γ sim (15 µm)
= 4.9 ns−1 and γ sim (30 µm) = 4.1 ns−1. Using the ORCHID
hydrodynamic profiles and Eqs. (14), (17), and (18), we
estimate the relevant hydrodynamic parameters ν = 1.2, L0 =
0.22 µm, Va = 2.0 µm/ns, Fr = 0.12, and g = 144 µm/ns2.
Substituting such parameters into the asymptotic formula
[Eq. (8)] yields the theoretical growth rates γ th (15 µm) =
4.9 ns−1 and γ th (30 µm) = 4.06 ns−1, reproducing the simula-
tion results.
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Next, we simulate the evolution of 6-µm-wavelength sur-
face perturbation on a 20-µm-thick beryllium foil irradiated by
a square pulse with an intensity of 50 TW/cm2 and 100-ps
linear rise time. The steady state is reached after 1.5 ns and the
ORCHID simulation yields the mode growth rate γsim =
2.27 ns−1. The simulated and analytic hydrodynamic profiles
match for ν = 0.63, L0 = 0.36 µm, Va = 0.73 µm/ns, Fr = 0.06,
and g = 25 µm/ns2, thus yielding the theoretical growth rate γth

= 2.28 ns−1 in good agreement with the numerical simulations.

These tests are a clear indication that Eq. (8) can be used to
determine the RT growth rates for ablation fronts with large/
small Froude numbers and short-/long-wavelength perturbations.

2. Fitting Formula for the Growth Rate
Although Eq. (8) provides an accurate estimate of the

ablative RT growth rates, its expression is too complicated for
practical applications. Without a doubt, a simplification of
Eq. (8) would greatly help the target designers in the choice of
the ablator material and the implementation of the RT mixing
models. For this purpose, we simplify Eq. (8) using two well-
known fitting formulas:

γ α ν β ν1 1 1= ( ) − ( )Fr kg Fr kVa, , , (22)

γ α ν β ν2 2 21
= ( )

+
− ( )Fr

kg

kL
Fr kV

m
a, , , (23)

where L Lm = +( ) +
0

11ν νν ν  is the minimum density-gradi-
ent scale length, and the α’s and β’s are functions of Fr and ν.
It turns out that Eq. (22) is particularly accurate in fitting the
large Froude number results, while Eq. (23) is suitable for low
Froude numbers. This is not surprising as ablation fronts with
small Froude numbers are unstable to modes with wavelengths
smaller than the density-gradient scale length whose growth is
strongly affected by the finite kLm.

The calculation of the coefficients α1, β1 and α2, β2 is
carried out using the standard fitting procedures of the
Mathematica software package.25 We define a range of inter-
est for the mode wavelength from the cutoff λc to about 200
times the cutoff wavelength λmax ≈ 200λc (the parameters α
and β have shown little sensitivity to the value of λmax). The
α’s and β’s are determined by fitting the growth rate γ ob-
tained using Eq. (8) with the formulas (22) and (23) over the
wavelength range λc < λ < λmax. Figures 73.31 and 73.32 show
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Figure 73.31
Plot of coefficients α1, β1 of the fitting formula (22) versus Froude number
for different values of the power index ν. Solid line represents the regions of
the best fit of the analytical formula (8) with Eq. (22).

the value of α, β for different Fr and ν. The solid section of the
curves represents the region of optimum fit, i.e., the region
where each formula fits the data at its best. According to the
value of Fr and ν, one should use the formula corresponding to
a solid curve.

As an example, we consider the plastic target used in the
ORCHID simulations described in the previous section. The
values Fr = 0.043 and ν = 0.96 are obtained by processing the
ORCHID hydro-profiles with the procedure described in the
Equilibrium Parameters section. Using Fig. 73.32, we deter-
mine the optimum fit by using γ2 with α2 = 0.98 and β2 = 1.64.
Figure 73.33 shows a plot of the unstable spectrum obtained
using Eq. (8) (solid line) and the fitting formula γ2 (dashed
line). The excellent agreement between the two curves indi-
cates that the fitting formula represents a good approximation
of Eq. (8).
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We have determined the optimum fit for several plastic and
solid-DT targets commonly used in direct-drive ICF experi-
ments. Table 73.I shows the results of the fitting procedure
described above for different laser pulses and plastic target
thicknesses. It appears that over a wide range of thicknesses
and laser powers, the growth rate of the RT instability for
directly driven CH targets can be approximated by

γ CH ≈
+

−0 98
1

1 7. . ,
kg

kL
kV

m
a (24)

where 0.6 < Lm < 1 µm. The same formula has been derived for
the aluminum-coated CH and beryllium targets. The corre-
sponding time-averaged values of Fr, ν, L0, g, and Va are
shown in Tables 73.III and 73.IV, respectively. The growth rate
for cryogenic DT targets is better represented by the fit γ1, and
Table 73.II shows the optimum fit for different flat targets
driven by a 1-ns linear ramp followed by a flat-top pulse. These
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Figure 73.33
Unstable spectrum of the target described in the Equilibrium Parameters
section calculated using the analytic formula (8) (solid line) and the fitting
formula (23) (dashed line).

Figure 73.32
Plot of coefficients α2, β2 of the fitting formula (23) versus Froude number
for different values of the power index ν. Solid line represents the regions of
the best fit of the analytical formula (8) with Eq. (23).

results indicate that the growth rate of solid-DT targets is well
approximated by a Takabe-like formula

γ DT ≈ −0 94 2 7. . .kg kVa (25)

The RT growth rate for different ablator materials can be
determined in the same fashion by using 1-D hydro-simulations
to reproduce the density and pressure profiles; Eqs. (14), (17),
and (18) to calculate the equilibrium parameters; and Figs.
73.31 and 73.32 to generate the growth-rate formulas.

It is very important that the 1-D hydrodynamic analytic
profiles be carefully matched with the simulation results when
determining the relevant equilibrium parameters. Even though
the analytic theory yields satisfactory results for DT, CH, and
Be targets, it might fail to reproduce the profiles of other
materials. For instance, the hydrodynamic profiles of plastic
targets with high-Z dopants are not well reproduced by the
single temperature model, and Eq. (8) cannot be applied to
determine the RT growth rate. The study of the RT instability
in such targets is currently under investigation.

An interesting result of the analytic theory concerns those
equilibria with ν . 1 and Fr > 2. Figure 73.31 shows that α1
decreases dramatically with increasing Froude numbers. This
result is not surprising as the same conclusion can be reached
using the results of the self-consistent stability analysis of
Ref. 9 reported in Eq. (5). The growth-rate formula (5) yields
zero growth rate for equilibria with ν = 1 and Fr > 2 when the
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second term in the square root −A k V VaT b.o.
2 2  (caused by

overpressure of the blowoff region with respect to the overdense
region) is larger than the instability-drive term ATkg for any
wave number. This result has also been confirmed by solving
the system (2)–(4) of Ref. 9 using an initial value code and is
also in agreement with the numerical results of Kull (see
Ref. 6). In addition, the numerical results seem to indicate that
such a stabilization occurs for any ν ≤ 1. In conclusion,
hydrodynamic profiles with ν ≤ 1 and Fr > 2 are RT stable for
all wavelengths.

Conclusions
The growth rate of the ablative Rayleigh–Taylor instability

is calculated using the analytic theory of Goncharov et al.
(Ref. 11) and the output of one-dimensional simulations of
laser-accelerated targets. The simulated density and pressure
profiles are used to determine the equilibrium parameters Fr,
Va, g, ν, and L0 via a newly developed fitting procedure. Those
parameters are then substituted into the self-consistent growth-

rate formula of Goncharov et al. (Ref. 11). The accuracy of
such a procedure has been tested by comparing the analytic
growth rates for a plastic target with the ones obtained using
two-dimensional simulations. This theory suggests that Takabe’s
formula represents a good approximation of the growth rates
for only relatively large Froude numbers (0.1 < Fr < 5) and
electronic heat conduction (ν . 2.5) but fails for small Froude
numbers and radiative materials. The complicated asymptotic
formula of Ref. 11, which is valid for arbitrary Froude num-
bers, has been simplified by using simple fits over a wide range
of Froude numbers and power indices for thermal conduction.
In addition, simple growth-rate formulas for solid DT, plastic
(CH), and beryllium targets have been derived. Even though
the analytic theory yields satisfactory results for DT, CH, and
Be targets, it might not be adequate for other materials such as
chlorinated plastic. The hydrodynamic profiles of plastic tar-
gets with high-Z dopants are not well reproduced by the single
temperature model and Eq. (8) cannot be applied to determine
the RT growth rate.

Table 73.III:  Be targets.

Th

(µm)

I

(TW/cm2) (µm) (µm) (µm/ns) (µm/ns2)

Growth Rate

[fit of Eq. (8)]

16 50 0.05 0.7 0.2 0.6 0.6 40

16 100 0.06 0.7 0.2 0.6 0.8 60

32 100 0.06 0.6 0.4 1.2 0.8 28

16 240* 0.10 0.8 0.1 0.4 1.1 28

*Linear-rise laser pulse
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Table 73.IV:  CH targets with aluminum coating.

Th

(µm)

I

(TW/cm2) (µm) (µm) (µm/ns) (µm/ns2)

Growth Rate

[fit of Eq. (8)]

20+0.5 100 0.07 0.9 0.7 2.6 1.9 72

20+1.0 100 0.08 0.7 1.6 5.0 2.8 63
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