Near-Forward Stimulated Brillouin Scattering

In stimulated Brillouin scatteridg(SBS) an incident (pump) motive force associated with the light waves, which is propor-
light wave is scattered by the electron-density fluctuationsional to D(Ah D\h>.

associated with an ion-acoustic (sound) wave. This process

generates a frequency-upshifted (anti-Stokes) light wave and a The geometry of near-forward SBS is illustrated in
frequency-downshifted (Stokes) light wave. For most scatteiig. 72.15. The pump wave propagates in the directidag,of
ing angles the anti-Stokes wave is driven nonresonantly anhich defines the axis. By substituting the Anséatze

can be neglected priori. The resulting instability is referred

to as three-wave SBS. However, for near-forward scattering Ah(t,r) = )2{,60 +A, exp[i (ks N _wst)]
the anti-Stokes wave can be driven near-resonantly and must be _
retained in the instability analysis. When the role of the anti- +A_ exp[—| (ks - wst)]}
Stokes wave is significant, the resulting instability is referred .
- 3

to as four-wave SBS. exp[l (ko = wot)] Tec ®)

In this article the spatiotemporal evolution of near-forward (=N (k.3 O+ 4
SBSis studied in detail. The conditions under which three- and n(tr)= exp[| ( S ws )] cc. 4)

four-wave SBS occur are quantified, and expressions for the
saturation times and steady-state gain exponents are derivedEq. (1), wherekg « kg = 0 andws = ¢k, and using the

for both types of instability. envelope and paraxial approximations, one can show that
Governing Equations [ﬁ +i(k2 /2K = co /v ] = —ilw2 2000V N 5
SBS is governed by the Maxwell wave equation z (kS/ ko = s/ 0) Ar ( e /2w 0) #o. ()
(08 + w2 - c202) A = —w2n Ay, (1) [dz ~i(k2/2ko + w5 /vo)]A*_ = (w2 /2w0v0) N Ay, (6)
together with the sound wave equation where vg = czko/wo is the group speed of the pump wave.

The time derivatives were omitted from Egs. (5) and (6)

1 because the time taken for the light waves to cross the plasma
(df% —chz)m =EC§D2<Ah m\h>' (2) is much shorter than the time taken by the sound wave to
The electromagnetic potentiély, = (vh/cs)(me/rn )]/2 is the
high-frequency electron velocity divided by a characteristic
speed that is of the order of the electron thermal speisdhe
low-frequency electron-density variation divided by the equi-
librium electron density, is the electron plasma frequency,
Csis the sound speeat, andm, are the electron and ion masses, P1798
respectively, and the brackets) signify that only low-fre-
qguency terms are retained. The evolution of the light waves f§gure 72.15
modified by the nonlinear electron current, which is propor_Geometry of near-forward SBS. The pump, anti-Stokes, Stokes, and sound

. o denoted by the subscripts,3;, ands, tively.
tional ton/Ap,, and the sound wave is driven by the pondero=2"® 8¢ €eNotec by Te SUBSCTIPIS,Z:, ands, respeciively
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respond to the ponderomotive forcEhe termkZ /2kg is the
reduction ink, associated with off-axis propagation and the
termszwy/vq are the changes iy associated with the anti-
Stokes and Stokes frequency shifts, respectively. For all but the follows from Eqgs. (13) thaG.(t-t', z-z') describes the
smallest angles the latter terms can be neglected. By substiteffects on the light waves at the poirgt)(of an impulse applied
ing Ansatze (3) and (4) into Eqg. (2), and making the weakto the sound wave at the poitit ¢'). The role ofG(t-t', z-2')
coupling approximation, one can show that is similar.

N(t,z)=J’:ﬁ°m G(t-t,z-z)qt,z)dtdz. (14)

AN =-i (ws/z)(p(),% +p0A*_). (7) One cap splve Egs. .(11) and (12) by using a Laplace
transform in time, for which

By making the substitutionsoj(/)zA+ - A, w]ézA*_ - A_,
ooeN/a)Jé2 - N, andz/vy - z, and adopting the convention
thatAy is real, one can rewrite Egs. (5)—(7) as

G(s2) = f: G(t, z) exp(-st)dt. (15)

The transformed Green functions satisfy the equations
(9, xiKk)A. =FiyN, (8)
(d, zik)G, =FiyG, (16)
(0 +v)N =iy (A, +A)+S1,x), 9)
where (s+v)G =-iy(G, +G.)+5(2). (17)

2 B bstituting Eq. (17) in Eq. (16 finds that
K:CZKSZ/ZOOO, V:wewsAo/Z(wows)J/: (10) y substituting Eq. (17) in Eqg. (16) one finds tha

(G,

0

a -pOG,0 G-ud(z)

v is a phenomenological term that accounts for the Landau %% S= 0O E% S+ O 5 E} (18)
damping of the sound wave, a8i$ a phenomenological term 2f6-0 Do AO-0 OHA(9) O
that maintains the electron-density fluctuations associated
with the sound wave at their thermal level in the absence afhere
instability. In addition to the instability described in Eqgs. (8)
and (9), there is a mirror-image instability, in which the a=p+ik, B=y?/(s+v), u=iy/(s+v). (19)
directions of the anti-Stokes and Stokes waves are inter-
changed, that evolves independently. If one denotes the eigenvalues of the propagation matrix by
*A, where
Analysis
The Green functions (impulse responses) associated with (2 2\V2
Egs. (8) and (9) are defined by the equations A= (a -B ) ’ (20)
(9, 2ik)G, =FiyG, (11)  one can write the solution of Eq. (18) in the form
Ocrv)e=-y(ei+6)relal). a2 6.0 Cecuen(ls) Ol Dwen(-)) .,
It follows from Eqs. (11) and (12), and the theory of character- -U Hl 1+p H—p 1+p
istics, thatG.(t,2) andG(t,2) can only be nonzero fdar= 0
andz = 0. The solutions of Egs. (8) and (9) are where
p=p/(A+a). (22)

At 2) :I: _fi, G.(t-t',z-2)qt,z)dt'dz, (13)
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It follows from Egs. (17) and (21) that For large values of one can use the method of steepest
descent to evaluate the inversion integrals. The Stokes re-
sponse

5 - _H(-p)ep(27)
(1+p) ( iy exp[iKz+ 2y(t2)¥2 - vtl
2(1— _ G_(t,2) ~ . (30)
L H2(1-p) exp(-27)  &(2) . 23) 2y (124
(1+p) S+v

and the anti-Stokes and sound responses
By using the fact tha(l- p)/(1+ p) = (a - B)/A, one can
rewrite the Green functions in the form G, (t,2) ~ i(y/2K)(t/z)]/2G_(t, 2), (31)

G. = p[Feosh(A2) +(a - B) sinh(A2)/A],  (24)
G(t,2) ~ =i (t/2"*G_(1.2), (32)

G =-2u?(a - B) sinh(Az)/A +3(2)/(s+Vv).  (25)
respectively. Equations (30) and (32) are the usual results for
Since the Green functions are even functions tifey have no  three-wave SBS, in which the anti-Stokes response is ne-
branch points in the complesplane. The inversion integral glecteda priori.# For future reference, notice that the coeffi-
associated with the Laplace transform (15) is cient of the second term in the exponent of the Stokes response
is real: In three-wave SBS the Stokes frequency shift equals

G(t,z)=i_J’ G(s.2) exp(st) ds, (26) the sound frequency. Let
2mJB
t3=y?z/v?, gz=y?z/v (33)
whereB denotes the Bromwich contour. To the best of our
knowledge, the inversion integrals associated with Egs. (2Bnd
and (23) cannot be done exactly.
T =k2z/y2. (34)

1. Three-Wave SBS

The anti-Stokes wave is driven nonresonantly wherThe Stokes and sound responses growtmsty, at which time
K >> |[3| . In this three-wave regime= a andp=if/2k. Since  their gain exponent ig;.*> Subsequently, they decay in a time
Re(A) > 0 for smalls, the expfdz) terms in Eqgs. (21) and (23) that is comparable to the growth time. It is clear from Eqg. (31)
correspond to spatial growth, whereas the €kg(terms that as the Stokes and sound responses grow, they produce a
correspond to spatial decay. The growing terms all contain theeaker anti-Stokes response that grows along with them. At
factor expikz), which is the spatial dependence required tantermediate timess, /G_ ~ y/k . The smallness parameter
drive the Stokes response resonantly. The transformed Gregfk, which is the ratio of the temporal growth rate of three-wave

functions SBS to the Stokes frequency shift associated with off-axis
propagation, also arises when one studies the temporal growth
G, = —u[pexp(az) + exp(—az)], (27)  of near-forward SBSWhent ~ 7 the amplitudes of the anti-
Stokes and Stokes responses are comparable. Since the anti-
G = pexp(az), (28)  Stokes process consumes phonons, the anti-Stokes response

moderates the growth of SBS significantly at this time and
Egs. (30)—(32) cease to be valid. This assertion is justified
G = -p?[exp(ad - exp(ad] +6(2)/(s+v). (29) mathematically in Appendix A.

The second terms on the right sides of Eqgs. (27) and (22) Four-Wave SBS

are required for small values afbut can be neglected for The anti-Stokes wave is driven near-resonantly when
large values of, as one can verify by evaluating the inver- k <<|[3|. In this four-wave regimeA = (2iKB)]/2 and
sion integrals. pzl—(ZiK/B)]/z. Since Re{) > 0 for smalls, the expi2)
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terms in Egs. (21) and (23) correspond to spatial growthgxponentigzand the four-wave equations [Egs. (37) and (38)]
whereas the expfz) terms correspond to spatial decay. Theare never relevant. Conversely, supposekhbt? << 1; then

transformed Green functions T<<t, <<tz Itfollows from these inequalities that the impulse
responses begin to grow according to the three-wave equa-
G, = J—ry[exp(,\z) + exp(—}\z)]/z, (35) tions, then continue to grow and decay according to the four-

wave equations. Their maximal gain exponegji€onsistent
with the assertion that the anti-Stokes response moderates the
G= —/Jz(l—p)[exp(}\z) —exp(—/\z)]/2+5(2)/(5+ v). (36) growth of near-forward SBS, in this parameter reggnés
smaller thangs by a factor of f?/kv)/2. Notice that the
transition from three-wave to four-wave growth always occurs
The second terms on the right sides of Eqgs. (35) and (3&) the absence of damping.
are required for small values afbut can be neglected for
large values of, as one can verify by evaluating the inver- Discussion
sion integrals. The anti-Stokes and Stokes waves evolve according to
Egs. (13). The properties of the Green functions were dis-
For large values of one can use the method of steepestussed in the previous section. To complete our analysis we
descent to evaluate the inversion integrals. The anti-Stokes anthke the common assumption that the source termis arandom
Stokes responses function with the statistical properties

VeIST12 oy %ei "/6(y2K22t /2)% _ WE - (qt,z))=0, (40)

Gi(t,2) ~7F v2(,,2,2 15\¥6
(12)"?(y 2% /2) (r.2)s (1" 2")) =05t -t")8(z -2),  (41)

respectively, and the sound response

where( ) now denotes an ensemble averfé.The source
strengtho is determined by the requirement that the density
fluctuations associated with the sound wave have their
thermal values in the absence of instabfiit}f It follows

It is clear from Eqgs. (37) that the anti-Stokes and StokeBom Egs. (13) and (41) that

responses are comparable. Let

G(t,2) ~ &3 (akty2)°G_(t.2). (38)

2\ _ z .t Y ) 2 1 !
t, =334 V2 2/4v32, g, =334¥V22/20¥2  (39) <|Ai(t'z)| >_a.[0 Jo |Ga(t-tz-2)[ oz (42)

The impulse responses grow unti t4, at which time their Because the integrands in Egs. (42) are non-negative, the
gain exponent ig,.>’ Subsequently, they decay in a time thatcontributions to the wave intensities from each source point
is comparable to the growth time. When the Stokes responseiigrease monotonically and saturate in times that are compa-
maximal, the temporal rate of change of its exponeimt/ig3: rable to the Green-function growth times described in the
In four-wave SBS the Stokes frequency shift differs from theAnalysis section. The Green-function gain exponents and
sound frequency by an amount that is proportional to thgrowth times are proportional fo- Z' in both the three-wave
damping rate of the sound wave. It is verified in Appendix Band four-wave regimes. Thus, the contributions from adjacent

that Eqgs. (37) and (38) are valid for> 1. source pointsZ =z) are small and saturate quickly, whereas
the contributions from distant source poird's< 0) are large
3. Evolution of the Impulse Responses and saturate slowly: The saturation times and asymptotic

The spatiotemporal evolution of the impulse responsesgalues of the integrals in Egs. (42) are dominated by the
depends on the parametar/y2.5 Suppose thatv/y2 >> 1;  contributions from distant source points.
thents << 7 <<ty. It follows from the first of these inequalities
that the impulse responses grow and decay according to the Suppose thatv/y? >> 1; then the saturation tinhe~ t3.11
three-wave equations [Egs. (30)—(32)]. Their maximal gairDne can evaluate the integrals in Egs. (42) by using the method
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of steepest descefiln steady state the Stokes intensity has thevith each other and the pump wave. However, as the Stokes and
form sound waves grow, they produce a weaker anti-Stokes wave
that grows along with them. In four-wave SBS the anti-Stokes,
Stokes, and sound waves all interact strongly with each other
2\ oexp(2g) : )
<|A-(Z| >*ﬂ- (43)  and the pump wave. In the weak-coupling regime the spa-
4 (293) tiotemporal evolution of SBS depends on the scattering angle
through the parameter &fv/y2, wherey is the temporal
Consistent with the discussion of the previous paragraph, tlggowth rate of three-wave SBS in an infinite plasmés the
gain exponent for the Stokes intensity gs.Zquation (43) is  frequency shift associated with off-axis propagation, aisd
the analog for near-forward SBS of the result of Bepal8for  the damping rate of the sound wave. For large scattering angles
backward SBS. Conversely, suppose #hdy? << 1; thenthe (kv/y2 >> 1) the instability grows and saturates according to
saturation timés~t,.11 In steady state the Stokes intensity haghe three-wave equations. The saturation time and steady-state
the form gain exponent are given by Egs. (33). For small scattering
angles kv/y? << 1) the instability begins to grow according to
2 12 the three-wave equations, then continues to grow and saturates
) (y /KV) o exp(29,) . ) . S
<|A_(z)| > ~ - (44)  according to the four-wave equations. The saturation time and
252334 n1/2(294)1/ steady-state gain exponent are given by Egs. (39). Since the
anti-Stokes process consumes phonons, the presence of a
Consistent with the discussion of the previous paragraph, ttstrong anti-Stokes wave reduces the saturation time and steady-
gain exponent for the Stokes intensity @5.2 state gain exponent significantly. The initial growth of SBS in
the strong-coupling regime and the subsequent transition to the
The preceding analysis is based on the weak-couplingeak-coupling regime were also discussed briefly.
approximation, which is not valid for short times, very small
scattering angles, or very high pump intensities. A generédfCKNOWLEDGMENT
analysis of Eqs_ (1) and (2), which allows the coupling to be This work was supported by the National Science Foundation under
strong or weak, is described in Appendix C. Wkeg/yz >> Contract No. PHY-9057093, the U.S. Department of Energy Office of

. tial Confinement Fusion under Cooperative Agreement No. DE-FC03-
1, SBS begins to grow as a strongly coupled three-wa\/§er
9 9 gly P 2SF19460, the University of Rochester, and the New York State Energy

mStabllllty' th.e.n continues to g.row asa Weakly (?OUpled threeﬁesearch and Development Authority. The support of DOE does not consti-
wave instability> The preceding results describe the latefyte an endorsement by DOE of the views expressed in this article.

growth phase. In particular, the value rof/y? determines

whether SBS saturates as a weakly coupled three- or four-wagg@pendix A: Three-Wave SBS

instability. Wherkwy/y? << 1, SBS begins to grow as astrongly  In the three-wave regime the transformed Green functions
coupled three-wave instability, then continues to grow as aan be approximated by Eqgs. (27)—(29). The inverse transform
strongly coupled four-wave instability and saturates as aweaklyf each term in these equations is tabuldfeso it is not
coupled four-wave instability.The preceding four-wave re- difficult to show that

sults describe the saturation of SBS.

Gi(t,2) = - {(y/ZK)(t/z)J/ZI1[2y(tz)]/2]exp(iKz—vt)

The transient (spatiotemporal) phase of SBS was observed
recently by Lakt all2 In their experiment SBS was initiated + iJo[ZV(tZ)j/Z] exp(-ikz- Vt)} H(t)H(2), (A1)
by optical mixing rather than density fluctuations associated
with the sound wave. There is good agreement between the
theoretical predictions described herein, modified to include
the effects of a low-intensity probe wave, and the experi- G_(t,2) = iylo[2y(tz)]/2]exp(iKz— WH(t)H(2), (A2)
mental results.

Summary

The spatiotemporal evolution of near-forward SBS wasg(t, 7) = y(t/z)l/zll[Zy(tz)]/z]exp(i Kz—vt) H(t) H(2)
studied in detail. Two types of instability can occur. In three-
wave SBS only the Stokes and sound waves interact strongly +H(t) 5(2) exp(-nt). (A3)
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Equations (30)—(32) follow from Eqgs. (A1)—(A3) and the fact 5 o\
that I,(x) ~ exp(x)/(2m)¥? as x — . (dtt Yoot )n =-2wy(A +A), (C4)

One can also derive Egs. (30)—(32) by using the method efherev is a phenomenological damping term. For simplicity
steepest descent. The arguments of the inversion integrals afl notation the subscrifg was omitted from the sound fre-
contain the factorexp[(p(s)], where ¢s) = y?z/(s+v)+s.  quencyw. Equations (C3) and (C4) govern near-forward SBS
The argument functiop is maximal ats=-v + y(z/t)]/z. in the strong-coupling regime and reduce to Egs. (8) and (9) in
At this point B:y(t/z)]/2 and the three-wave condition the weak-coupling regime.

Kk >>|B| is equivalent to the conditioh<<k?z/y?, as as-

serted in the text. One can determine the Green functions associated with
Egs. (C3) and (C4) by using a Laplace transform in time.
Appendix B: Four-Wave SBS The expressions for the transformed Green functions contain

Equations (37) and (38) were derived by using théhe terms exp(+Az), where A :(a2 —BZ)J/Z and
method of steepest descent. The arguments of the inversigh= —Ziwyz/(s2 +2vs+ a)z). In the strong-coupling regime
integrals all contain the factorexp[(p(s)], where |s|>>w and B =-2iwy?/s?.
®(s) = €4z(2k)¥? [(s+v)¥? + st. The real part of the argu-
ment functiong is maximal ats= -v +e/76 y2K22/2t2)1/3. The anti-Stokes wave is driven nonresonantly when .

At this point| | = (2y4t2/i<22)]/3 and the four-wave condition In this three-wave regime = ik — 2iwy?2/s? . The arguments

K <<|ﬁ| is equivalent to the condition>>k2z/y2, as as- oftheinversionintegrals containthefactexp[(pi(s)],Where

serted in the text. @+(s)= —2iwy?z/s? + st. The real parts of argument func-
tions ¢, attain their maximal valu63/2(y2wzt2) 3/24/3 at

It was stated in the text that the Stokes frequency shifs = e¢”T/6(4y2wz/t)1/ 3 5Theseresults are the analogs for near-
differs from the sound frequency. One can explain this differforward SBS of the results of Mounaix and Pesfhand
ence by analyzing four-wave SBS in the frequency domain. Ledlinkelet al., 1°for backward SBS. The three-wave condition
s - —iw; then the spatial growth rate i)sKJ/Z[Zi/(v - iw)]yz. >> [ is equivalent to the condition<< k32z/yw"2 and the
It is not difficult to show that the square of the real part ofstrong-coupling Conditioris| >> v is equivalent to the condi-
the spatial growth rate ig% H-w+(v2 +w2)y2%/(v2 +@?).  tion t<<y?z/w?.

The maximal value of %e spatial growth rate is

3%4yk¥2 /yY2 'which corresponds tw = -v/~/3. Thus, the The anti-Stokes wave is driven near-resonantly wheg
instability selects the Stokes frequency that corresponds & In this four-wave regimeA = 2(Kw)l/2y/s and
maximal growth. o(s) = 2(kw)¥?yz/s+st. The argument function attains its
maximal value2¥2(kw)¥4(yzt)¥? at s= (ka)¥*(2yz/t)Y2 5
Appendix C: Strongly Coupled SBS Notice that four-wave SBS is a purely growing instability. The
By substituting the Anséatze four-wave conditionk << 8 is equivalent to the condition

t >>k¥2z/ywV2  which is consistent with the analysis of the
A . preceding paragraph, and the strong-coupling condition is
An(tr)= X{AO + A, exp(iks[D) equivalent to the condition<< yx¥2z/w32.
+A_ exp(-iks m)} exp[i(ko M- wot)] +cc. (C1)
The spatiotemporal evolution of SBS in the strong-coupling
regime is controlled by the parameten/y2.5> Whenkaw/y?
n(t.r) = nexp(iks []) +coe. (C2) >>1,thetransition from strong to weak coupling occurs before
the transition from strongly coupled three-wave growth to
strongly coupled four-wave growth. Thus, SBS begins to
in Egs. (1) and (2), using the envelope and paraxial approgrow as a strongly coupled three-wave instability, then contin-
imations, and making the substitutiorrelézk - A, ues to grow as a weakly coupled three-wave instability. Subse-
wjézA*_ - A, coen/w]s/2 - n,andz/vy - z, one can show quently, SBS evolves in the manner described idtradysis
that section. Wherw/y? << 1, the transition from strongly coupled
three-wave growth to strongly coupled four-wave growth oc-
(02 + iK)Ai =Fiyn, (C3) curs before the transition from strong to weak coupling. This
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second transition does not occur urtib> 1 [EqQ. (34)]. 9.

Thus, SBS begins to grow as a strongly coupled three-wave
instability, then continues to grow as a strongly coupled four-

wave instability and saturates as a weakly coupled four-10.

wave instability.

11.
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