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In a recent paper1 we described the motion of electrons in the
electromagnetic field of a circularly polarized laser pulse
propagating through a plasma. Electrons that are in front of
the pulse initially can be accelerated to high energies and
extracted easily. Although this direct acceleration scheme is
less than ideal because the pulse can generate a parasitic wake,
its simplicity is noteworthy. The wake fields produced by short
pulses have been observed recently,2,3 and future experi-
ments will study the interaction of electron bunches with these
wake fields. One would only need to change the timing of an
electron bunch in these experiments to test the scientific
feasibility of direct acceleration. In this article we study the
dephasing time of an electron accelerated by a pulse of infinite
width to determine the propagation time and plasma length
required to observe direct acceleration.

In the following sections, the trajectory of a charged particle
is determined analytically for a representative pulse profile; the
dephasing time of an accelerated particle is determined; its
dependence on the speed, length, and intensity of the pulse
along with the injection energy of the particle is studied in
detail; and finally, the main results are summarized.

Particle Motion in a Planar Field
The motion of a particle, of charge q and mass m, in an

electromagnetic field is governed by the equation4

d u a u aτ µ µ
ν

µ ν∂+( ) = , (1)

where uµ is the four-velocity of the particle divided by c, τ is
the proper time of the particle multiplied by c, and aµ is the
four-potential of the field multiplied by q/mc2. The metric
four-tensor gµν = diag(1,−1,−1,−1).

For a planar field aµ has y and z components that are
functions of t and x. It is convenient to denote the transverse
(two-vector) component of aµ by a, the transverse component
of uµ by v, and the longitudinal components of uµ by γ and u.
In this notation, the transverse component of Eq. (1) is
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dτ v a+( ) = 0. (2)

For a particle that is in front of the pulse initially, and is not
moving transversely,

v a= − . (3)

By using Eq. (3), one can rewrite the longitudinal components
of Eq. (1) as

  
d d ut xτ τγ ∂ ∂= ( ) = − ( )v v2 22 2,     . (4)

For a circularly polarized field

a a aµ φ φ= ( )0 0 2, , cos , sin . (5)

We assume that the phase φ = t−sx, where s < 1 is the inverse
phase speed of the pulse, and the amplitude a is a function of
c = t−rx, where r > 1 is the inverse group speed of the pulse.
Equations (3)–(5) were solved in Ref. 1 for a particle that is at
rest initially. The solution of these equations for a particle that
is moving initially is similar. Since the ponderomotive poten-
tial   v

2 2  is independent of φ, it follows from Eqs. (4) that

d r uτ γ −( ) = 0. (6)

By combining Eq. (6) with the definition of γ, one can show that
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where
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ω γ= −( ) − −( ) +( )[ ]r u r0 0

2 2 2
1 2

1 1 v . (8)

In Eqs. (7) the − sign applies to the case in which γ  > ru, which
corresponds to a particle that is moving more slowly than the
pulse, and the + sign applies to the case in which γ < ru, which
corresponds to a particle that is moving more quickly than the
pulse. By using the fact that 1 0

2
0
2= −γ u , one can rewrite

Eq. (8) in the convenient form

  
ω γ= −( ) − −( )[ ]0 0

2 2 2
1 2

1ru r v . (9)

For the case in which γ0 = 1 and u0 = 0, Eqs. (7) and (9) reduce
to the corresponding equations of Ref. 1. A particle that is
moving more slowly than the pulse initially will be repelled by
the pulse if ω = 0. For this to happen the pulse intensity must
equal the repelling intensity1

a ru r2
0 0

2 22 1= −( ) −( )γ , (10)

in which case the gain in particle energy1

δγ γ= −( ) −( )2 10 0
2ru r . (11)

For completeness, a covariant analysis of particle motion in a
circularly polarized field is given in Appendix A, and a brief
description of particle motion in an elliptically polarized field
is given in Appendix B.

Equations (3), (7), and (9) define uµ as a function of c. By
combining the equation   d ruτ γc = −  with Eqs. (7), one can
show that

  d dτ ωc c= ± ( )1 , (12)

where the + sign applies to the case in which γ < ru and the
− sign applies to the case in which γ > ru. If the solution of
Eq. (12) can be inverted, uµ can be expressed as an explicit
function of τ.

To illustrate the particle motion we consider the simple
profile

a e lrc c( ) = ( )sin ,π 2 (13)

where e2 is the peak intensity of the pulse and l is its full-width
at half-maximum. For this profile

ω γ πc c( ) = −( ) − ( )[ ]0 0
2 2 1 2

1 2ru m lrsin , (14)

where

m r e ru2 2 2
0 0

2
1 2= −( ) −( )γ (15)

is the ratio of the pulse intensity to the repelling intensity.

When m < 1, the pulse overtakes the particle completely.
In this case c varies between 0 and 2lr , and the solution of
Eq. (12) is

τ π γ πc c( ) = −( )[ ] ( )2 20 0lr ru F lr m, , (16)

where F denotes the incomplete elliptic integral of the first
kind, of modulus m.5 It follows from Eqs. (7) and (9) that
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(17)

The particle motion is illustrated in Fig. 70.52 for the case in
which γP = 30, γ0 = 7, and e2 = 7 [The Lorentz factor γP is
defined in the first of Eqs. (22)]. In Fig. 70.52(a) the phase,
normalized to lr , is plotted as a function of time, normalized to
γ Pl2 . As the particle is accelerated by the front of the pulse, the
rate of phase slippage decreases. However, since the peak
intensity of the pulse is lower than the repelling intensity, the
particle speed never equals the pulse speed and the pulse
overtakes the particle. As the particle is decelerated by the back
of the pulse, the rate of phase slippage increases. It is evident
from Fig. 70.52(a) that the deceleration time equals the accel-
eration time. In Fig. 70.52(b) the longitudinal momentum is
plotted as a function of the normalized time. Although the
particle speed never exceeds the pulse speed, the energy
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associated with the transverse particle motion allows the par-
ticle momentum to exceed the pulse momentum. Because the
longitudinal momentum is a symmetric function of time, the
deceleration distance equals the acceleration distance.

When m > 1, the particle is repelled by the pulse. In this case
c increases from 0 to 2 11lr mπ( ) ( )−sin  as the particle as-
cends the ponderomotive potential and decreases from

2 11lr mπ( ) ( )−sin  to 0 as the particle descends the pondero-
motive potential. The solution of Eq. (12) is

τ
π γ θ

π γ θ
c( ) =

−( )[ ] ( )
−( )[ ] ( ) − ( )[ ]







2 1

2 2 1 1

0 0

0 0

lr m ru F m

lr m ru K m F m

, ,

, ,
(18)

where

θ πc c( ) = ( )[ ]−sin sin1 2m lr (19)

and K denotes the complete elliptic integral of the first kind, of
modulus m.5 The first form of Eq. (18) applies to the ascent
and the second form applies to the descent. Equations (17)
apply to both the ascent and descent, provided that τ is defined
by Eqs. (18) and (19). The particle motion is illustrated in
Fig. 70.53 for the case in which γP = 30, γ0 = 7, and e2 = 10. In
Fig. 70.53(a) the normalized phase is plotted as a function of
the normalized time. Initially, the pulse overtakes the particle
and the rate of phase slippage is positive. Since the peak
intensity of the pulse is higher than the critical intensity, the
particle is accelerated until its speed equals the pulse speed
and the rate of phase slippage is zero. Subsequently, the
particle overtakes the pulse and the rate of phase slippage is
negative. The descent time is longer than the ascent time
because the time dilation associated with a particle moving
faster than the pulse is larger than that associated with a par-
ticle moving slower than the pulse. In Fig. 70.53(b) the
longitudinal momentum is plotted as a function of the normal-
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Figure 70.52
Particle trajectory for the case in which γP = 30 and γ 0 = 7. The pulse intensity
e2 = 7 is slightly lower than the repelling intensity [Eq. (10)]. (a) Normalized
phase c/lr  plotted as a function of the normalized time t lPγ 2 ; (b) longitudinal
momentum u plotted as a function of the normalized time.

Figure 70.53
Particle trajectory for the case in which γP = 30 and γ 0 = 10. The pulse inten-
sity e2 = 10 is slightly higher than the repelling intensity [Eq. (10)].
(a) Normalized phase c/lr  plotted as a function of the normalized time t lPγ 2 ;
(b) longitudinal momentum u plotted as a function of the normalized time.
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ized time. Since the particle does not reach the peak of the
pulse, the x component of the ponderomotive force is always
positive and the longitudinal momentum of the particle in-
creases monotonically. Because the longitudinal momentum is
an asymmetric function of time, the descent distance is longer
than the ascent distance.

Dephasing Time of an Accelerated Particle
The previous analysis shows how an intense pulse repels a

charged particle that is in front of the pulse. The relation
between the pulse intensity, the particle injection energy, and
the gain in particle energy was studied in Ref. 1. In this section
the time required for the pulse to catch and repel the particle,
and, subsequently, for the particle to outrun the pulse, is
studied. This time is referred to as the dephasing time and is
denoted by T. The distance traveled by the particle during the
dephasing time is referred to as the dephasing distance and is
denoted by X. It follows from Eqs. (17) and (18) that

T
lr r u K m

m r ru
=

−( ) ( )
−( ) −( )

4 1

1

2
0 0

2
0 0

γ
π γ

(20)

and X = T/r. For future reference, notice that K(1/m) →
log [4/(m2−1)1/2] as m → 1 and K (1/m) → π/2 as m → ∞.5

Formula (20) for the dephasing time exhibits a compli-
cated dependence on the pulse intensity and speed and the
initial particle momentum. One can gain insight into the
underlying physics by performing a pulse-frame analysis of
the acceleration process. In the notation of Ref. 1, 9 denotes a
pulse-frame quantity, the subscript A denotes the initial posi-
tion of the particle, and B denotes the position at which the
particle is repelled.

The pulse-frame energy and momentum of the particle are
related to the laboratory-frame energy and momentum by the
equations

′ = − ′ = −γ γ γ γ γP P P Pu u u u u,    , (21)

where

γ P Pr r u r= −( ) = −( )2 1 2 2 1 2
1 1 1,    . (22)

In these equations γP is the Lorentz factor associated with the
pulse speed 1/r and uP P= −( )γ 2 1 2

1 . If one uses the linear

group speed of the pulse to estimate the Lorentz factor,
γ ω ωP e= 0  , where ω0 is the carrier frequency of the pulse
and ωe is the electron-plasma frequency.6

In the pulse frame v2 is time-independent. It follows from
the first of Eqs. (4) that ′γ  is constant and, hence, that

′( ) + = ′( )u uA
2 2 2v . Since dx dt u A′ ′ = ′ ′γ , it follows that

′ = ′ ′

′( ) − ′( )[ ]′

′

∫T
dx

u x
A

x

x

AB

A
2

2 2
1 2γ

v
. (23)

In Eq. (23) the factor of 2 arises because the pulse-frame
descent time equals the pulse-frame ascent time. The factor of

′γ a  arises because of the difference between proper time and
pulse-frame time. Provided one ignores the distinction be-
tween momentum and velocity, the integral in Eq. (23) repre-
sents the ascent time of a nonrelativistic particle in the poten-
tial well   v

2 2′( )x . In the pulse frame a e x l= − ′ ′( )sin π 2 ,
where ′ =l lPγ . For this profile

′ = ′ ′( )( ) ′( )T l e K u eA A2 2 2 2γ π . (24)

The factor of 2 ′l π  arises because the ponderomotive force
associated with the pulse is inversely proportional to the pulse
length. Although Eq. (24) is complicated, the origin of each
factor is well understood.

In the pulse frame the particle begins and ends its inter-
action with the pulse at point A. Since X9 = 0, it follows that

T T X u TP P= ′ = ′γ ,    . (25)

Notice that X = T/r, as stated after Eq. (20). It follows from
Eqs. (21) and (22) that r r u r P Aγ γ γ0 0

2 1−( ) −( ) = ′  and
4 2 2 20 0lr m ru l eπ γ π−( ) = ′( )( ). Thus, Eq. (24) and the
first of Eqs. (25) agree with Eq. (20).

It is convenient to define the normalized dephasing time

T e K u eA A= ′( ) ′( )4 2 2γ π , (26)

which is the dephasing time divided by γ Pl2 . The factor of l was
due to the inverse dependence of the ponderomotive force on
the pulse length. One factor of γP was due to the Lorentz
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transformation of the pulse length from the laboratory frame to
the pulse frame; the other factor was due to the Lorentz
transformation of the dephasing time from the pulse frame to
the laboratory frame. These factors do not depend on the
physical origin or shape of the potential well in which the
particle moves. Thus, it was inevitable that they should be the
same as the factors that control the dephasing time of an
electron in the laser beat-wave accelerator7 or the laser wake-
field accelerator.7,8 For completeness, a brief analysis of the
particle motion and dephasing time associated with these
indirect acceleration schemes is given in Appendix C.

Just as a pulse-frame analysis of the acceleration process
fosters insight into the dephasing time, so also does it foster
insight into the energy gain. In the pulse frame the particle
energy is constant, and the final particle momentum has the
same magnitude as the initial particle momentum and the

opposite sign: δγ ′ = 0  and δ ′ = ′u uA2 . It follows from these

results and Eqs. (21) that

δγ = ′2u uP A , (27)

in agreement with Eq. (11).

The normalized dephasing time is plotted as a function of
pulse intensity in Fig. 70.54 for the case in which γP = 30. In
Fig. 70.54(a) the injection energy γA = 7. The solid line denotes
the exact dephasing time [Eq. (26)], and the broken line
denotes the approximate dephasing time 2 2 ′γ A e . For the
chosen values of γP and γA the approximate dephasing time is
6.4/e. When the pulse intensity is close to the repelling inten-
sity, the particle lingers near the peak of the pulse and the
dephasing time is long. As the pulse intensity increases, point
B moves toward the front of the pulse and the dephasing time
decreases. In the high-intensity regime this decrease is gradual.
Since the pulse energy located behind point B is wasted, there
is little to be gained by using pulse intensities that exceed the
critical intensity by more than a factor of 2. Since the injection
energy is constant, so also is the energy gain [Eq. (27)]. In
Fig. 70.54(b) the injection energy

γ γ µ γ µA P P= − −( ) −( )[ ]2 2 1 2
1 1 , (28)

where µ = +( )1 42 1 2
e  is a measure of the pulse intensity.

This choice of injection energy ensures that the repelling
intensity is one-half of the pulse intensity. For this injection

energy ′ = −u eA 2 , ′ = +( )γ A e1 42 1 2 , and the saturation time
is 1 7 1 4 2 1 2. +( )e , independent of γP. In the low-intensity
regime the dephasing time is long because the pondero-
motive force is weak. In the high-intensity regime the dephasing
time is almost independent of pulse intensity because the
increase in ponderomotive force that accompanies an increase
in pulse intensity is offset by the corresponding decrease in
injection energy. It follows from Eq. (27) and the preceding
discussion that the energy gain equals uPe. As the pulse
intensity increases, the energy gain increases and the required
injection energy decreases.

The normalized dephasing time is plotted as a function of
injection energy in Fig. 70.55 for the case in which γP = 30. In
Fig. 70.55(a) the pulse intensity e2 = 10. The solid line denotes
the exact dephasing time [Eq. (26)], and the broken line
denotes the approximate dephasing time 2 2 ′γ A e . For the
chosen values of γP and e the approximate dephasing time is

Figure 70.54
Normalized dephasing time [Eq. (26)] plotted as a function of pulse intensity
for the case in which γP = 30. (a) The particle injection energy γA = 7.
(b) The particle injection energy [Eq. (28)] ensures that the repelling
intensity [Eq. (10)] is one-half of the pulse intensity.
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0 89. ′γ A . When the injection energy is close to the repelling
energy, the particle lingers near the peak of the pulse and the
dephasing time is long. As the injection energy increases,
point B moves toward the front of the pulse and the dephasing
time decreases. In the high-energy regime the dephasing time
is almost independent of the injection energy because ′ ≈γ A 1.
The energy gain decreases as the injection energy increases. In
Fig. 70.55(b) the pulse intensity

e uA
2 2

4= ′( ) (29)

is twice the repelling intensity and the dephasing time is
1 7. ′ ′γ A Au . In the low-energy regime the dephasing time is
almost independent of the injection energy because ′ ≈γ γA P
and ′ ≈ −uA Pγ . The ratio ′ ′γ A Au  is almost independent of γP.
In the high-energy regime the dephasing time is long and the
energy gain is small because ′ ≈γ A 1 and ′ <<uA 1.

Summary
The motion of an electron in the electromagnetic field

associated with a circularly polarized laser pulse of infinite
width was studied analytically. When the pulse intensity is
lower than the repelling intensity [Eq. (10)], the pulse over-
takes the electron completely. When the pulse intensity is
higher than the repelling intensity, the electron is repelled by
the pulse and eventually outruns it. The time taken for the
electron to outrun the pulse is called the dephasing time and is
the product of two terms. The first term is γ Pl2 , where γP is the
Lorentz factor associated with the pulse speed and l is the
pulse length. The second term [Eq. (26)] depends on the pulse
intensity, the pulse shape, and the electron injection energy. As
a rough guideline, the second term is of order unity unless the
pulse intensity is close to the repelling intensity. For a pulse of
finite width, an electron that is not close to the pulse axis
initially will be expelled from the pulse by the radial compo-
nent of the ponderomotive force.9 Further work is needed to
quantify this snowplow effect.
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Appendix A:  Covariant Analysis of the Particle Motion
in a Planar Field

The resolution of Eq. (1) into longitudinal and transverse
components is facilitated by the introduction of the four-vector
kµ, which is defined by the equation   c = k xν

ν , and the four-
vector lµ, which is defined by the equations l l k kν

ν
ν

ν= − ,
l kν

ν = 0 , and l aν
ν = 0 , where aµ is the transverse four-

potential of a planar field of arbitrary polarization. In the
laboratory frame kµ = (1,r,0,0) and lµ = (r,1,0,0). By using
these four-vectors, one can write

  
x y k k k l l lµ µ µ

ν
ν µ

ν
νθ= + +c , (A1)

where yµ is transverse and θ = lνxν. In a similar way, one can
write

  
u k u k k k l u l l lµ µ

ν
ν µ

ν
ν

ν
ν µ

ν
ν= + ( ) + ( )v , (A2)

where vµ = dyµ/dτ is transverse, kνuν = dτc, and lνuν =
dτθ.

Figure 70.55
Normalized dephasing time [Eq. (26)] plotted as a function of particle
injection energy for the case in which γP = 30. (a) The pulse intensity e2 = 10.
(b) The pulse intensity [Eq. (29)] is twice the repelling intensity [Eq. (10)].
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The transverse component of Eq. (1) is

  
d aτ µ µv +( ) = 0, (A3)

from which it follows that

  
v vµ µ µ µτ τ( ) = ( ) + ( ) − ( )0 0a a . (A4)

Equation (A4) is the analog of Eq. (3).

By using Eq. (A4), one can rewrite the right side of Eq. (1)
as 

  
− ( )∂µ

ν
νv v 2 . Since vνvν was assumed to be a function of

c, 
  
∂µ µ= k dc . It follows from these results that the longitudi-

nal components of Eq. (1) are

    
d k u k k d d l uτ

µ
µ

µ
µ

ν
ν τ

µ
µ( ) = − ( ) ( ) =c v v 2 0,   . (A5)

It follows from the second of Eqs. (A5) that

l u l uµ
µ

µ
µτ( ) = ( )0 . (A6)

One way to obtain an expression for kνuν is to use the iden-
tity uνuν = 1, which can be rewritten as

  
v vν

ν
ν

ν
ν

ν
ν

ν
ν

ν+ ( ) + ( ) =k u k k l u l l
2 2

1. (A7)

It follows from Eq. (A7) that

  
k u l u k kν

ν
ν

ν
ν

ν
ν

ντ τ τ( )[ ] = ( )[ ] + − ( )[ ]2 2
1 v v . (A8)

Equations (A6) and (A8) are the analogs of Eqs. (7) and (8).
By using the expression for kνuν(0) that follows from
Eq. (A8), and Eq. (A6), one can show that

  
k u k u k kν

ν
ν

ν
ν

ν
ν

ν
ν

ντ τ( )[ ] = ( )[ ] + ( ) − ( )[ ]2 2
0 0v v v v . (A9)

Equation (A9) is the analog of Eq. (9). Another way to obtain
an expression for kνuν is to change the independent variable in
the first of Eqs. (A5) from τ to c. Since   d k uτ

ν
νc = , the first

of Eqs. (A5) becomes

    
d k u k k dc c

ν
ν

µ
µ

ν
ν( )





= − ( )2
2 2v v , (A10)

from which Eq. (A9) follows.

Finally, since vνvν is a function of c, Eqs. (A4), (A6), and
(A9) express uµ as a function of c. To express uµ as a function
of τ one must invert the solution of the phase equation

  d dτ ωc c= ± ( )1 , (A11)

where ω is the square root of the terms on the right side of
Eq. (A9).

Appendix B:  Guiding-Center Motion in a Planar Field
Equation (6) is valid when the v2 terms in Eqs. (4) are

independent of φ. To satisfy this condition we assumed that the
field is circularly polarized and that the particle is in front of the
pulse initially and not moving transversely. Equations (7), (9),
and (10) follow from Eq. (6) and the definition of γ, which
requires that

  
d uτ γ 2 2 2 0− −( ) =v . (B1)

For the elliptically polarized field

a a ay z
µ φ φ= ( )0 0, , cos , cos , (B2)

where ay = aδ and a az = −( )1 2 1 2δ , the v2 terms in Eqs. (4)
are not independent of φ, and Eq. (6) is not valid. However, the
particle motion is known to consist of a fast oscillation about
a guiding center and a guiding-center drift that varies slowly.
In a vacuum, the guiding-center motion is governed by the
equation9

d u a aτ µ µ
ν

ν∂= − 2 , (B3)

where  denotes a φ-average and a a aν
ν = − 2 2. We

expect Eq. (B3) to provide a reasonable description of the
guiding-center motion in a rarefied plasma, in which the phase
speed of the field is slightly higher than the speed of light.
Equation (B3) has associated with it the conservation equation

d u u a aτ
ν

ν
ν

ν+( ) = 0. (B4)
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Since the ponderomotive potential a2 4  is independent of
φ, it follows from Eq. (B3) that

d r uτ γ −( ) = 0. (B5)

Equation (B5) is the analog of Eq. (6). Since v  is constant,
Eq. (B4) reduces to

d u aτ γ 2 2 2 2 0− −( ) = . (B6)

Equation (B6) is the analog of Eq. (B1). Thus, for a particle
that is in front of the pulse initially, γ  and u  are given by
Eqs. (7) and (9), in which v2 is replaced by a2 2 , and the
repelling conditions are described by Eq. (10).

Appendix C:  Particle Motion in a Planar
Electrostatic Field

The four-potential of an electrostatic field can be written as

a pk k k ql l lµ µ
ν

ν µ
ν

ν= + , (C1)

where kµ and lµ were defined in Appendix A. We assume that
aµ is a function of c, from which it follows that 

  
∂µ µ= k dc .

Since the electrostatic field is unaffected by the gauge trans-
formation a a bµ µ µ∂→ + , where b is an arbitrary function of
c, p is redundant. In the Lorentz gauge p = 0.

By substituting decomposition (C1) in Eq. (1) and contract-
ing the resulting equation with kµ, one can show that

  
d k u p k u d p l u d qτ

µ
µ

ν
ν

ν
ν+( ) = ( ) − ( )c c . (C2)

Since   k u dν
ν τ= c , the p terms in Eq. (C2) cancel, as they must

do. By substituting decomposition (C1) in Eq. (1) and contract-
ing the resulting equation with lµ, one can show that

d l u qτ
µ

µ +( ) = 0. (C3)

It follows from Eq. (C3) that

l u l u q qµ
µ

µ
µτ τ( ) = ( ) + ( ) − ( )0 0 . (C4)

One way to obtain an expression for kνuν is to use the identity

uνuν = 1, which can be rewritten as

k u l u l lν
ν

ν
ν

ν
ντ τ( )[ ] = ( )[ ] −

2 2
. (C5)

Another way to obtain an expression for kνuν is to solve
Eq. (C2) directly. By changing the independent variable from
τ to c, one can rewrite Eq. (C2) as

  
d k u d l uc c

ν
ν

ν
ν( )





= ( )





2 2
2 2 , (C6)

from which Eq. (C5) follows.

Since q is a function of c, Eqs. (C4) and (C5) express uµ as
a function of c. To express uµ as a function of τ, one must invert
the solution of the phase equation

  d dτ ωc c= ± ( )1 , (C7)

where ω is the square root of the terms on the right side of
Eq. (C5).

In the wave frame ′ = ( )k lµ 0 0 0, , ,  and ′ = ( )l lµ , , ,0 0 0 , where
l r= −( )2 1 21 . It follows from these results that   c = − ′lx ,
k u luν

ν = − ′ , l u lν
ν γ= ′ , and q l= ′φ , where φ is the electro-

static potential. Thus, Eq. (C4) can be rewritten as

′( ) = ′( ) + ′( ) − ′( ) =γ τ γ φ φ τ0 0 0, (C8)

Eq. (C5) can be rewritten as

′( )[ ] = ′( )[ ] −u τ γ τ2 2
1, (C9)

and Eq. (C7) can be rewritten as

  d dx xτ ω′ = ′( )m1 , (C10)

where ω is the square root of the terms on the right side of
Eq. (C9). The dephasing time of an accelerated particle can be
determined from Eq. (C10) in a manner similar to that de-
scribed previously. In particular, by considering the relations
between laboratory-frame and wave-frame quantities, one can
show that the dephasing time is proportional to γ λW

2 , where γW
is the Lorentz factor associated with the phase speed of the
wave and λ is the wavelength.
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The potential associated with a large-amplitude plasma
wave is described by elliptic functions. Simple formulas for the
injection energy and energy gain associated with this potential
were determined by Esarey and Piloff.10 The dephasing times
associated with this and other potentials were studied by
Teychenné, Bonnaud, and Bobin.11,12
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