Dephasing Time of an Electron Accelerated by a Laser Pulse

In a recent papéwe described the motion of electrons in the d; (v + a) =0. 2)
electromagnetic field of a circularly polarized laser pulse

propagating through a plasma. Electrons that are in front of

the pulse initially can be accelerated to high energies arebr a particle that is in front of the pulse initially, and is not
extracted easily. Although this direct acceleration scheme imoving transversely,

less than ideal because the pulse can generate a parasitic wake,

its simplicity is noteworthy. The wake fields produced by short v=-a. 3)
pulses have been observed recehflyand future experi-

ments will study the interaction of electron bunches with thesBy using Eq. (3), one can rewrite the longitudinal components
wake fields. One would only need to change the timing of aof Eq. (1) as

electron bunch in these experiments to test the scientific

feaS|b|I|.ty of direct acceleration. In this article we study tlh(.e dyy = dt(v2/2), d,u= —dX(VZ/Z). (4)
dephasing time of an electron accelerated by a pulse of infinite

width to determine the propagation time and plasma length

required to observe direct acceleration. For a circularly polarized field

Inthe following sections, the trajectory of a charged particle all = (O, 0,acos@, asinqo)/y@ (5)
is determined analytically for a representative pulse profile; the
dephasing time of an accelerated particle is determined; its
dependence on the speed, length, and intensity of the puldée assume that the phage t—sx wheres < 1 is the inverse
along with the injection energy of the particle is studied inphase speed of the pulse, and the amplitlidea function of

detail; and finally, the main results are summarized. ¥ = t-rx, wherer > 1 is the inverse group speed of the pulse.
Equations (3)—(5) were solved in Ref. 1 for a particle that is at
Particle Motion in a Planar Field rest initially. The solution of these equations for a particle that
The motion of a particle, of chargeand massn, in an  is moving initially is similar. Since the ponderomotive poten-
electromagnetic field is governed by the equdtion tial v2/2 is independent o, it follows from Egs. (4) that
dT(uu +au) =uwd,a,, (1) d;(ry —u) =0. (6)

whereut is the four-velocity of the particle divided byris By combining Eqg. (6) with the definition pfone can show that
the proper time of the particle multiplied byanda* is the

four-potential of the field multiplied bg/mc2. The metric r(ryo —u0)$a)

four-tensorg,,, = diag(1-1,-1,-1). y= 2.1

For a planar fielda# hasy and z components that are (7)
functions oft andx. It is convenient to denote the transverse
(two-vector) component @ by a, the transverse component r2-1 ’
of u# by v, and the longitudinal componentswfby yandu.

In this notation, the transverse component of Eq. (1) is where
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w= ’(ryo ~ug)’ - (r2-1)(a+ VZ)]J/2 , @8) a(w) = esin(my/2Ir), (13)

wheree? is the peak intensity of the pulse aslits full-width
In Egs. (7) the- sign applies to the case in whigh»ru, which  at half-maximum. For this profile
corresponds to a particle that is moving more slowly than the

pulse, and the sign applies to the case in whigk ru, which _ B o9 Y
corresponds to a particle that is moving more quickly than the w(d;) B (yo ruo)[l m=sin (anlr)] ' (14)
pulse. By using the fact thet=y3 —ug, one can rewrite
Eqg. (8) in the convenient form where
12 2 _(y2 _1\a2 —run)?
w:[(yo—ruo)z—(rz—l)vzl _ 9) m —(r 1)e /2(y0 ruo) (15)

is the ratio of the pulse intensity to the repelling intensity.
For the case in whicfy= 1 andug =0, Egs. (7) and (9) reduce
to the corresponding equations of Ref. 1. A particle that is Whenm < 1, the pulse overtakes the particle completely.
moving more slowly than the pulse initially will be repelled by In this case)s varies between 0 andr2and the solution of
the pulse ifw= 0. For this to happen the pulse intensity musteq. (12) is
equal the repelling intenstty

T(y)= [2Ir/n(yo - ruo)] F(mp/2ir,m), (16)

a2 = 2(yo - rup)* /(r2 -1), (10)
whereF denotes the incomplete elliptic integral of the first
in which case the gain in particle enekgy kind, of modulugn.® It follows from Egs. (7) and (9) that
- _ 2 _
3y =2(yo ruo)/(r 1). (11) r(ryo - o) T(8) - v
t) = r2-1 '

For completeness, a covariant analysis of particle motion in a 17)
circularly polarized field is given iAppendix A, and a brief (Wo - Uo)T(l!f) -1y
description of particle motion in an elliptically polarized field X(‘!’) = r2 -1 '

is given inAppendix B.

Equations (3), (7), and (9) definé as a function ofs. By  The particle motion is illustrated in Fig. 70.52 for the case in
combining the equatioml, = y —ru with Egs. (7), one can which y» = 30, y, = 7, ande? = 7 [The Lorentz factoyp is
show that defined in the first of Egs. (22)]. In Fig. 70.52(a) the phase,

normalized tdr, is plotted as a function of time, normalized to
dr/dy = +Yw(y), (12) y3l . As the particle is accelerated by the front of the pulse, the
rate of phase slippage decreases. However, since the peak
intensity of the pulse is lower than the repelling intensity, the
where thet sign applies to the case in whighk ru and the particle speed never equals the pulse speed and the pulse
- sign applies to the case in whigt» ru. If the solution of overtakes the particle. As the particle is decelerated by the back
Eqg. (12) can be inverted¥ can be expressed as an explicitof the pulse, the rate of phase slippage increases. It is evident
function ofr. from Fig. 70.52(a) that the deceleration time equals the accel-
eration time. In Fig. 70.52(b) the longitudinal momentum is

To illustrate the particle motion we consider the simpleplotted as a function of the normalized time. Although the

profile particle speed never exceeds the pulse speed, the energy
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associated with the transverse particle motion allows the paandK denotes the complete elliptic integral of the first kind, of
ticle momentum to exceed the pulse momentum. Because theodulusm.® The first form of Eq. (18) applies to the ascent
longitudinal momentum is a symmetric function of time, theand the second form applies to the descent. Equations (17)
deceleration distance equals the acceleration distance. apply to both the ascent and descent, provided ibatefined
by Egs. (18) and (19). The particle motion is illustrated in
Whenm> 1, the particle is repelled by the pulse. In this cas&ig. 70.53 for the case in whigh =30, =7, ande? = 10. In
¢ increases from 0 t§2ir/m)sin"}(ym) as the particle as- Fig. 70.53(a) the normalized phase is plotted as a function of
cends the ponderomotive potential and decreases frothe normalized time. Initially, the pulse overtakes the particle
(2Ir/m)sin"1(1/m) to O as the particle descends the ponderoand the rate of phase slippage is positive. Since the peak

motive potential. The solution of Eq. (12) is intensity of the pulse is higher than the critical intensity, the
particle is accelerated until its speed equals the pulse speed
2Ir/nm(y0—ru0)]F(9,]/m), and the rate of phase slippage is zero. Subsequently, the
T(Y)= (18)  particle overtakes the pulse and the rate of phase slippage is
2Ir/nm(y0 —ruo)][ZK(:I,/m)— F(G,:I,/m)] \ negative. The descent time is longer than the ascent time
because the time dilation associated with a particle moving
where faster than the pulse is larger than that associated with a par-
ticle moving slower than the pulse. In Fig. 70.53(b) the
0(y) = sin‘l[msi n(rﬁ///ZIr)] (19)  longitudinal momentum is plotted as a function of the normal-
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0.8 I
0.6 -
3 3
g g 04 -
o o
0.2 _
0.0
(b)
\
120
=] =]
S IS
= 2 80
[ c
[} ()
: :
§ s 40
0 | | | | | | 0 | | | | |
00 02 04 06 08 10 12 14 00 05 10 15 20 25 30
P1714 Normalized time P1715 Normalized time
Figure 70.52 Figure 70.53

Particle trajectory for the case in whigh= 30 andyp=7. The pulse intensity  Particle trajectory for the case in whigh= 30 andyg = 10. The pulse inten-
e2=7 is slightly lower than the repelling intensity [Eq. (10)]. (a) Normalized sity €2 = 10 is slightly higher than the repelling intensity [Eq. (10)].
phasae)/Ir plotted as a function of the normalized timfgz%l ; (b) longitudinal (a) Normalized phas#|r plotted as a function of the normalized tim;fgr,%l ;
momentunu plotted as a function of the normalized time. (b) longitudinal momentura plotted as a function of the normalized time.
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ized time. Since the particle does not reach the peak of tlggoup speed of the pulse to estimate the Lorentz factor,
pulse, thex component of the ponderomotive force is alwaysyp = wg/we , Wherew, is the carrier frequency of the pulse
positive and the longitudinal momentum of the particle in-andw, is the electron-plasma frequerty.
creases monotonically. Because the longitudinal momentum is
an asymmetric function of time, the descent distance is longer In the pulse frame? is time-independent. It follows from
than the ascent distance. the first of Egs. (4) thaty’ is constant and, hence, that
()2 +v2 = (up)?. Sincedx'/dt’ =u'/y}, it follows that

Dephasing Time of an Accelerated Particle

The previous analysis shows how an intense pulse repels a o '

. . . A X
charged particle that is in front of the pulse. The relation T =2y'AJ'
between the pulse intensity, the particle injection energy, and X [(u’A)2 —v2(x')]
the gain in particle energy was studied in Ref. 1. In this section
the time required for the pulse to catch and repel the particle,
and, subsequently, for the particle to outrun the pulse, i, Eq. (23) the factor of 2 arises because the pulse-frame
studied. This time is referred to as the dephasing time and @@scent time equals the pulse-frame ascent time. The factor of
denoted byT. The distance traveled by the particle during they; arises because of the difference between proper time and
dephasing time is referred to as the dephasing distance angigse-frame time. Provided one ignores the distinction be-
denoted byX. It follows from Egs. (17) and (18) that tween momentum and velocity, the integral in Eq. (23) repre-
sents the ascent time of a nonrelativistic particle in the poten-
tial well v2(x')/2. In the pulse framea = esin(-mnx/2l'),

(20)  wherel’ = ypl. For this profile

72 (23)

_ Ar?(ryg - ug) K(Y/m)
nm(r2 —1)(y0 ~rup)

T = 2yp(2"/m)(V2/e)K (v2up/e). (24)

and X = T/r. For future reference, notice thE{l1/m) -
log [4/(m?-1)Y2 asm - 1 andK (1/m) - 772 asm - .5
The factor of2l'/mr arises because the ponderomotive force
Formula (20) for the dephasing time exhibits a compli-associated with the pulse is inversely proportional to the pulse
cated dependence on the pulse intensity and speed and thegth. Although Eq. (24) is complicated, the origin of each
initial particle momentum. One can gain insight into thefactor is well understood.
underlying physics by performing a pulse-frame analysis of
the acceleration process. In the notation of Refdénotes a In the pulse frame the particle begins and ends its inter-
pulse-frame quantity, the subscriptienotes the initial posi- action with the pulse at poi&t SinceX' =0, it follows that
tion of the particle, an® denotes the position at which the
particle is repelled. T=ypT', X=upT'. (25)
The pulse-frame energy and momentum of the particle are
related to the laboratory-frame energy and momentum by thdotice thatX = T/r, as stated after Eq. (20). It follows from
equations Egs. (21) and (22) that (ryo —up)/ r2—l):ypy'A and
4lr/rm(y g —rug) = 2(2I '/IT)(\/E/G). Thus, Eq. (24) and the
V' = Vpy —Upl, U = ypU—Upy, 21) first of Egs. (25) agree with Eq. (20).
It is convenient to define the normalized dephasing time
where

T=(0V2y, me)K(V2up/e), (26)
Vp = r/(r2 —1)1/2, Up ::I/(r2 —1)1/2 : (22)
which is the dephasing time divided bﬁl . The factor of was

In these equationg is the Lorentzzfactor associated with the due to the inverse dependence of the ponderomotive force on
pulse speed f/and up :(y,% —1)]/ . If one uses the linear the pulse length. One factor g was due to the Lorentz
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transformation of the pulse length from the laboratory frame tenergyup = —€/2, ya = (1+ e2/4)]/2, and the saturation time

the pulse frame; the other factor was due to the Lorents 1.7(1+ 4/e2)]/2, independent ofp. In the low-intensity
transformation of the dephasing time from the pulse frame teegime the dephasing time is long because the pondero-
the laboratory frame. These factors do not depend on thmotive force is weak. In the high-intensity regime the dephasing
physical origin or shape of the potential well in which thetime is almost independent of pulse intensity because the
particle moves. Thus, it was inevitable that they should be thacrease in ponderomotive force that accompanies an increase
same as the factors that control the dephasing time of am pulse intensity is offset by the corresponding decrease in
electron in the laser beat-wave acceleraothe laser wake- injection energy. It follows from Eq. (27) and the preceding
field acceleratof.8 For completeness, a brief analysis of thediscussion that the energy gain equale. As the pulse
particle motion and dephasing time associated with thesatensity increases, the energy gain increases and the required
indirect acceleration schemes is give\ppendix C. injection energy decreases.

Just as a pulse-frame analysis of the acceleration processThe normalized dephasing time is plotted as a function of
fosters insight into the dephasing time, so also does it fost@rjection energy in Fig. 70.55 for the case in whigkr 30. In
insight into the energy gain. In the pulse frame the particl€ig. 70.55(a) the pulse intens#= 10. The solid line denotes
energy is constant, and the final particle momentum has thbe exact dephasing time [Eqg. (26)], and the broken line
same magnitude as the initial particle momentum and théenotes the approximate dephasing tim@y'A/e. For the
opposite signdy’ =0 and &' = 2|UA|- It follows from these chosen values gk ande the approximate dephasing time is
results and Egs. (21) that

(a)
6 | | | |
dy = 2uplup, (27) ® i
E
o 4r
in agreement with Eq. (11). = i
g
The normalized dephasing time is plotted as a function of §' 2
pulse intensity in Fig. 70.54 for the case in whygh= 30. In L ~|
Fig. 70.54(a) the injection energy= 7. The solid line denotes 0 | | | |

the exact dephasing time [Eq. (26)], and the broken line

denotes the approximate dephasing tihé2y'y /e. For the (b)
chosen values gb andy, the approximate dephasing time is
6.4/e. When the pulse intensity is close to the repelling inten-
sity, the particle lingers near the peak of the pulse and the
dephasing time is long. As the pulse intensity increases, point
B moves toward the front of the pulse and the dephasing time
decreases. In the high-intensity regime this decrease is gradual.
Since the pulse energy located behind pBiistwasted, there

is little to be gained by using pulse intensities that exceed the = -

Dephasing time

critical intensity by more than a factor of 2. Since the injection

energy is constant, so also is the energy gain [Eq. (27)]. In 10 15 20 25 30
Fig. 70.54(b) the injection energy Intensity
P1716
12
YA=VpPH™ [(y% _1)(”2 _1)] ' (28) Figure 70.54

Normalized dephasing time [Eq. (26)] plotted as a function of pulse intensity
where u = (1+ 92/4)]/2 is a measure of the pulse intensity. for the case in whichp = 30. (a) The particle injection energyg = 7.

This choice of injection energy ensures that the repellin
intensity is one-half of the pulse intensity. For this injection

) The particle injection energy [Eq. (28)] ensures that the repelling
ntensity [Eq. (10)] is one-half of the pulse intensity.
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Summary
6 The motion of an electron in the electromagnetic field
o L | associated with a circularly polarized laser pulse of infinite
g width was studied analytically. When the pulse intensity is
o 4 n lower than the repelling intensity [Eq. (10)], the pulse over-
'@ - - takes the electron completely. When the pulse intensity is
S 2 i higher than the repelling intensity, the electron is repelled by
A the pulse and eventually outruns it. The time taken for the
B = electron to outrun the pulse is called the dephasing time and is
0 the product of two terms. The first termyiél , Whereys is the
Lorentz factor associated with the pulse speedlasdhe
(b) pulse length. The second term [Eq. (26)] depends on the pulse
50 \ intensity, the pulse shape, and the electron injection energy. As
o a rough guideline, the second term is of order unity unless the
g 40 : o L .
£ pulse intensity is close to the repelling intensity. For a pulse of
2 30 finite width, an electron that is not close to the pulse axis
'g initially will be expelled from the pulse by the radial compo-
5§ 20 nent of the ponderomotive foréezurther work is needed to
A 10k guantify this snowplow effect.
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Normalized dephasing time [Eq. (26)] plotted as a function of particle
injection energy for the case in whigh= 30. (a) The pulse intensigg=10.  Appendix A: Covariant Analysis of the Particle Motion
(b) The pulse intensity [Eq. (29)] is twice the repelling intensity [Eq. (10)].in a Planar Field

The resolution of Eg. (1) into longitudinal and transverse

components is facilitated by the introduction of the four-vector
0.89ys. When the injection energy is close to the repellingk¥, which is defined by the equatioh=k"x,, and the four-
energy, the particle lingers near the peak of the pulse and thectorI#, which is defined by the equation¥l, = -k"k,,
dephasing time is long. As the injection energy increased’k, =0, and |Va, =0, wherea* is the transverse four-
pointB moves toward the front of the pulse and the dephasingotential of a planar field of arbitrary polarization. In the
time decreases. In the high-energy regime the dephasing tirteboratory framek# = (1r,0,0) andl# = (r,1,0,0). By using
is almost independent of the injection energy because 1. these four-vectors, one can write
The energy gain decreases as the injection energy increases. In

Fig. 70.55(b) the pulse intensity Xy = Yy +¢'ku/kvkv +6|u/|\/|v' (A1)
,\2
e? = 4(up) (29) _ o -
wherey,, is transverse an=1"x,. In a similar way, one can
write
is twice the repelling intensity and the dephasing time is
1.7yA/| uA|. In the low-energy regime the dephasing time is U, =V, +(kvuv)ku/kvkv +(|VUv)|u/|V|w (A2)

almost independent of the injection energy becagyse yp

andujp = -yp. Theratioy) /| uj| is almostindependent g.

In the high-energy regime the dephasing time is long and thehere v, = dy,/dt is transversekVu,, = d;, andlVu, =
energy gain is small becaugg =1 and|ujA| <<1. d;6.
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The transverse component of Eq. (1) is

dr (v, +ay) =0, (A3)
from which it follows that
vu(r) =V, (0) + aH(O) - au(r). (Ad)

Equation (A4) is the analog of Eq. (3).

dy k'u, )" 25 kkkdy (Vv f2), (AL0)

from which Eq. (A9) follows.

Finally, sincev¥v,, is a function ofy, Egs. (A4), (A6), and
(A9) expressl,, as a function ofs. To expressi, as a function
of T one must invert the solution of the phase equation

dr/dy = £1/w(y), (A11)

By using Eq. (A4), one can rewrite the right side of Eq. (1wherew is the square root of the terms on the right side of
as-d, (v"vv/z . Sincev¥v,, was assumed to be a function of Eq. (A9).

i, 9y, =k, dy . Itfollows from these results that the longitudi-
nal components of Eq. (1) are

dr (kHu, ) = —kHk,d, (Vv /2), d(1Mu,) =0, (A5)
It follows from the second of Egs. (A5) that
[Hu,(t) =1Hu,,(0).

(AB)

One way to obtain an expression kju,, is to use the iden-
tity uu, = 1, which can be rewritten as

v, + (k) vk, +(1M,)° v, =10 (A7)

It follows from Eq. (A7) that

[k"uv(r)]2 = [I"uv(r)]2 + kaV[l—vVvV(T)]. (A8)

Appendix B: Guiding-Center Motion in a Planar Field
Equation (6) is valid when the? terms in Egs. (4) are
independent of. To satisfy this condition we assumed that the
field is circularly polarized and that the particle is in front of the
pulse initially and not moving transversely. Equations (7), (9),
and (10) follow from Eq. (6) and the definition gfwhich

requires that

dr(y2 -u? —vz):O. (B1)
For the elliptically polarized field
aH = (0, 0,a, cos@,a, cosgo), (B2)

whereay, =adand a, = a(l— 52)]/2, thev? terms in Egs. (4)
are not independent ¢f and Eq. (6) is not valid. However, the
particle motion is known to consist of a fast oscillation about
a guiding center and a guiding-center drift that varies slowly.
In a vacuum, the guiding-center motion is governed by the
equatiod

Equations (A6) and (A8) are the analogs of Egs. (7) and (8).

By using the expression fdt’u,(0) that follows from
Eq. (A8), and Eq. (A6), one can show that

[k"uv(r)]2 = [k"u,,(o)]2 + kaV[vVvV(O) —VVVV(T)]. (A9)

dr(uy) = -dy(a"ay ) 2, (B3)

where () denotes apaverage and<a"av> =-a2/2. We

expect Eqg. (B3) to provide a reasonable description of the
guiding-center motion in a rarefied plasma, in which the phase
speed of the field is slightly higher than the speed of light.

Equation (A9) is the analog of Eq. (9). Another way to obtairEquation (B3) has associated with it the conservation equation

an expression fddu,, is to change the independent variable in

the first of Egs. (A5) front to 4. Sinced; = k"u,, the first
of Egs. (A5) becomes

98

d; (<u"><uv> + <aVaV>) =0.

(B4)
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Since the ponderomotive potentid /4 is independent of u'u,, = 1, which can be rewritten as
@ it follows from Eq. (B3) that

[kvu, (@] =[1u, ()] - 14, - (C5)
dT(r(y) —<u>) =0. (B5)
Another way to obtain an expression 1diu, is to solve

Equation (B5) is the analog of Eq. (6). Sina® is constant, Eq. (C2) directly. By changing the independent variable from
Eq. (B4) reduces to T to ¢, one can rewrite Eq. (C2) as

d; (<y>2 _<u>2 - a2/2) =0. (B6) d, gkvuv)Z/ZE: d, gIVuV)Z/ZE (C6)

Equation (B6) is the analog of Eqg. (B1). Thus, for a particle
that is in front of the pulse initially(y) and(u) are given by  from which Eq. (C5) follows.
Egs. (7) and (9), in whick? is replaced bya?/2, and the

repelling conditions are described by Eq. (10). Sinceq is a function off, Egs. (C4) and (C5) expreggas
afunction ofiy. To express,,as a function of, one mustinvert

Appendix C: Particle Motion in a Planar the solution of the phase equation
Electrostatic Field

The four-potential of an electrostatic field can be written as dr/dy = J_r]/w((p), (C7)

_ wherew is the square root of the terms on the right side of
a, = pky /KVk, +ql, /1], (C1) Eq. (C5).

wherekH andl# were defined iAppendix A. We assume that  Inthe wave framés;, =(0,1,0,0) andl;, =(1,0,0,0), where
a, is a function ofyy, from which it follows thatd,, = k,,d,, . I = (r2 —1)]/2. It follows from these results thag = —Ix’,

Since the electrostatic field is unaffected by the gauge trandu, = -lu’, 1Vu, =ly’, andq=1¢ , wheregis the electro-
formationa,, - a, +d,b, wherebis an arbitrary function of ~ static potential. Thus, Eq. (C4) can be rewritten as
¢, pis redundant. In the Lorentz gauge 0.
By substituting decomposition (C1) in Eq. (1) and contract- v'(r)=y'(0)+¢(0)-9(r) =0, (©8)
ing the resulting equation witt¥, one can show that

Eqg. (C5) can be rewritten as

dr(kﬂuﬂ + p) = (k"uy)dyp=(1"uy) g, (C2)
@ =[y@f -1 (C9)
Sincek"u, =d; i, theptermsin Eq. (C2) cancel, as they must

do. By substituting decomposition (C1) in Eq. (1) and contractand Eq. (C7) can be rewritten as
ing the resulting equation witH, one can show that

dr/dx’' = F1/e(x'), (C10)
d;(1#u, +q)=0. C3
T( H q) (C3) wherew is the square root of the terms on the right side of
Eqg. (C9). The dephasing time of an accelerated particle can be
It follows from Eq. (C3) that determined from Eq. (C10) in a manner similar to that de-
scribed previously. In particular, by considering the relations
IHu, (1) =1Hu,,(0) +(0) - o(7). (C4) between laboratory-frame and wave-frame quantities, one can

show that the dephasing time is proportionaﬂ&p’\ , Wwhereyy
is the Lorentz factor associated with the phase speed of the
One way to obtain an expression kdu,, is to use the identity wave andl is the wavelength.
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The potentia| associated with a |arge-amp|itude p|asma 6. W. L. Kruer, The Physics of Laser Plasma Interactipfsontiers
wave is described by elliptic functions. Simple formulasforthe ™ Physics, Vol. 73 (Addison-Wesley, Redwood City, CA, 1988).
injection energy and energy gain associated with this potential7, T, Tajima and J. M. Dawson, Phys. Rev. L&8. 267 (1979).
were determined by Esarey and PiffiThe dephasing times
associated with this and other potentials were studied by®8 P- Sprangletal, Appl. Phys. Lett53, 2146 (1988).
Teychenné, Bonnaud, and BoBih'? 9.

E. A. Startsev and C. J. McKinstrie, “Multiple Scale Derivation of
the Relativistic Ponderomotive Force,” to be published in Physical
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