Heat Transfer from Localized Absorbing Defects to the Host Coating Material in HfO₂/SiO₂ 351-nm High Reflectors

Recent atomic-force microscopy (AFM) studies of laser-induced damage morphology in HfO₂/SiO₂ UV multilayers,¹ caused by 351-nm, 1-ns laser pulses, revealed submicron-sized craters as the dominant damage morphology in these films [see Fig. 70.29(a)]. The origin of such craters was attributed to nanoscale, localized absorbers in the film matrix, the smallest size of which was estimated to be <10 nm. However, at this time, both the exact physical nature of these absorbers and the mechanism of energy transfer to the host coating material in the promotion of damage remain speculative. Empirical evidence¹ suggests that, at some time in the damage evolution, melting occurs; furthermore, near damage threshold, even the smallest absorbing defects are able to induce such melting to extend to about 50 nm inside the coating. For incident fluences 5%-20% above this threshold, the crater-depth distribution shifts dramatically, as measured by AFM (see Fig. 70.29), while for the lower fluences the melt processes and crater formation are largely confined to the top HfO₂ layer [Fig. 70.29(b)]—these processes penetrate into the next-from-the-top, SiO₂ layer at fluences ~20% above threshold [Fig. 70.29(d)].

In this work, by carrying out heat-transfer calculations for the same HfO_2/SiO_2 multilayer system, our goal was to answer the following questions:

- a. How high a temperature must an absorbing defect reach to support film-crater formation of the type observed experimentally by AFM?
- b. How does heat *conduction* affect the damage kinetics at these temperatures and for different defect and host characteristics?
- c. May heat conduction be considered the dominant energytransfer mechanism, or must other mechanisms be included for the process physics to remain plausible?

In the following, the model assumptions and simulation results will be presented. From these results, one concludes that, for realistically sized defects and absorption conditions for 351-nm laser light, a damage model commensurate with empirical, AFM evidence *must* account for energy-transfer mechanisms other than heat conduction alone.

Methodology

Heat-transfer modeling was accomplished by using the finite-element analysis code ANSYS² in rigid-grid form. The equation of motion was treated in matrix form

$$[c] \left\{ \dot{T} \right\} + [K] \left\{ T \right\} = \{ Q \}, \tag{1}$$

where [c] represents the specific-heat matrix, [K] the conductivity matrix, {T} the nodal temperature vector, and {Q} the nodal heat-flow vector. The model assumed *convective* heat transfer at the film/air interface and *conduction* inside both the defect and the host material. The model geometry, depicted in Fig. 70.30, contains alternating quarter-wave layers ($\lambda =$ 351 nm) of HfO₂ and SiO₂ of cylindrical geometry with the *r* axis along the film/air interface, and the *y* axis oriented perpendicular to the layer stack. A single, cylindrical defect is placed at the thickness midpoint of the top HfO₂ layer, its size taking on values in accordance with data in Fig. 70.30.

Heat generation inside the defect is based on uniform volume absorption of the laser light at a constant rate throughout the 1-ns laser pulse. We assume that non-Beer's law of absorption holds for these defects that are much smaller than a "skin depth." For an absorbed fraction β of the light normally incident on the defect of length *d*, the heat-generation rate inside the defect becomes

$$H_{\rm gen} = \beta \Phi_{\rm th} / d\tau, \qquad (2)$$

where $\Phi_{\rm th}$ is the damage-threshold fluence (5.6 J/cm²) and τ is the 1-ns laser-pulse duration. As reliable absorptioncoefficient data are absent for most nanoscale absorbers, β was fixed at a value of 0.1. For a value of d = 27 nm, this yields a heat-generation rate $H_{\rm gen} = 2 \times 10^{20}$ J/m³ s. To evaluate the relative influence of various other parameters, such as the

Figure 70.29

(a) Conventional laser-damage craters formed by 351-nm radiation in the HfO₂/SiO₂ film. Crater-depth distributions in the HfO₂/SiO₂ system and the electric field *E* of the incident light for different laser-fluence conditions: (b) ~5% above threshold fluence, (c) 10%-15% above threshold fluence, and (d) ~20\% above threshold fluence.

thermal-conductivity *anisotropy* and defect size and type, this H_{gen} value was initially kept constant. Later, when agreement between empirically obtained AFM results and simulations was sought, H_{gen} values were parametrically varied.

Material Properties

Two types of absorbing defects were considered:

1. *Metallic* Hf nanoclusters with bulk-metal thermal parameter values for *K* (thermal conductivity), *H* (enthalpy), and T_m (melting point);

- 2. Off-stoichiometric HfO₂ **film** with the following parameters:
 - $K HfO_2$ thin-film thermal conductivity,
 - $H HfO_2$ bulk enthalpy, and
 - T_m HfO₂ bulk melting point.

The absorbing-defect thermal parameter values are listed in Table 70.III.

Thin-film material property values are summarized in Table 70.IV, where K_x , K_y , and K_z are the Cartesian-

Figure 70.30

Model geometry employed for the finiteelement analysis of heat transfer in the HfO₂/SiO₂ system.

Table 70.III: Absorbing-defect thermal parameters.

Defect Type	K (W/m°K)	H (J/kg)	<i>Т_т</i> (°К)
Hf – metal	17.2	Hf – bulk ^a	2506
HfO ₂	0.1	$HfO_2 - bulk^a$	3085

^aReference 3.

Table 70.IV: Thin-film thermal parameters.

Material	<i>K</i> _y (W/m°K)	K_x, K_z (W/m°K)	H (J/kg)	<i>Т_m</i> (°К)
HfO ₂	0.10	0.10 γ	Bulk ^a	3085
SiO ₂	0.25	0.25 γ	Bulk ^a	1986
$\gamma = K_x / K_y; K_x = K_y; \gamma_1 = 0.1; \gamma_2 = 0.2; \gamma_3 = 0.5; \gamma_4 = 1.$				

^aReference 3.

coordinate components of the thermal conductivity and γ is the anisotropy parameter for the thermal conductivity, i.e., $\gamma = 1$ for perfect isotropy. In these simulations, $\gamma = 0.1$ was chosen for the most anisotropic case. Also, in distinguishing metallic defects from HfO_2 -type defects, thin-film anisotropy values were used for HfO2-defect properties.

Latent heat of fusion was accounted for in these calculations by enthalpy H.

Modeling Results and Discussion

Instantaneous temperature contours in 2-D space (Fig. 70.31) show the temperature-field evolution within the

Figure 70.31

Temperature contours [$T(^{\circ}K)$] obtained for the case of large HfO₂ defect and $\gamma = 0.1$ at various times after the beginning of the laser pulse: (a) 1 ns, (b) 10 ns, (c) 20 ns, and (d) 40 ns.

film at various times after the beginning of the laser pulse. These contours represent the case of a "large" HfO2 defect (R = 20 nm; d = 26.7 nm) located in the top HfO₂ layer. Note that in these contours the air/film interface is located at the bottom of each grid and the successive film layers stack upward. One finds [Fig. 70.31(a)] that at the end of the excitation pulse the heat generated is essentially confined to the defect itself, within which the temperature reaches a value of 2.7×10^4 °K. As time progresses, the locus of the peak temperature moves from the defect center toward the air/film interface [Fig. 70.31(b)]. As a consequence, 17 ns after the end of the pulse, the interface reaches a temperature of 1.5×10^4 °K. On the nanosecond time scale considered in Figs. 70.31(a)-70.31(d), convective heat transport at this interface remains physically irrelevant and, in effect, renders this interface an adiabatic boundary, fostering the modeled temperature buildup.

Critical to the comparison with empirical crater information are the lateral temperature contours, defining the lateral scale of the melting process. One can see that in the highly anisotropic ($\gamma = 0.1$) heat-conduction case represented in these figures, *lateral melt-front propagation* is fairly restricted—the melt radius remains <30 nm inside HfO₂, which is nearly a factor of 2 smaller than observed during AFM mapping of craters.

To determine the vertical-melt propagation through the film stack, Fig. 70.32 shows the vertical temperature around a "large" HfO₂ defect as a function of depth (here the air/film interface is located at the origin) at various times after the end of the laser pulse. From Fig. 70.32 it becomes apparent that within only 3 ns after the pulse, melting starts inside the SiO_2 layer (note the broken, vertical-layer-demarcation line between HfO₂ and SiO₂) and, by 10 ns after the pulse, reaches nearly halfway into the SiO₂ layer. Eventually the system starts to cool down, which sets the limit on the vertical-melt propagation. Similarly, Figs. 70.33 and 70.34 show the maximum temperature reached at any instant during the process at various depths below the defect as a function of conductivity anisotropy and defect type, respectively. For all anisotropy ratios chosen (Fig. 70.33), the SiO₂ layer experiences melting to some extent, up to ~75% of the entire layer. The same strong dependence of melting on anisotropy also holds for the "large" Hf-metal defect (Fig. 70.34), which at the fixed, identical heating rate is completely molten and itself isotropic (T_m = 2506 °K). In Figs. 70.33 and 70.34 there is a small, systematic error. The code recognizes and accounts for the change in conductivity anisotropy upon melting, but during the cooldown phase reinstates anisotropy as if the material had recovered initial crystallinity. Preliminary simulations show that this error in no way alters the seminal features or conclusions.

Vertical (along the y axis of the model) temperature profile kinetics (1 to 10 ns after the beginning of the laser pulse) for a "large" HfO_2 defect.

Figure 70.34

Maximum-temperature T_{max} vertical profiles as a function of conductivity anisotropy γ for a "large" metallic Hf defect case.

Ignoring the differences in absorption between a metallic and an off-stoichiometric defect and simply assuming that, over the laser pulse length, *equal amounts of energy* have been deposited in either one, the relative importance of *defect* heat capacity and internal heat conductivity for energy transfer to the surrounding film is outlined in Fig. 70.35. Due to its higher conductivity, the metallic defect attains a *uniform* temperature and delivers heat rapidly to its surface. This causes the surrounding HfO₂ film to reach higher temperatures than if the defect consisted of off-stoichiometric HfO₂. At the HfO₂/

Figure 70.33

Maximum-temperature T_{max} vertical profiles as a function of conductivity anisotropy γ for a "large" HfO₂ defect case.

 SiO_2 interface this difference has been mediated away by the poor conductivity of the dielectric film. The melting behavior of the SiO_2 layer is insensitive to the nature of the defect.

The issue now remains how, for equal energy volume density at the end of an excitation pulse, defects of various sizes (i.e., of various surface areas) affect the melting behavior of the host layer as well as that of the next-nearest neighboring layer. For the three sizes (small/medium/large) considered, the volumes scale as 1:6:37. Figures 70.36 and 70.37 plot the maximum temperatures reached inside the HfO2 and SiO2 layers for the three cases—Fig. 70.36 representing a dielectric defect and Fig. 70.37 a metallic defect. For the same reason as given in the discussion of Fig. 70.35 (i.e., the higher thermal conductivity of the metal), the metallic defects shed heat effectively during the laser pulse, providing for larger maximum-temperature differences between the defects with the various surface-tovolume ratios than for defects of dielectric composition. At threshold, neither dielectric nor metallic, small defects contain enough heat to melt the SiO₂ layer, indicating a critical defect size for melting to occur (at threshold) inside the SiO₂ layer. Tables 70.V and 70.VI list the melt-penetration depth ℓ_m normalized, for comparison convenience with AFM measurements, to the HfO₂/SiO₂ layer interface for both types of medium and large defects, as well as ℓ_m dependence upon a range of conductivity anisotropies. The emphasis here is on weak anisotropies: for medium defects, no melt events are recorded, and even for large defects the melt penetration into SiO_2 is very shallow.

Figure 70.35

Maximum-temperature T_{max} vertical profiles as a function of defect type. Metallic Hf versus off-stoichiometric HfO₂.

Figure 70.37

Maximum-temperature T_{max} vertical profiles as a function of the defect size for a metallic Hf defect case.

Figure 70.36

Maximum-temperature T_{max} vertical profiles as a function of the defect size for an HfO₂ defect case.

By raising the value for H_{gen} and simulating fluence conditions above threshold, one may address the question of how high a temperature a given defect must reach to generate damaging melt-penetration depths comparable to experimentally observed ones. For small- and medium-sized metallic defects the corresponding melt-penetration depths ℓ_m and defect peak temperatures are listed in Tables 70. VII and 70. VIII as a function of increasing H_{gen} . From these tables it becomes immediately apparent that experimentally measurable melt penetration occurs only for very high defect temperatures. For either defect size a temperature of 3 to 4×10^4 °K is required. Such temperatures are alarming inasmuch as the physical mechanisms so far ignored in these simulations start to play a role in the overall laser-damage model. They also point toward the inability of the current model to simulate laser damage by thermal-conductivity-dominated energy transfer alone.

Table 70.V:	Melt-penetration depth ℓ_m (nm) values, large-defect case, as a function of
	parameter γ .

Defect Type	$\gamma = 0.1$	$\gamma = 0.2$	$\gamma = 0.5$	$\gamma = 1.0$
HfO ₂	47	35	18	9
Metallic	49	38	24	14

 T_{max} (HfO₂) = 27,000 K; T_{max} (met) = 30,000 K.

Two mechanisms that spring immediately to mind have the potential for significantly altering the kinetics of laser damage by providing sources for energy absorption from the laser field at a distance from the original defect: thermoionically emitted electrons and blackbody radiation in both the IR and, more importantly, the UV portion of its spectrum. Still, during the excitation pulse, when the thermal energy is mostly bottled up inside the defect and its temperature is highest, free carriers directly emitted into or ionized by UV photons within the surrounding dielectric layer stack provide starting electrons for "avalanche-type" or other energy-transfer processes at locations that, in effect, constitute an electronic ballooning of the defect. Table 70.IX emphasizes this aspect by listing the fraction of integrated blackbody radiation with photon energy above the HfO₂ bandgap as a function of defect temperature, emitted by a heated defect into its surrounding. From Table 70.IX we see that 10% of the emitted blackbody spectrum lies above 5.6 eV for temperatures as low as 1×10^4 °K. At the temperatures predicted by the current simulations this fraction increases to nearly 90%. The potential significance of such a UV ionization mechanism was pointed out in 1978 by Manenkov and his group.⁴ Based on this earlier work, the Grenoble Group⁵ evaluated the role of such preionization in single-layer films on melting and mechanical breaking of the film matrix.

Such a "larger-effective-defect" mechanism is also a plausible answer to the earlier-mentioned discrepancy between the calculated lateral-melt penetration range and the empirical AFM data. While part of this discrepancy can be assuaged by choosing a less-severe conductivity anisotropy, the lateral seeding of heating sources by ionizing radiation is an equally provocative concept whose merit must be tested in expanded simulations.

Table 70.VI: Melt-penetration depth ℓ_m (nm) values, medium-defect case, as a function of parameter γ .

Defect Type	$\gamma = 0.1$	$\gamma = 0.2$	$\gamma = 0.5$	$\gamma = 1.0$
HfO ₂	13	5	0	0
Metallic	14	6	0	0

 T_{max} (HfO₂) = 25,000 K; T_{max} (met) = 17,000 K.

Table 70.VII: Melt-penetration depth ℓ_m , as a function of heat-generation rate H_{gen} , small-defect case.

H _{gen} (W/m ³)	T _{max} (°K)	ℓ _m (nm)
2×10^{20}	8551	0
4	18760	1
5	22110	4
6	24750	6
7	31890	9
8	37750	12
10	42990	15

H _{gen} (W/m ³)	T _{max} (°K)	ℓ _m (nm)
1×10^{20}	8652	2
2	16600	14
3	27070	23
4	36970	30
5	44880	35

Table 70.VIII: Melt-penetration depth ℓ_m , as a function of heat-generation rate H_{gen} , medium-defect case.

Table 70.IX: Fraction of thermal radiation from the absorbing defect with photon energy exceeding HfO_2 bandgap (5.6 eV).

<i>T</i> (°K)	$F_{\rm ion}$ (%)
10,000	10
20,000	57
30,000	80
40,000	89

Summary

In considering thermal conduction as the only energy transport mechanism, the current simulations show that relevant comparison with empirical damage morphology necessitates such high defect temperatures (T > 30,000°K) that other physical mechanisms start to attain dominance. These calculations point toward a mechanism in which the thermally trapped defect (thermally trapped on a nanosecond time scale) emits ionizing radiation into the surrounding film matrix. In response to such ionization, a volume larger than the defect itself becomes absorptive to the laser field and mediates direct energy transfer to the film at locations distant from the defect.

ACKNOWLEDGMENT

This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the University of Rochester, and the New York State Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article. The authors thank M. Shoup for valuable assistance in software system management.

REFERENCES

- S. Papernov, A. W. Schmid, J. Anzelotti, D. Smith, and Z. R. Chrzan, in *Laser-Induced Damage in Optical Materials: 1995*, edited by H. E. Bennett *et al.* (SPIE, Bellingham, WA, 1996), Vol. 2714, pp. 384–392.
- 2. ANSYS, Inc., P.O. Box 65, Johnson Road, Houston, PA 15342-0065.
- I. Barin and O. Knacke, *Thermochemical Properties of Inorganic Substances* (Springer-Verlag, Berlin, 1973).
- Yu. K. Danileiko, A. A. Manenkov, and V. S. Nechitailo, Sov. J. Quantum Electron. 8, 116 (1978).
- J. Dijon et al., in Laser-Induced Damage in Optical Materials: 1995, edited by H. E. Bennett et al. (SPIE, Bellingham, WA, 1996), Vol. 2714, pp. 416–419.