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Traditionally, there have been many advantages to using laser
beams with Gaussian spatial profiles in the study of high-field
atomic physics. High peak intensities are achieved due to their
focusability, they are easily generated in most laser systems,
and their focal region can be described analytically. However,
free electrons interacting with such a field are rapidly acceler-
ated out of the high-intensity region via the ponderomotive
force (which is proportional to the gradient of the laser inten-
sity).1,2 As a result, the electrons’ interaction time with the
intense portions of the laser focus can be much shorter than the
pulse duration. In order to observe harmonic generation from
oscillating free electrons, one must first control the expulsion
of electrons from the focal region.3 This confinement can be
most easily achieved by creating an intensity minimum at the
focus, thereby using the ponderomotive force to push the
electrons toward the central minimum. If this intensity mini-
mum is non-zero, then the electrons can interact with intense
fields while remaining trapped. Such ponderomotive trapping
has been proposed in the past,4,5 and specific laser-based
schemes to trap electrons in the radial direction have been
described.6,7 To our knowledge, such focal spots have not been
generated with a high-power laser. In addition, these proposed
traps would not confine electrons in the axial (laser propaga-
tion) direction. In this article we will present a novel scheme to
trap electrons in three dimensions with a single laser beam.

Numerical Results
A “trapping” focal region consists of an intensity minimum

surrounded on all sides by higher intensities. To understand
how to create such a region, it is important to adopt a formalism
to describe the propagation of light. Huygens’ principle, which
states that we can consider every point on a wave front to be a
point source for a spherical wave, makes it possible to find the
field distribution in some “observation” plane if the field
distribution in an earlier “source” plane is known.8 A computer
program has been written to calculate the three-dimensional
focal region from an arbitrary, monochromatic laser beam. The
“source” plane is the field distribution at the lens, and the
“observation” plane is scanned through the focal region. The
incident intensity distribution can be created mathematically
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(Gaussian, super-Gaussian, flat-top, etc.) or can be entered as
a digitized image. The incident phase front is assumed to be
uniform, and the lens is assumed to be perfect (although the
addition of aberrations is possible). The beam can be passed
through phase and amplitude masks on-line in an effort to alter
the shape of the focal region.

By passing the beam through amplitude masks, losses are
introduced into the system, yet the shape of the focal region is
changed only slightly. Figure 70.13(a) shows an incident
Gaussian beam [where w is the 1/e2 (intensity) radius]. Fig-
ure 70.13(b) shows the intensity distribution of the focal region
as a function of z (axial or laser propagation direction) and r
(radial direction). The Rayleigh range (z0) and the 1/e2 waist
(w0) are shown in the figure. Figure 70.13(c) shows the focal
spot at z = 0. Blocking the center of the beam [Figs. 70.13(d)–
70.13(f)] or blocking an annular section [Figs. 70.13(g)–
70.13(i)] has little effect on the intensity distribution near the
focus. A centrally peaked distribution is formed in all cases.9

As Casperson has shown,10 modulating the phase of the
incident beam can result in deep far-field amplitude modula-
tion with little loss in total energy. This can be accomplished by
placing phase masks in the path of the beam. Of particular
interest is the effect of binary phase plates, which add either
zero or π phase to portions of the beam. If half of the Huygens’
spherical waves encounter a π-phase shift while the other half
do not, we can expect complete destructive interference where
they meet. For a focused laser beam, this occurs at the center
of the focal region. A simple, two-zoned binary phase plate is
shown in Fig. 70.14(a). By passing a Gaussian beam through
this plate and focusing it, an altered intensity distribution
[Fig. 70.14(b)] is formed. It is important to note that this
distribution is not symmetric about the z axis and, therefore,
would confine particles in only one dimension. The focal spot
is shown in Fig. 70.14(c). A beam similar to the TEM01

*  mode
(commonly referred to as a “donut” mode) can be generated by
passing a Gaussian TEM00 through a smoothly varying helical
phase plate [Fig. 70.14(d)]. Such a phase plate has been
generated for millimeter11 as well as optical wavelengths.12,13
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The resulting focal region [Figs. 70.14(e) and 70.14(f)] con-
fines electrons in the radial direction only. It is also difficult to
“tune” the trap minimum away from zero. A scheme has been
proposed that combines a donut beam focus with a centrally
peaked focus.6 The added complexity of mixing two beams
results in a focal region with a tunable center intensity, but the
trap would not confine particles in the axial direction.

The binary phase plate shown in Fig. 70.14(g) contains
only two zones, yet the focal spot [Fig. 70.14(i)] is surprisingly
similar to the one generated by the complicated helical plate.
The donut shape near z = 0 confines electrons in the radial
direction, and the centrally peaked regions away from z = 0
provide axial trapping [see Fig. 70.14(h)]. The focal region is
shown in detail in Fig. 70.15. The π region of the phase plate
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Figure 70.13
The effects of amplitude masking on the intensity distributions of a focused Gaussian beam. The first column shows three different near-field intensity
distributions. The second column shows the intensity distributions as a function of z and r (the center of each image corresponds to z = 0, r  = 0). The third column
shows the focal spots. In order to show the maximum contrast, each image is normalized to its peak value. Note that all of the focal regions are centrally peaked.
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has a diameter of 1.65w [where w is the 1/e2 (intensity) radius
of the incident Gaussian beam]. This results in a π-phase shift
for half of the incident field. The calculated intensity in the
focus is normalized to the peak intensity in the absence of the
phase plate. The r and z positions are normalized to the
unaltered beam waist w0 (1/e2 radius) and the unaltered beam
Rayleigh range z0, respectively. Figure 70.15(a) shows a sur-
face plot and Fig. 70.15(b) shows a contour plot of the trapping
region. There is an exact zero in intensity at the center of the

focus, with intensity walls ranging from ~8% to ~30% (of the
unaltered peak intensity) in all directions. The trapping region
has a volume of complete trapping of ~ 2 0

2
0w z  (bound by the

solid contour line of 8.2%). By changing the size of the π
region of the phase plate (or, equivalently, by changing the
size of the incident beam), the destructive interference at the
center of the focus will not be complete, creating a non-zero
minimum. Figure 70.16(a) shows the calculated focal distribu-
tion for a Gaussian beam incident on a phase plate with a

E8410

w

z0

w0

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

π 0

3π/2π/2

π

0

2π
0

π

w0

Figure 70.14
The effects of phase masking on the intensity distributions of a focused Gaussian beam. The first column shows three different phase masks. The second column
shows the intensity distributions as a function of z and r  (the center of each image corresponds to z = 0, r  = 0) when the phase mask is placed before the incident
beam. The third column shows the focal spots. In order to show the maximum contrast, each image is normalized to its peak value.
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Figure 70.15
(a) A computer-generated trapping focal region with zero intensity at its
center (π-region diameter = 1.65 w). (b) A contour plot of the trapping region.
The volume of complete trapping is bound by the solid contour line at 8.2%.

Figure 70.16
(a) A computer-generated trapping focal region with 17% intensity at its
center (π-region diameter = 2.20 w). (b) A contour plot of the trapping region.
The volume of complete trapping is bound by the solid contour line at 23.6%.

π-region diameter of 2.20 w. Figure 70.16(b) shows a contour
plot of the trapping region. In this case, the bottom of the trap
is ~17% of the unaltered beam peak intensity, and the trap
walls range from ~24% to ~50%. The trapping volume is
~ w z0

2
0 . This focal region is ideal for trapping electrons in a

high-field region.

Experimental Setup
The phase masks described above can be made by using

photolithographic techniques. However, for the particularly
simple geometry that produces a suitable trapping region, a
novel segmented wave-plate approach has been developed. A
half-wave plate is typically used to rotate the polarization angle
of an incident, linearly polarized beam of light. This is a result
of the retardation of π phase between two orthogonal incident
polarizations. However, if part of the incident beam can be

made to travel through the plate as a fast wave while the other
travels as a slow wave, a π-phase shift will be created between
the two portions. To accomplish this, a 4-cm disk was cut from
the center of an 8-cm mica half-wave plate. The disk and
annulus were then mounted individually on cross hairs and
aligned to the beam path (as shown in Fig. 70.17). In Fig. 70.17,
the laser is polarized in the vertical direction, and the annulus
is arranged such that its e axis is vertical, while the disk has its
o axis vertical. This results in a π-phase shift of a portion of the
incident field. The size of the disk was chosen such that
approximately half of the incident field passed through it. This
resulted in near-zero intensity at the center of the focus. By
rotating the two pieces as a unit, one can rotate the polarization
of the incident beam without introducing additional optics or
changing the shape of the focal region. Also, as long as one
does not require a single polarization direction in the focal
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region, the depth of the trap can be tuned by rotating the central
disk away from 90°. This results in a polarization rotation of
the inner portion of the beam, which will put some of the field
into the noninterfering orthogonal polarization, thereby filling
in the minimum. The extreme case is to rotate the disk a full
90°, back to its original position, which produced an ordinary,
centrally peaked focus.

Experimental Results
To image the altered focal spot, the wave-plate arrangement

was aligned to the beam path of the tabletop terawatt laser (T3)
directly before the focusing lens (f = 212 cm).14 The focal
region was imaged with a CCD camera coupled to a 10×
microscope objective (Fig. 70.18). The camera-objective com-
bination was moved together to map out the focal region. A
single laser shot was taken at each position, and each image
was minimally smoothed and background subtracted. The scan
was generated with ~40-mJ, ~2-ps infrared laser pulses. By
firing the final, single-pass amplifier, energies of ~1 J are
achieved with no noticeable change in the near- or far-field
characteristics of the beam. The unaltered beam’s peak inten-
sity typically reaches 1018 W/cm2.
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Figure 70.17
The experimental setup for the segmented
wave-plate technique for generating a trap-
ping focal region.

Figure 70.19(a) shows the focal spot created without the
wave-plate arrangement in place. The beam diameter is ap-
proximately 1.5× the diffraction limit. Figure 70.19(b) shows
the focal spot with the wave-plate arrangement set to 90°.
Despite the deviation of the unaltered beam from the diffrac-
tion limit, there is a well-defined minimum in the center of the
altered spot. Figure 70.19(c) shows the focal spot with the
wave-plate arrangement in place, but set to 0°. Here, the wave
plate is set to its original, unaltered configuration, and the
beam has returned to its original shape. Figures 70.20(a) and
70.20(b) show the lineouts of the altered beam in the x and y
directions at z = 0. The x and y positions are normalized to the
experimentally determined beam waist of the unaltered beam.
Figure 70.20(c) shows the intensity of the beam at r = 0 as a
function of z. The intensities in Fig. 70.20 are normalized to
the peak intensity of the unaltered beam.

A more detailed scan was made with a continuous-wave
beam (the oscillator of the T3 laser). Figure 70.21 shows two
slices through the focal volume along the z axis. Fig-
ure 70.21(a) shows the intensity distribution in the plane
y = 0, and Fig. 70.21(b) shows the distribution for x = 0. In each
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Figure 70.18
The experimental setup for imaging the altered focal region. Here z = 0; i.e., the object plane
of the microscope objective coincides with the focal plane of the lens.
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Figure 70.19
Focal spots (a) without the wave-plate arrangement in place, (b) wave-plate setup in place and set to 90°, and (c) wave-plate setup in place and set to 0°.
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Figure 70.20
Lineouts of the trapping focal region. (a) Lineout in the x direction, (b) lineout in the y direction, and (c) the intensity at r  = 0 as a function of z. All axes are
normalized to the experimentally determined values for the unaltered beam (spot size for the x and y positions, Rayleigh range for the z positions, and unaltered
beam peak intensity for the intensity values).
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Figure 70.21
Contour plots of the trapping
focal region. (a) In the plane y

= 0 and (b) in the plane x = 0.
The experimentally observed
volume of complete trapping
is bound by the solid contour
line at 10%.
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plot, there is a region of complete trapping bound by intensity
walls of 10% (solid line) of the unaltered beam’s peak intensity.
Although the incident beam size was not matched with the size
of the wave-plate pieces, a sufficiently large portion of the
incident field was shifted to create a trapping region. These
experimentally obtained distributions (using a pulsed or cw
beam) exhibit a local minimum in intensity at the origin along
all three dimensions, making them suitable focal regions for
ponderomotive trapping.

Summary
In summary, we have produced, for the first time to our

knowledge, a tunable, single-beam, three-dimensional,
ponderomotive-optical trap for free electrons with a high-
peak-power laser system. Neutral atoms and macroscopic,
low-index particles could also be trapped in the low-field
region. We have presented a novel, segmented-wave-plate
approach as an alternative to a phase mask, along with experi-
mental confirmation of the intensity distribution of the altered
focal region. Experiments to image the linearly and nonlinearly
scattered light (both 1ω and 2ω) from the trapped electrons
are being carried out.
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Appendix A:  Huygens’ Principle

Huygens’ principle states that we can consider every point
on a wavefront to be a point source for a spherical wave.8 As a
result, if one knows the field in some “source plane (S9),” it is
then possible to add the contributions from the individual
spherical waves to find the field distribution in an “observation
plane (S)” (see Fig. 70.22). The spherical wave emanating
from a tiny element of area ∆a9, surrounding the point (x9,y9,0)
in the source plane, results in a contribution to the field in the
observation plane,

∆ ∆ε λ εx y z i e r x y aikr, , , , ,( ) = −( )( ) ′ ′( ) ′0 (A1)

where

r x x y y z= − ′( ) + − ′( ) +[ ]2 2 2
1 2

, (A2)

k = 2π/λ, ∆a9 = dx9dy9, and ε(x9,y9,0) is the electric field
(magnitude and phase) in the source plane. For most applica-
tions, we may make the Fresnel approximation

z x x y y3 2 2 2
4>> ( ) − ′( ) + − ′( )[ ]π λ

max (A3)

and sum up all of the field contributions with the integral

ε λ εx y z ie z x y

ik x x y y z dx dy

ikz, , , ,

exp .

( ) ≈ − ( ) ′ ′( )

− ′( ) + − ′( )[ ]{ } ′ ′

∫∫ 0

22 2 (A4)

To calculate the field at the point (x,y,z), ε(x9,y9,0)
must be known for all (x9,y9). Equation (A4) can then be
solved numerically.

For the case of a laser beam incident on a positive lens, the
intensity distribution can be assumed to be Gaussian (as is
typical for many laser systems) or it can be determined experi-
mentally by imaging the near-field distribution. Determining
the phase of the incident field is more complicated, as it
involves interferometric methods.15 If the laser is well colli-
mated and is found to focus to a spot size close to the diffraction
limit, then the phase front can be assumed to be uniform. The
effect of the lens is to simply add a phase proportional to the
thickness of the lens material at any point. A plano-convex
lens results in a “spherical” phase distribution,

Φ ′( ) = − ′( )r k f r2 2 1 2
(A5)

where f is the focal length of the lens and ′ = ′ + ′r x y2 2 2  is
the square of the radial location in the source plane. If we
assume that f r2 2>> ′  (the paraxial approximation), then we
can perform a binomial expansion,

Φ ′( ) = − ′ − ′ −( )r kf r f r f1 2 82 2 4 4 K . (A6)

The first term adds a constant phase to the entire beam and can
be discarded, as can the higher-order terms since they are
vanishingly small. By keeping only the quadratic term, we are
left with a “perfect” lens in the context of this approach (in
practice, aspherical lenses are not purely parabolic). A
Gaussian laser beam that has passed through this lens will
have the field distribution
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ε ′ ′( ) = − ′ − ′( )x y A r w ikr f, , exp ,0 22 2 2 (A7)

where A is the field amplitude and w is the beam radius at the
1/e point in the electric field amplitude (which is equivalent to
the 1/e2 point in intensity). It should be pointed out that all
calculations in both this article and the computer codes use the
scalar-wave approach.
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