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The ponderomotive force associated with a light wave of
variable amplitude1–10 drives many phenomena that occur in
inertial confinement fusion11 and particle acceleration12 ex-
periments. The existing formula for the ponderomotive force
was derived under the assumption that the quiver speed of
electrons oscillating in the applied electric field is much less
than the speed of light. With the advent of intense laser
pulses,13 it is important to extend this formula to electron
quiver speeds that are comparable to the speed of light.

As an introduction to this subject, we review the derivation
of the ponderomotive term in the electron-fluid momentum
equation. The standard form of this equation is

∂ γt + ∇( )( ) = − + ×( )⋅v v E v B , (1)

where

  
γ = −( )−

1 2 1 2
v (2)

is the Lorentz factor associated with the fluid velocity and

E A B A= − = ∇ ×∂t , (3)

in the radiation gauge. These differ from the usual equations in
that ωt → t, kx → x, v/c → v, eE/mωc → E, eB/mωc → B,
and eA/mc2 → A.

By using the vector identity14

v v v v⋅∇( )( ) = ∇ − × ∇ × ( )[ ]γ γ γ , (4)

one can rewrite the momentum equation as

∂ γ γ γt v A v v A−( ) = × ∇ × −( )[ ] − ∇ , (5)
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from which follows the relativistic vorticity equation

∂ γ γt ∇ × −( )[ ] = ∇ × × ∇ × −( )[ ]{ }v A v v A . (6)

For a plasma that is at rest before the laser pulse arrives,
∇ × −( ) =γ v A 0  initially. Equation (6) ensures that
∇ × −( ) =γ v A 0  for all time. Thus, the momentum equation
can be rewritten as14

∂ γt u A−( ) = −∇ , (7)

where the fluid momentum u v= γ . It follows from this
definition that γ = +( )1 2 1 2

u .

The ponderomotive term on the right side of Eq. (7) is valid
for arbitrary laser intensity. Together with the continuity and
Maxwell equations, it allows one to analyze the interaction of
a laser pulse with an electron fluid. However, there is a tradition
in plasma physics of looking at the same phenomenon from
different viewpoints. By doing so, one often gains physical
insight into the phenomenon under study. The ponderomotive
term in Eq. (7) is not the force on a Lagrangian fluid element
or a single electron. Consequently, it cannot be used as the
foundation of a single-particle or kinetic analysis of the inter-
action of a laser pulse with a plasma.

In the following sections we present (1) an analytical study
of the motion of an electron in a light wave of constant
amplitude; (2) using the results of this study, a heuristic
derivation of the formula for the ponderomotive force associ-
ated with a light wave of variable amplitude; (3) numerical and
analytical verification of this formula; and, finally, (4) a sum-
mary of the results.

Particle Motion in a Plane Wave
The motion of a charged particle, of charge q and mass m,

in an electromagnetic field is governed by the equation15
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d u a u aτ µ µ
ν

µ ν∂+( ) = , (8)

where τ is the proper time of the particle multiplied by c, uµ

is the four-velocity of the particle divided by c, aµ is the four-
potential of the field multiplied by q/mc2 and ∂ ∂ ∂µ

µ= x . For
an elliptically polarized field

a e ey z
µ φ φ= ( )0 0, , cos , sin , (9)

where e ey = δ , e ez = −( )1 2 1 2
δ , and φ = t−x.

The motion of a charged particle in a plane wave is well
known.16–19 We present an analysis of this motion here be-
cause it is the foundation of analyses presented later in this
article. Since the four-potential does not depend on y or z, it
follows from Eq. (8) that

dτ u a⊥ ⊥+( ) = 0. (10)

Transverse canonical momentum is conserved. It follows from
Eq. (10) that

u u a a⊥ ⊥ ⊥ ⊥( ) = ( ) + ( ) − ( )τ τ0 0 . (11)

The t and x components of Eq. (8) are

d u d u ut x xτ τγ ∂ ∂= = −⊥ ⊥
1
2

2 1
2

2,    . (12)

Since the four-potential is a function of t−x, it follows from
Eqs. (12) that

d uτ γ −( ) =|| .0 (13)

Because the particle gains energy and momentum at the ex-
pense of the field, the ratio of particle momentum to particle
kinetic energy is identical to the ratio of field momentum to
field energy, which is 1 in the units of Eq. (8). By combining
Eq. (13) with the definition of γ, one can show that

u u
u u

u|| ||
||

.τ
τ

γ
( ) = ( ) +

( ) − ( )
( ) − ( )[ ]

⊥ ⊥0
0

2 0 0

2 2
(14)

The corresponding equation for γ (t) follows from Eqs. (13) and
(14). Because the transverse potential a⊥  is a function of φ

rather than τ, Eqs. (11) and (13) describe the particle momen-
tum implicitly. One can make this description explicit and
determine the particle trajectory xµ(τ) by using the result

d uτφ γ= ( ) − ( )0 0|| . (15)

The proper frequency of the wave is constant.

It is clear from Eqs. (11), (14), and (15) that the particle
motion is a superposition of sinusoidal oscillations in τ and
steady drifts in τ. It follows from Eq. (11) that the transverse
drifts are given by

u u e x

u u e x

y y y

z z z

= ( ) + −( )
= ( ) + −( )

0

0

0

0

cos ,

sin ,
(16)

where .  denotes the τ-average . dτ ππ
2

0
2

∫  and (x0,0,0) is
the initial position of the particle. By decomposing the longi-
tudinal momentum into its oscillatory component

u u
u u

u|| ||
||

τ
τ

γ
( ) − =

( ) −

( ) − ( )[ ]
⊥ ⊥
2 2

2 0 0
(17)

and its drift component

u u
u u

u|| ||
||

,= ( ) +
− ( )

( ) − ( )[ ]
⊥ ⊥0

0

2 0 0

2 2

γ
(18)

and combining Eqs. (11) and (18), one can show that the
longitudinal drift is given by

u u u e x

u e x e x

e x u

x x y y

z z y

z x

= ( ) + −( )[
+ −( ) − −( )
+ −( )] ( ) − ( )[ ]

0 4

4 2

2 4 0 0

0

0
2

0

2
0

cos

sin cos

cos .γ (19)

For linear polarization Eq. (19) reduces to

u u u e x

e x u

x x y

x

= ( ) + −( )[
− −( )] ( ) − ( )[ ]

0 4

2 4 0 0

0

2
0

cos

cos ,γ (20)

whereas for circular polarization it reduces to
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u u e u x

u x u

x x y

z x

= ( ) + −( )[
+ −( )] ( ) − ( )[ ]

0

2 0 0

0

0

cos

sin .γ (21)

The corresponding equations for γ  follow from Eq. (13) and
Eqs. (19)–(21).

For completeness, a covariant analysis of the particle mo-
tion is given in Appendix A.

Heuristic Derivation of the Ponderomotive Force
The method used to solve Eq. (8) for a plane wave of

constant amplitude can also be used when the wave amplitude
e is a function of t−x. In fact, Eqs. (11), (14), and (15) are still
valid. When the wave amplitude varies slowly compared to the
wave phase, the particle motion consists of an oscillation about
a guiding center and a guiding-center drift that varies slowly.
As the guiding center drifts, the oscillation amplitude follows
the wave amplitude at the guiding center adiabatically.

To describe this motion quantitatively, let ξµ be the position
four-vector of the guiding center and υ ξµ

τ
µ= d  be the asso-

ciated four-momentum. The ponderomotive four-force is the
proper rate of change of the guiding-center four-momentum.
One might expect this four-force to also be the average rate of
change of the particle four-momentum. However, by averaging
the transverse particle motion, one finds that

d u d e

d u d e

y y

z z

τ τ

τ τ

τ τ

τ τ

≈ ( )[ ] ( )

≈ ( )[ ] ( )
0

0

0 0

0 0

cos ,

sin ,
(22)

where τ0 is the initial phase with respect to which the average
is taken. Because the oscillation amplitude changes during
each oscillation, the transverse components of the momentum
change by amounts that depend on the initial phase. However,
it follows from Eq. (11) that the transverse components of the
guiding-center momentum are constant. Thus, if one is to
determine the ponderomotive four-force by averaging, one
must discount terms that depend on the initial phase. With this
caveat added to the definition of . , one can write

d d u d d uy y z zτ τ τ τυ υ= ≈ = ≈0 0,    (23)

and show that

d d u d e e ux x y zτ τ τυ γ= ≈ +( ) ( ) − ( )[ ]2 2 4 0 0|| . (24)

By using the relationship between x and φ, and Eq. (15), one
can show that d u xτ γ ∂= − ( ) − ( )[ ]0 0|| . It follows from this
result and Eq. (24) that

d ex xτυ ∂≈ − ( )2 4 . (25)

In a similar way, one can show that

d et tτυ ∂≈ ( )2 4 . (26)

By using the facts that e a2 22 = ⊥  and a a a⊥ = −2
ν

ν , one can
rewrite Eqs. (23), (25), and (26) as

d a aτ µ µ ν
νυ ∂≈ − 2 . (27)

The second term in this relation is the ponderomotive
four-force.

The guiding-center Eq. (27) was derived for the special case
in which e is a function of t−x. However, the principle of
Lorentz covariance suggests that it is valid for the general case
in which e is a function of t, x, y, and z. Consequently, we
postulate that20

d a aττ µ µ ν
ν

ξξ ∂
µ

2 2= − (28)

and the initial guiding-center momentum in a wave of variable
amplitude is identical to the particle drift momentum in a wave
of constant amplitude, which is given by Eqs. (16) and (19). For
future reference, Eq. (28) has associated with it the conserva-
tion equation

d a aτ µ
µ

ν
νυ υ 2 2 0+( ) = . (29)

Numerical Study of the Particle Motion
To test the guiding-center model described in the previous

section, we studied three representative examples numerically.
The first example concerns a particle that moves in front of a
laser pulse. We considered a wide, circularly polarized pulse,
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with e t x= −( )[ ]3 0 052sin . , and chose ux(0) = 1, uy(0) = 1, and
uz(0) = 1. Because the pulse propagates at the speed of light, it
overtakes the particle. The resulting particle motion is illus-
trated in Figs. 69.25 and 69.26, in which the solid lines denote
the particle trajectory, determined numerically from Eq. (8)
and the initial conditions, and the dashed lines denote the
guiding-center trajectory, determined numerically from
Eqs. (28), (16), and (19). As the pulse overtakes the particle, the
amplitudes of the transverse components of the oscillation
increase and decrease in proportion to the pulse intensity.
However, there is no change in the transverse components of
the average momentum, and the particle exits the pulse with
uy = 1 and uz = 1. The amplitude of the longitudinal component
of the oscillation also increases and decreases in proportion to
the pulse intensity. However, because Eq. (14), which de-
scribes the relation between the longitudinal and transverse
components of the momentum, is nonlinear, the longitudinal
component of the average momentum changes. This change

can be analyzed quantitatively. It follows from the t and x
components of Eq. (28), and the assumed dependence of e on
t−x, that

d t xτ υ υ−( ) = 0. (30)

Since υy and υz are constant, Eq. (29) reduces to

d et xτ υ υ2 2 22 4 0−( ) −[ ] = . (31)

By combining Eqs. (30) and (31) with the initial conditions,
one can show that υt = 2 + e2/4 and υx = 1 + e2/4. At the peak
of the pulse υx = 13/4, in agreement with Fig. 69.25(a).
Because the x component of the ponderomotive force is posi-
tive in the front of the pulse and negative in the back of the
pulse, the guiding center is accelerated and decelerated by
equal amounts. In this example the correspondence between
the guiding-center motion and the particle motion is excellent.
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Figure 69.25
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a circularly polarized pulse with amplitude e = 3 sin2 [0.05(t−x)]. Initially,
ux = 1, uy = 1, and uz = 1. (a) The x component of the momentum. (b) The x
component of the displacement caused by the pulse. The initial drift upon
which this displacement is superimposed is not shown.
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Figure 69.26
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a circularly polarized pulse with amplitude e = 3 sin2 [0.05(t−x)]. Initially,
ux = 1, uy = 1, and uz = 1. (a) The y component of the momentum. (b) The z

component of the momentum.
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The second example concerns a particle that is born inside
a laser pulse by high-field ionization.21 We considered a long
pulse that is linearly polarized in the y direction, with e = cos2

(0.05 z), and chose ux(0) = 0, uy(0) = 0, and uz(0) = 0. The
resulting particle motion is illustrated in Figs. 69.27 and 69.28.
The particle is born near the propagation axis of the pulse and
is pushed outward by the z component of the ponderomotive
force. As the particle moves outward, the amplitudes of the
longitudinal and transverse components of the oscillation
decrease in proportion to the pulse intensity. This transverse
expulsion can be analyzed quantitatively. Since υt, υx, and υy
are all constant, Eq. (29) reduces to

d ezτ υ2 22 4 0+( ) = , (32)

in which υz
2 2  plays the role of kinetic energy and e2/4 plays

the role of potential energy. It follows from Eq. (32) and the
initial conditions that υz e2 21 2≈ −( ) . As the guiding center
exits the pulse, υz ≈ 1 2 , in agreement with Fig. 69.27(a).

Although the particle is born at rest, it exits the pulse with ux
≈ 3/4 and uy ≈ 1. This behavior is consistent with Eqs. (16) and
(19). In this example the correspondence between the guiding-
center motion and the particle motion is excellent.

The third example concerns a particle that is injected into a
laser pulse from the side. We considered a long pulse that is
linearly polarized in the y direction, with e y= ( )sin .2 0 05 , and
chose ux(0) = 0.0, uy(0) = 0.7, and uz(0) = 0.0. The resulting
particle motion is illustrated in Figs. 69.29 and 69.30. As the
particle moves inward, the amplitudes of the longitudinal and
transverse components of the oscillation increase in proportion
to the pulse intensity. However, the y component of the
ponderomotive force opposes the inward motion, and the
particle is repelled just before it reaches the propagation axis
of the pulse. As the particle moves outward, the amplitudes of
the longitudinal and transverse components of the oscillation
decrease in proportion to the pulse intensity. This transverse
repulsion can be analyzed quantitatively. Since υt, υx, and υz
are all constant, Eq. (29) reduces to
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Figure 69.27
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a linearly polarized pulse with amplitude ey = cos2 (0.05z). Initially, ux =
0, uy = 0, and uz = 0. (a) The z component of the momentum. (b) The z
component of the displacement.
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Figure 69.28
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a linearly polarized pulse with amplitude ey = cos2 (0.05z). Initially, ux =
0, uy = 0, and uz = 0. (a) The x component of the momentum. (b) The y
component of the momentum.
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d eyτ υ2 22 4 0+( ) = . (33)

It follows from Eq. (33) and the initial conditions that
υy e2 21 2≈ −( ) . The outward guiding-center trajectory is the
inverse of the inward trajectory. In this example the correspon-
dence between the guiding-center motion and the particle
motion is good. We found the correspondence to be even better
for gentler gradients in pulse intensity.

In Figs. 69.25–69.30 the particle and guiding-center posi-
tions were plotted as functions of the proper time. We verified
numerically that plotting the spatial components of the guid-
ing-center position as functions of the temporal component of
the guiding-center position produces the correct guiding-cen-
ter motion in the laboratory frame.

Multiple Scale Analysis of the Particle Motion
In this section we verify Eq. (28) analytically. Because the

fast variation of the four-potential depends on the phase rather

than the proper time, it is advantageous to change the indepen-
dent variable in Eq. (8) from τ to φ. The result is

d d d x a d x av
φ τ φ µ µ φ µ νφ ∂+( ) = , (34)

where d d x d xτ φ
ν

φ νφ = ( )−1 2
. The resolution of Eq. (34) into

longitudinal and transverse components is facilitated by the
introduction of the four-vector kµ, which is defined by the
equation φ ν

ν= k x , and the four-vector lµ, which is defined by
the equations l lν

ν = 0 , k lν
ν = 2 , and a lν

ν = 0 , where aµ is
the transverse four-potential of a plane wave. In the laboratory
frame kµ = (1,1,0,0) and lµ = (1,−1,0,0). By using these four-
vectors one can write

x y k lµ µ µ µθ φ= + +2 2 , (35)

where θ ν
ν= l x . The transverse position four-vector satisfies

the equations k yν
ν = 0  and l yν

ν = 0 . In a similar way, one can
write
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Figure 69.29
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a linearly polarized pulse with amplitude ey = sin2 (0.05y). Initially, ux =
0.0, uy = 0.7, and uz = 0.0. (a) The y component of the momentum. (b) The y

component of the displacement.

Figure 69.30
Particle motion (solid line) and guiding-center motion (dashed line) caused
by a linearly polarized pulse with amplitude ey = sin2 (0.05y). Initially, ux =
0.0, uy = 0.7, and uz = 0.0. (a) The z component of the momentum. (b) The x

component of the momentum.
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a b qk plµ µ µ µ= + +2 2, (36)

where the transverse four-potential satisfies the equations
k bν

ν = 0  and l bν
ν = 0 . By substituting the decompositions

(35) and (36) into Eq. (34) and collecting like terms, one can
show

d

d

dy

d
b

b

y

dy

d

p

y

d

d

q

yφ σ φ
∂
∂ φ

∂
∂

θ
φ

∂
∂

µ
µ

ν

µ
ν

µ µ
1 1

2
+







= + +






, (37)

d

d
p

b dy

d

p d

d

q

φ σ
∂
∂θ φ

∂
∂θ

θ
φ

∂
∂θ

ν
ν1

2+



 = + + , (38)

d

d

d

d
q

b dy

d

p d

d

q

φ σ
θ
φ

∂
∂φ φ

∂
∂φ

θ
φ

∂
∂φ

ν
ν1

2+






= + + , (39)

where

σ θφ
ν

φ ν φ= +( )d y d y d
1 2

. (40)

Equation (39) can be derived from Eqs. (37) and (38), as shown
in Appendix B, and need not be considered further.

One can solve Eqs. (37) and (38) by using multiple scale
analysis. Let ε be a measure of the rate at which the wave
amplitude varies relative to the rate at which the phase varies.
We introduce the scales

φ φ φ εφ0 1= =,    (41)

to resolve the fast oscillation and the slow change in the
guiding-center drift, respectively. It follows that

d

d

d

d

d

dφ φ
ε

φ
= +

0 1
. (42)

We used the notation d dφ0  and d dφ1  in Eq. (42) to distin-
guish these convective derivatives from the partial derivatives
of the four-potential. We assume that the dependent variables
can be written as

y y y yµ µ µ µε φ φ φ ε φ φ

θ ε θ φ θ φ φ ε θ φ φ

≈ ( ) + ( ) + ( )

≈ ( ) + ( ) + ( )

− −( ) ( ) ( )

− −( ) ( ) ( )

1 1
1

0
0 1

1
0 1

1 1
1

0
0 1

1
0 1

, , ,

, , .

(43)

The variables yµ
−( )1  and θ(−1) describe the guiding-center drift,

which changes on the slow scale φ1. The variables yµ
0( )  and θ(0)

describe the fast oscillation of the particle about the guiding
center, the amplitude of which changes on the slow scale.

The four-potential satisfies Maxwell’s wave equation14

∂ ∂ ∂ ∂λ
λ ν

µ µ
ν

νg a−( ) = 0, (44)

where gν
µ = − − −( )diag 1 1 1 1, , ,  is the metric four-tensor. For a

wave of constant amplitude, a x bµ
ν

µ φ( ) = ( )( )0
0 . For a wave of

variable amplitude we assume that

a x a x a xµ
ν

µ
ν

µ
νφ ε ε φ ε( ) ≈ ( ) + ( )( ) ( )0

0
1

0 . (45)

Each contribution to the four-potential and its derivatives can
be written approximately as

a y a y

y a y

a y

φ ε εθ εφ φ θ φ

ε ∂ φ θ φ

εθ ∂ φ θ φ

ν ν

ν
ν ν

θ ν

0 0
1 1

1

0
0

1 1
1

0
0

1 1
1

 , ,  , ,

, ,

, , .

( ) ≈ 





+ 





+ 





−( ) −( )

( ) −( ) −( )

( ) −( ) −( ) (46)

The first term on the right side of Eq. (46) is the contribution
evaluated at the guiding center, and the second and third terms
are the deviations from this average contribution that are felt by
the particle as it oscillates about the guiding center. The
corresponding approximation for the convective derivative of
the four-potential is discussed in Appendix C. Henceforth, we
will use a  to denote the guiding-center contribution

a yφ θ φν0
1 1

1
−( ) −( )



, , .

To proceed further one substitutes Eqs. (42), (43), and (46)
in Eqs. (37) and (38) and collects terms of like order. The order
ε−1 equations are satisfied identically by Ansaetze (43).

The order 1 equations are

d

d

dy

d
b

φ σ φ
µ

µ
0

0

0

0

01
0( )

( )
( )+













= , (47)



MULTIPLE SCALE DERIVATION OF THE RELATIVISTIC PONDEROMOTIVE FORCE

LLE Review, Volume 69 31

d

dφ σ0
0

1
0( )







= , (48)

where

σ

θ θ

ν ν

ν ν

0
0

0
1

1

0
0

1
1

0
0

1
1

1 2

( ) ( ) −( )

( ) −( ) ( ) −( )

= +[ ]{
× +[ ] + + }
d y d y

d y d y d d (49)

and d d dn n= φ .

Equation (47) is the analog of Eq. (10). It follows from the
former equation that

d y b0
0 0 0

µ µσ( ) ( ) ( )= − . (50)

The arbitrary function of φ1 that results from the φ0 integra-
tion can be neglected because yµ

−( )1  already accounts for the
slowly varying drift with which this function is associated.
Equations (48) and (49) do not resemble any of the equations
in the section Particle Motion in a Plane Wave. However,
different forms of the latter equations are discussed in Appen-
dix A, from which it is clear that Eqs. (48) and (49) comprise
the analog of Eq. (A9). It follows from Eq. (48) that σ(0) is a
function of φ1 alone. This result is the analog of Eq. (15) and
facilitates the integration of Eq. (50). By combining Eqs. (49)
and (50), and equating the oscillatory and slowly varying terms
that result, one can show that

d d y b

b b b b

0
0 0

1
1 0

0 2 0 0 0 0

2θ σ

σ

ν
ν

ν
ν

ν
ν

( ) ( ) −( ) ( )

( ) ( ) ( ) ( ) ( )

=

+[ ] −





(51)

and

d d y d y

b b

1
1

1
1

1
1

0 2 0 01

θ

σ

ν
ν

ν
ν

−( ) −( ) −( )

( ) ( ) ( )

+

= [ ] −




. (52)

Equation (51) is the analog of Eq. (17) and the oscillatory part
of Eq. (A7), and is easy to integrate.

Now consider the initial condition on the order-1 four-
momentum. Consistent with Eq. (35), one can write the initial
four-momentum as

  u l u k k u lµ µ ν
ν

µ ν
ν

µ0 0 0 2 0 2( ) = ( ) + ( ) + ( )v . (53)

It follows immediately that

  
d y d y1

1 0
0

00 0 0µ µ µσ−( ) ( ) ( )( ) = ( ) − ( )v , (54)

d l u d1
1 0

0
00 0 0θ σ θν

ν
−( ) ( ) ( )( ) = ( ) − ( ) . (55)

Equation (54) is the analog of Eqs. (16), and Eq. (55) is
consistent with Eqs. (17) and (18).

The order ε equations are
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and

d
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MULTIPLE SCALE DERIVATION OF THE RELATIVISTIC PONDEROMOTIVE FORCE

32 LLE Review, Volume 69

where

σ θ
φ
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φ

φ φ φ φ
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d
, (58)

and bµ
1( )  and p 1( )  represent the sum of the order ε four-

potential and the order ε corrections to the order-1 four-
potential caused by the oscillation of the particle about the
guiding center.

Although Eqs. (56)–(58) are lengthy, they do not need to be
solved in their entirety. By equating the slowly varying terms
in Eqs. (56) and (57), one can show that
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and
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It follows from Eq. (52) that
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When applied to any guiding-center quantity, the operator

d

d
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dφ φ
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∂
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∂φ
θ

φ
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∂θ

ν

ν
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1
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1
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−( ) −( )
. (62)

By combining Eq. (61) with Eqs. (59), (60), and (62), one can
show that

1 1
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1
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1

0 0

1σ φ σ
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= −d

d

d
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b b
. (63)

Recall that the preceding derivation of Eq. (63) is based on
Eq. (38). Had we analyzed Eq. (39) instead, we would have
needed to determine bν

1( ) , p(1), q(1), and yν
1( )  explicitly.

In the notation of this section, Eq. (28) can be rewritten as

d x

d

b b

x

2 1

1
2

0 0

1

1

2
µ

ν
ν

µτ

∂

∂

−( ) ( ) ( )

= − , (64)

where τ1 = ετ and x x1
µ µε= . Since d dφ τ σ1 1

01≈ ( ) ,
Eq. (59) is the transverse part of Eq. (64). By contracting
Eq. (64) with kµ and lµ, and using the identities k µ

µ θ∂ ∂= 2
and lµ

µ φ∂ ∂= 2 , and the fact that φ µ
µ≈ −( )k x 1 , one can show

that Eqs. (60) and (63) are equivalent to the longitudinal part
of Eq. (64). Thus, Eq. (28) is correct.

Finally, notice that Eq. (64) for the guiding-center drift is
written in terms of the proper time, which includes the effects
of the oscillation about the guiding center. Although this fact
does not affect the utility of Eq. (64), it calls into question the
aesthetic qualities of the equation. Just as the proper time is
defined by the equation d dx dxτ ν

ν= ( )1 2 , one can define the
drift time by the equation ds dx dx= [ ]−( ) −( )1 1 1 2ν

ν .

It follows from this definition, Eq. (52), and the discussion
of the preceding paragraph that

ds

d
b b1

1

0 0
1 2

1
τ

ν
ν= −





( ) ( ) . (65)

Equation (65) can be used to write Eq. (28) in terms of the
drift time.
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Summary
In this article we solved the equation of motion for an

electron in a plane wave. We used this solution and the
principle of Lorentz covariance to deduce a formula for the
ponderomotive force exerted by an intense laser pulse on an
electron. We verified this formula numerically, for three cases
of current interest, and analytically, using the method of
multiple scales.

The aforementioned formula can be used to study the
effects of the radial ponderomotive force on laser-plasma
interactions. For particle accelerators, these effects include
the divergence of an electron bunch that is accelerated by a
laser pulse,22 the relativistic focusing of the pulse, and elec-
tron cavitation and magnetic field generation in the wake of
the pulse.
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Appendix A:  Covariant Analysis of the Particle Motion
in a Plane Wave

The motion of a charged particle in an electromagnetic
field is governed by Eq. (8). For a plane wave the four-potential
aµ is a function of the phase φ ν

ν= k x . It follows that
∂µ ν µ νa k a= ′ , where 9 = d dφ , and, hence, that

d u a u k aτ µ µ
ν

µ ν+( ) = ′ . (A1)

By substituting the decomposition

  
u k u l l u kµ µ

ν
ν µ

ν
ν µτ τ τ τ( ) = ( ) + ( ) + ( )v 2 2 (A2)

into Eq. (A1), where lν was defined after Eq. (8), and vµ
satisfies the equations   k

ν
νv = 0  and   l

ν
νv = 0, one can show

that

  
d a d k u d l u aτ µ µ τ

ν
ν τ

ν
ν

ν
νv v+( ) = ( ) = ( ) = ′0 0 2, , . (A3)

It follows from the first of Eqs. (A3) that

  
v vµ µ µ µτ τ( ) = ( ) + ( ) − ( )0 0a a . (A4)

It follows from the second of Eqs. (A3) that

k u k uν
ν

ν
ντ( ) = ( )0 (A5)

and, hence, that

φ τν
ν= ( )k u 0 . (A6)

Equations (A4) and (A6) determine vµ(τ) explicitly. There are
at least three ways to obtain an expression for lν uν. In the first
approach, one uses Eq. (A4) to rewrite the right side of the
third of Eqs. (A3) in terms of aµ. It follows from this equation
and Eq. (A6) that

  

l u l u a

a a k u

a a a a k u

ν
ν

ν
ν

ν ν

ν ν
ν

ν

ν
ν

ν
ν

ν
ν

τ
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( ) = ( ) + ( ) + ( )[ ]

× ( ) − ( )[ ] ( )

+ ( ) ( ) − ( ) ( )[ ] ( )

0 2 0 0

0 0

0 0 0

v

. (A7)

In the second approach, one uses Eq. (A4) to rewrite the right
side of the third of Eqs. (A3) in terms of vµ. It follows from
this equation and Eq. (A6) that

  

l u l u

k u

ν
ν

ν
ν

ν
ν

ν
ν

ν
ν

τ

τ τ

( ) = ( ) + ( ) ( )[
− ( ) ( )] ( )

0 0 0

0

v v

v v . (A8)

In the third approach one uses decomposition (A2) to rewrite
the identity u uν

ν = 1 as

  
k u l uν

ν
ν

ν
ν

ν( )( ) + =v v 1. (A9)

Since k uν
ν  and   v vν

ν  are known quantities, Eq. (A9) provides
a third expression for l uν

ν . By rewriting the 1 on the right side
of Eq. (A9) in terms of the initial values of the quantities on the
left side, one can rewrite Eq. (A9) in the form of Eq. (A8). All
three approaches have their uses. Equation (A4) is the covari-
ant version of Eq. (11), and Eqs. (A5) and (A8) are the
covariant versions of Eq. (14) for u|| and its analog for γ.
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Appendix B:  Covariant Lagrangian for the Particle
Motion

For a particle in an electromagnetic field the normalized
motion19

S dx dx a dx= − ( ) +



∫ ν

ν
ν

ν
1 2

. (B1)

Traditionally, one parameterizes the particle motion in terms of
the proper time τ, which is a Lorentz invariant. In this case

S d x d x a d x d= − ( ) +



∫ τ

ν
τ ν

ν
τ ν τ

1 2
. (B2)

By applying the Euler-Lagrange equations to the integrand of
Eq. (B2), one finds that

d d x a d x aτ τ µ µ τ
ν

µ ν∂+( ) = , (B3)

in agreement with Eq. (8). Alternately, one can parameterize
the particle motion by the phase φ ν

ν= k x , which is also a
Lorentz invariant. In this case

S d x d x a d x d= − ( ) +



∫ φ

ν
φ ν

ν
φ ν φ

1 2
. (B4)

By using the decompositions (35) and (36) one can rewrite
Eq. (B4) as

S d y d y d

b d y pd q d

= − +( )


+ + + ]
∫ φ

ν
φ ν φ

ν
φ ν φ

θ

θ φ

1 2

2 2 . (B5)

By applying the Euler-Lagrange equations to the integrand of
Eq. (B5), one can show that
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in agreement with Eqs. (37) and (38). One can reproduce
Eq. (39) by multiplying Eq. (B6) by −2d yφ

µ  and Eq. (B7)
by −dφθ , and adding the resulting equations.

Appendix C:  Evaluation of the Four-Potential
The left side of Eq. (34) contains the term da dµ φ , which

must be evaluated at the position of the particle. In the section
Multiple Scale Analysis of the Particle Motion we used
Eqs. (42), (43), and (46) to make a guiding-center expansion of
aµ before we took the convective derivative. Specifically, we
wrote

d a d d a aφ µ µε ε≈ +[ ] +[ ]( ) ( )
0 1

0 1 , (C1)

where

a aµ µ
0( ) = (C2)

is the four-potential evaluated at the guiding center and

a y a aµ
ν

ν µ θ µ∂ θ ∂1 0 0( ) ( ) ( )= + (C3)

is the correction to the four-potential caused by the oscillation
of the particle about the guiding center. Since the guiding-
center coordinates y(−1) and θ(−1) are functions of φ1 by
construction,
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and
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It follows from Eqs. (C1), (C4), and (C5) that
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and
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Alternately, one can write

da
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d
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in which the guiding-center expansion is made after the partial
derivatives are taken. Since the variation of aµ with the position
variables yν and θ is slow,
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. (C9)

The derivatives of the four-potentials appearing in the order ε
terms can be approximated by their guiding-center values. The
remaining term

∂
∂φ

∂
∂φ

ε
∂

∂ ∂φ
εθ

∂
∂θ∂φ

µ µ ν µ
ν

µa a
y

a

y

a

0 0

0
2

0

0
2

0
≈ + +( ) ( ) . (C10)

Equations (C9) and (C10) are equivalent to Eqs. (C4) and (C5).
This result shows that the guiding-center expansion discussed
previously was made consistently. The expansion based on

Eq. (C1) is better because it facilitates the identification of
combinations of terms that are oscillatory and, hence, do not
affect the guiding-center motion.
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