Multiple Scale Derivation of the Relativistic Ponderomotive Force

The ponderomotive force associated with a light wave ofrom which follows the relativistic vorticity equation

variable amplitud&10drives many phenomena that occur in

inertial confinement fusiord and particle acceleratibhex- dt[D % (yv —A)] =0 X{v x [D « (yv —A)]} _ (6)
periments. The existing formula for the ponderomotive force

was derived under the assumption that the quiver speed of

electrons oscillating in the applied electric field is much les$-or a plasma that is at rest before the laser pulse arrives,
than the speed of light. With the advent of intense IaseDX(yv—A):O initially. Equation (6) ensures that
pulsest3 it is important to extend this formula to electron O X(yv—A) =0 for all time. Thus, the momentum equation
quiver speeds that are comparable to the speed of light.  can be rewritten a4

As an introduction to this subject, we review the derivation at(u - A) =-0y, (7)
of the ponderomotive term in the electron-fluid momentum
equation. The standard form of this equation is
where the fluid momenturmu = yv. It follows from this

(0 +vm)(yv)=—~(E+vxB), (1)  definition thaty = (1+ uz)]/z.
where The ponderomotive term on the right side of Eq. (7) is valid
for arbitrary laser intensity. Together with the continuity and
_1/2 . . . .
y= (1_ Vz) ) Maxwell equations, it allows one to analyze the interaction of

alaser pulse with an electron fluid. However, there is a tradition
in plasma physics of looking at the same phenomenon from
is the Lorentz factor associated with the fluid velocity and different viewpoints. By doing so, one often gains physical
insight into the phenomenon under study. The ponderomotive
E=-0A, B=0OxA 3) term ir_1 Eq. (7) is not the force on a L_agrangian fluid element
or a single electron. Consequently, it cannot be used as the
foundation of a single-particle or kinetic analysis of the inter-
in the radiation gauge. These differ from the usual equations iaction of a laser pulse with a plasma.
thatat - t, kx - x,v/c - v, eE/mwc - E, eB/mac - B,

andeA/mé - A. In the following sections we present (1) an analytical study
of the motion of an electron in a light wave of constant

By using the vector identity amplitude; (2) using the results of this study, a heuristic
derivation of the formula for the ponderomotive force associ-

(v E])(yv) =Oy-vx [D < (yv)] ’ (4) ated with a light wave of variable amplitude; (3) numerical and

analytical verification of this formula; and, finally, (4) a sum-
mary of the results.
one can rewrite the momentum equation as
Particle Motion in a Plane Wave
dt(VV - A) =V X [D X (yv —A)] -0y, (5) The motion of a charged particle, of chacgend massn,
in an electromagnetic field is governed by the equétion
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rather tharr, Egs. (11) and (13) describe the particle momen-
tum implicitly. One can make this description explicit and
determine the particle trajectox¥(7) by using the result

d(uy +a,) = Va8, ®)

wherer is the proper time of the particle multiplied byut
is the f_our-veloqty of the_ p_artlcle divided Inya_“ is the four- d9=y(0) - u"(O). (15)
potential of the field multiplied bgymc? andd,, = d/dxH . For
an elliptically polarized field
The proper frequency of the wave is constant.

N (O’ O,eycosqo,ezsn(p), ©) It is clear from Egs. (11), (14), and (15) that the particle
motion is a superposition of sinusoidal oscillationg i@nd
wheree, =€J, €, = e(l— 62)]/2, andg=t-x. steady drifts irr. It follows from Eq. (11) that the transverse

drifts are given by
The motion of a charged particle in a plane wave is well

known16-19We present an analysis of this motion here be- <uy> =uy(0) +e, cos (=x0).
cause it is the foundation of analyses presented later in this _ (16)
article. Since the four-potential does not depeng onz, it <Uz> = U,(0) + &, sin (_Xo)y

follows from Eq. (8) that
where (.) denotes the—averagej'gn. dr/2m and &,0,0) is
dT(u[I + aD) =0. (10)  the initial position of the particle. By decomposing the longi-
tudinal momentum into its oscillatory component
Transverse canonical momentum is conserved. It follows from
Eqg. (10) that 2 u
uy(7) = (uy) = ) < 5) (17)
ug(7) = up(0) +ag(0) -an(r). (11)

and its drift component
Thet andx components of Eq. (8) are

(i8)-2(0)

dy =102, dug=-1002. (12) () = (0) EFOETOR (18)

Since the four-potential is a function i, it follows from  and combining Eqgs. (11) and (18), one can show that the
Egs. (12) that longitudinal drift is given by

dr(y —uy) =0. (13)
(uy) = uy(0) + [4<uy>ey cos(-xo)
Because the particle gains energy and momentum at the ex- 4 ) 2 )
pense of the field, the ratio of particle momentum to particle + <uz>ezsm(—xo) Y COS(‘ Xo)
k_lnetlc energy |§ |d§ntlc_al to the.ratlo of field momentu_m to +e§ cos(—2x0)]/4{y(0) —uX(O)]. (19)
field energy, which is 1 in the units of Eq. (8). By combining
Eq. (13) with the definition of, one can show that
For linear polarization Eq. (19) reduces to

_ uA (
uy(7) =y (0) m (14) <ux>:ux(0)+[4<uy>ecos(—x0)

-e? cos(—2xo)] /4y(0) - uy(0)], (20)
The corresponding equation figt) follows from Egs. (13) and
(14). Because the transverse potendiglis a function ofp  whereas for circular polarization it reduces to
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<ux>:ux<o>+e[<uy>cos(—xO) 0y = (At) = 0 (6 + )4y (0) -y (@) (20)

+(u,)sin(- ]/ 2[y(0)-u(0)]. (21)
By using the relationship betwegrandg and Eq. (15), one
The corresponding equations fgr) follow from Eq. (13)and can show thatd; = —[y(O)—u”(O)]o”’X. It follows from this

Egs. (19)—(21). result and Eq. (24) that
For completeness, a covariant analysis of the particle mo-
_ rorcompt : y P d;Ux = ~0y(€2/4). (25)
tion is given inAppendix A.
Heuristic Derivation of the Ponderomotive Force In a similar way, one can show that
The method used to solve Eqg. (8) for a plane wave of
constant amplitude can also be used when the wave amplitude d,u; =0, (e2/4). (26)

eis a function of-x. In fact, Eqs. (11), (14), and (15) are still

valid. When the wave amplitude varies slowly compared to the

wave phase, the particle motion consists of an oscillation aboBly using the facts tha?/2 = <a|%> anda& =-a,a’, one can
a guiding center and a guiding-center drift that varies slowlyewrite Egs. (23), (25), and (26) as

As the guiding center drifts, the oscillation amplitude follows

the wave amplitude at the guiding center adiabatically. dou. = ‘(5’y<avav/2>- 27)

To describe this motion quantitatively, &tbe the position

four-vector of the guiding center antt! = d;éH be the asso- The second term in this relation is the ponderomotive

ciated four-momentum. The ponderomotive four-force is thdéour-force.

proper rate of change of the guiding-center four-momentum.

One might expect this four-force to also be the average rate of The guiding-center Eq. (27) was derived for the special case

change of the particle four-momentum. However, by averagino which e is a function oft—-x. However, the principle of

the transverse particle motion, one finds that Lorentz covariance suggests that it is valid for the general case
in which e is a function oft, x, y, andz. Consequently, we

Uy> :[droey(To)] cos{1o). ) postulate th&P

u,) = [droez(fo)]gn(To)’ A7 &y = 'du<avav/2>|<‘u (28)

wherertg is the initial phase with respect to which the averagand the initial guiding-center momentum in a wave of variable
is taken. Because the oscillation amplitude changes durirmmplitude is identical to the particle drift momentum in a wave
each oscillation, the transverse components of the momentusficonstant amplitude, which is given by Eqgs. (16) and (19). For
change by amounts that depend on the initial phase. Howevéuture reference, Eq. (28) has associated with it the conserva-
it follows from Eq. (11) that the transverse components of théon equation
guiding-center momentum are constant. Thus, if one is to
determine the ponderomotive four-force by averaging, one
must discount terms that depend on the initial phase. With this dr (UHUH/Z * <ava" /2>) =0. (29)
caveat added to the definition f), one can write
Numerical Study of the Particle Motion

To test the guiding-center model described in the previous
section, we studied three representative examples numerically.
The first example concerns a particle that moves in front of a
and show that laser pulse. We considered a wide, circularly polarized pulse,

droy = (druy) =0, dru, =(dru,)=0  (29)
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with e=35in2[0.05(t —x)],and chose,(0)=1,u(0)=1,and can be analyzed quantitatively. It follows from thandx
u,(0) = 1. Because the pulse propagates at the speed of lightcotmponents of Eq. (28), and the assumed dependepaof
overtakes the particle. The resulting particle motion is illust—x, that

trated in Figs. 69.25 and 69.26, in which the solid lines denote d, (Ut _ Ux) -0. (30)
the particle trajectory, determined numerically from Eq. (8)

and the initial conditions, and the dashed lines denote tHinceuv, andu, are constant, Eq. (29) reduces to
guiding-center trajectory, determined numerically from

Egs. _(28), (16), and (19). As the pulse overtakes the parti_cle,_the dr[(Utz _ U)%)/Z _ e2/4] —0.
amplitudes of the transverse components of the oscillation

increase and decrease in proportion to the pulse intensity.

However, there is no change in the transverse componentsBfy combining Egs. (30) and (31) with the initial conditions,
the average momentum, and the particle exits the pulse witine can show that = 2+ €%/4 andu, = 1+ €?/4. At the peak
uy=1andi,= 1. The amplitude of the longitudinal componentof the pulseu, = 13/4, in agreement with Fig. 69.25(a).

of the oscillation also increases and decreases in proportionB@cause th& component of the ponderomotive force is posi-
the pulse intensity. However, because Eq. (14), which deive in the front of the pulse and negative in the back of the
scribes the relation between the longitudinal and transvergmilse, the guiding center is accelerated and decelerated by
components of the momentum, is nonlinear, the longitudinaqual amounts. In this example the correspondence between
component of the average momentum changes. This chantiee guiding-center motion and the particle motion is excellent.

(31)
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Figure 69.25
Particle motion (solid line) and guiding-center motion (dashed line) causeBigure 69.26
by a circularly polarized pulse with amplitude 3 sir? [0.05¢-x)]. Initially, Particle motion (solid line) and guiding-center motion (dashed line) caused

ux=1,uy =1, anduz = 1. (a) Thex component of the momentum. (b) The by a circularly polarized pulse with amplituele 3 sir?[0.05¢-x)]. Initially,
component of the displacement caused by the pulse. The initial drift upom, = 1,uy = 1, andu, = 1. (a) They component of the momentum. (b) The
which this displacement is superimposed is not shown. component of the momentum.
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The second example concerns a particle that is born insiddthough the particle is born at rest, it exits the pulse wjth
a laser pulse by high-field ionizati8hWe considered a long = 3/4 anduy = 1. This behavior is consistent with Egs. (16) and
pulse that is linearly polarized in ti@irection, withe= co®  (19). In this example the correspondence between the guiding-
(0.052), and chosey,(0) = 0, uy(0) = 0, andu,(0) = 0. The  center motion and the particle motion is excellent.
resulting particle motion is illustrated in Figs. 69.27 and 69.28.
The particle is born near the propagation axis of the pulse and The third example concerns a particle that is injected into a
is pushed outward by trlecomponent of the ponderomotive laser pulse from the side. We considered a long pulse that is
force. As the particle moves outward, the amplitudes of th&nearly polarized in thg direction, Withe:sin2(0.05y), and
longitudinal and transverse components of the oscillatioghoseu,(0) = 0.0,uy(0) = 0.7, andu,(0) = 0.0. The resulting
decrease in proportion to the pulse intensity. This transvergmrticle motion is illustrated in Figs. 69.29 and 69.30. As the
expulsion can be analyzed quantitatively. Sioge,, andu,  particle moves inward, the amplitudes of the longitudinal and
are all constant, Eq. (29) reduces to transverse components of the oscillation increase in proportion
to the pulse intensity. However, thecomponent of the
ponderomotive force opposes the inward motion, and the
particle is repelled just before it reaches the propagation axis
of the pulse. As the particle moves outward, the amplitudes of
in which 02 /2 plays the role of kinetic energy aefl4 plays  the longitudinal and transverse components of the oscillation
the role of potential energy. It follows from Eq. (32) and thedecrease in proportion to the pulse intensity. This transverse
initial conditions thatvs = l—ez)/Z. As the guiding center repulsion can be analyzed quantitatively. Sioge,, andu,
exits the pulseyp, =1/+/2, in agreement with Fig. 69.27(a). are all constant, Eq. (29) reduces to

d,(v2/2+€?/4) =0, (32)
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Figure 69.27 Figure 69.28
Particle motion (solid line) and guiding-center motion (dashed line) causeBarticle motion (solid line) and guiding-center motion (dashed line) caused
by a linearly polarized pulse with amplituele= co2 (0.059). Initially, uy = by a linearly polarized pulse with amplituele= co2 (0.059). Initially, uy =
0, uy = 0, anduz = 0. (a) Thez component of the momentum. (b) Tae 0, uy = 0, anduz = 0. (a) Thex component of the momentum. (b) The
component of the displacement. component of the momentum.
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Figure 69.29 Figure 69.30
Particle motion (solid line) and guiding-center motion (dashed line) causeBarticle motion (solid line) and guiding-center motion (dashed line) caused
by a linearly polarized pulse with amplitudg= sir? (0.05y). Initially, uy = by a linearly polarized pulse with amplitudg= sir? (0.05y). Initially, uy =
0.0,uy=0.7, andiz = 0.0. (a) They component of the momentum. (b) The  0.0,uy = 0.7, andi;= 0.0. (a) The component of the momentum. (b) The
component of the displacement. component of the momentum.
d (03/2 + e2/4) -0. (33) than the.prope_rnme, itis advantageous to change the indepen-
dent variable in Eq. (8) fromto ¢ The result is
It follows from Eq. (33) and the initial conditions that d(p(dr(pd(pxu + au) =d,x'0,a, , (34)

vg = (1—62)/2. The outward guiding-center trajectory is the
inverse of the inward trajectory. In this example the correspon-
dence between the guiding-center motion and the particmheredrfp:(d(prd(pr)_m.The resolution of Eq. (34) into
motion is good. We found the correspondence to be even betlengitudinal and transverse components is facilitated by the
for gentler gradients in pulse intensity. introduction of the four-vectokH, which is defined by the
equationg = kVx,,, and the four-vectd¥, which is defined by

In Figs. 69.25-69.30 the particle and guiding-center posithe equationsl,, =0, kYl, =2, anda"l, =0, whereat is
tions were plotted as functions of the proper time. We verifiethe transverse four-potential of a plane wave. In the laboratory
numerically that plotting the spatial components of the guidframek* = (1,1,0,0) and* = (1,-1,0,0). By using these four-
ing-center position as functions of the temporal component ofectors one can write
the guiding-center position produces the correct guiding-cen-
ter motion in the laboratory frame. XH=yH +GkH2+@dH /2, (35)

Multiple Scale Analysis of the Particle Motion where 8 =1Vx,, . The transverse position four-vector satisfies

In this section we verify Eq. (28) analytically. Because thehe equationg”y, =0 and!"y, =0.Inasimilarway, one can
fast variation of the four-potential depends on the phase ratherite
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al =bH +qkH /2+ plH /2, (36) The variablewl(l'l) andd(1) describe the guiding-center drift,
which changes on the slow sceleThe variableg/(0) and(©
where the transverse four-potential satisfies the equatiortescribe the fast oscillation of the particle about the guiding
kVb, =0 and|Vb, = 0. By substituting the decompositions center, the amplitude of which changes on the slow scale.
(35) and (36) into Eq. (34) and collecting like terms, one can
show The four-potential satisfies Maxwell’s wave equattbn

d 01 dy, O_db’dy, , 10dp do, dg O %d,gt -oH9,)av =0 (44)
+Db A’ 37 A9 v ’
dobs ap TH i ap 2B ap T are G0 ( )

where gl = diag(1,-1,-1,-1) is the metric four-tensor. For a
wave of constant amplltudaﬂ( V) =p® )(gq)). For a wave of

v
d 0L, 0 X7 dyy dde A (38)  variable amplitude we assume that

dolo P07 %90 do o6 dp 0’

au(x") = a&o) ((00| ex") +sa£,1) ((;b|£x"). (45)
d0ide O ,dvdy, dodo dg

tag= 2— —, (39)
dpCo de op do 590 dgo op’ Each contribution to the four-potential and its derivatives can
be written approximately as
where
~ (-9
12 ((00| &y, €6, E(P) (D_LD
= (dgy"dgyy +dy8) . (40)

+ gy(o)

Equation (39) can be derived from Eqgs. (37) and (38), as shown
in Appendix B, and need not be considered further.

Yol ()

One can solve Egs. (37) and (38) by using multiple scale
analysis. Lets be a measure of the rate at which the wavelhe first term on the right side of Eq. (46) is the contribution
amplitude varies relative to the rate at which the phase variesvaluated at the guiding center, and the second and third terms

We introduce the scales are the deviations from this average contribution that are felt by
the particle as it oscillates about the guiding center. The
Q=0 Q=@ (41)  corresponding approximation for the convective derivative of

the four-potential is discussedAppendix C. Henceforth, we
to resolve the fast oscillation and the slow change in thwill use a to denote the guiding-center contribution
guiding-center drift, respectively. It follows that

d _d d aEfPO

dp gy gy 2

v Y.60,05

To proceed further one substitutes Egs. (42), (43), and (46)
We used the notatiod/d¢, and d/d¢, in Eq. (42) to distin- in Egs. (37) and (38) and collects terms of like order. The order
guish these convective derivatives from the partial derivatives™! equations are satisfied identically by Ansaetze (43).
of the four-potential. We assume that the dependent variables

can be written as The order 1 equations are
= e @) v (0. 0) + D (0. ) a D1 o o0
A o2 O g0, 47)
(43) day Bj( ) day g

6= 7260 () + 60 (g0, @) + £60) g0, ).
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0 Now consider the initial condition on the order-1 four-
dap (0) H: 0, (48) momentum. Consistent with Eq. (35), one can write the initial
four-momentum as

where uH(0) = vH(0) +1u, (0)kH# /2 +KVu, (0)I# /2. (53)
0) :{[doy(o)v + dly(—l)v] It follows immediately that
(0) 4 gD ©) + qo-01" i o
x[dOyV +ahyy 7|+ do6\ +ch0 } (49) d1Y£1 )(0)= oy, (0)- doyg, )(0), (54)
and d, = d/dg, . 4,609(0) = (91w, (0) - dy8(9)(0). (55)

Equation (47) is the analog of Eq. (10). It follows from the
former equation that Equation (54) is the analog of Eqgs. (16), and Eqg. (55) is
consistent with Egs. (17) and (18).

0) _ 0) i=(0

doyg‘) =-0( b‘(‘ ) ' (50) The ordere equations are
The arbitrary function ofp, that results from they, integra- d H %ﬂyu Y;(1 Y S+ _(O)B
tion can be neglected becauys{@ Y already accounts for the d(l’l BU Hd% * dgy B by E
slowly varying drift with which this function is associated.
Equations (48) and (49) do not resemble any of the equations
in the sectiorParticle Motion in a Plane Wave However, q H 1 (1) dy(o) 0 H
different forms of the latter equations are discusségpen- + —[ H o ZH Oy 5}51) 0
dix A, from which it is clear that Egs. (48) and (49) comprise dep HU(O) Hiw  da H H

the analog of Eq. (A9). It follows from Eq. (48) thalf) is a
function of, alone. This result is the analog of Eq. (15) and
facilitates the integration of Eq. (50). By combining Egs. (49) d E o® yflo) dyL_l)
and (50), and equating the oscillatory and slowly varying terms o
that result, one can show that

de8(© = 20(0d,y(-2v p{°) Oy q(-Dv 070
o i - oy Dby (56)
Gdw  do goy¥
012U 0w 50\ 50V 500
+[g( )] gb() by > b b 5 (51)
and
and
60D + dy(-Dver Y 4010 dfol o
dp HOH dgy EZ[" ] g
_[ 0124 _ /g0y 5(\O
_[0—( )] % <b() B >E (52)
_ IO oy O 57)
Equation (51) is the analog of Eq. (17) and the oscillatory part Ed% dag G 06 ’

of Eqg. (A7), and is easy to integrate.
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where When applied to any guiding-center quantity, the operator

-1 -1
(1) _ de(l) de(O) i = M 4 + i + M 4 (62)
g +

= EY2 20
do | day do dg, oY oJpy dg 00

By combining Eq. (61) with Egs. (59), (60), and (62), one can

+2 Eby(o) - oy Ewy(l)v + dy(O El (58)  Show that
Gdo  da gEde  da g
1 d E 1 dol E__d<b(0)v b\50)> -
and 5;(11) and F)(l) represent the sum of the ordeifour- o(® doy Bj(o) dg o

potential and the ordeg corrections to the order-1 four-
potential caused by the oscillation of the particle about th®ecall that the preceding derivation of Eq. (63) is based on
guiding center. Eqg. (38). Had we analyzed Eq. (39) instead, we would have
needed to determing{Y, p@: g, and y( explicitly.
Although Egs. (56)—(58) are lengthy, they do not need to be

solved in their entirety. By equating the slowly varying terms In the notation of this section, Eq. (28) can be rewritten as
in Egs. (56) and (57), one can show that

-1 (O ‘(0)>
0 ) a<5(0)v E\SO)> dZXSJ ) _ _1 (3<b by (64)
1 dpl Wi 0=-1 (59) dr? 2 oxH ’
o0 dgy BU(O) dgy A 2 yH !

where 1; = &1 and xf =gxH. Since dqol/drlzj/a(o),
and Eq. (59) is the transverse part of Eq. (64). By contracting

Eq. (64) withk! andI#, and using the identitiekHd,, = 2J,

1 4010 a<5(0)v 5,,(0)> and|H9,, =24, and the fact thap= k“X;(J D one can show

50 M 57(0) E: - 70 . (60) that Egs. (60) and (63) are equivalent to the longitudinal part

of Eq. (64). Thus, Eqg. (28) is correct.

Finally, notice that Eq. (64) for the guiding-center drift is
It follows from Eg. (52) that written in terms of the proper time, which includes the effects
of the oscillation about the guiding center. Although this fact
does not affect the utility of Eq. (64), it calls into question the
0 aesthetic qualities of the equation. Just as the proper time is
0 defined by the equatiodr = {dx"dx,, Y2 one can define the
= drift time by the equationis = [dx(‘l)" dx\(,_l)]]/z.

_ /=0 =(0) =(o) =(0) It follows from this definition, Eq. (52), and the discussion
_ 1 <b(0)"bv >da(0) d<b(o)vb‘/ > of the preceding paragraph that
o dgy dey
ds _g_ /ey p(O)\F?
—= b\ b . (65)
S 1 dBgl1 ol afVE o, | )
D dg 5 O d O do i
g @ h Oy % H

Equation (65) can be used to write Eq. (28) in terms of the
drift time.
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Summary It follows from the first of Egs. (A3) that
In this article we solved the equation of motion for an
electron in a plane wave. We used this solution and the VH(T):VH(0)+au(0)—ap(T)- (A4)

principle of Lorentz covariance to deduce a formula for the
ponderomotive force exerted by an intense laser pulse on #rfollows from the second of Egs. (A3) that
electron. We verified this formula numerically, for three cases
of current interest, and analytically, using the method of kVu, (1) = k"u,(0) (A5)
multiple scales.
and, hence, that
The aforementioned formula can be used to study the
effects of the radial ponderomotive force on laser-plasma @=k"u,(0)r. (A6)
interactions. For particle accelerators, these effects include
the divergence of an electron bunch that is accelerated byEauations (A4) and (A6) determing(7) explicitly. There are
laser pulsé? the relativistic focusing of the pulse, and elec-at least three ways to obtain an expressioftfay. In the first
tron cavitation and magnetic field generation in the wake oépproach, one uses Eq. (A4) to rewrite the right side of the
the pulse. third of Egs. (A3) in terms . It follows from this equation
and Eg. (A6) that
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+[a(0)a, (0) - 2 ()a, (1)] /KW, (0). (A7)

Appendix A: Covariant Analysis of the Particle Motion
in a Plane Wave

The motion of a charged particle in an electromagneti¢n the second approach, one uses Eq. (A4) to rewrite the right
field is governed by Eq. (8). For a plane wave the four-potentiaide of the third of Egs. (A3) in terms wf. It follows from
al is a function of the phas@=k"x,. It follows that this equation and Eq. (A6) that
J,8, =k,a,, where’ =d/dg, and, hence, that

Vu, (1) =1Yu,(0) + [vV(O)vV (0)
d (uu * aﬂ) =uk,a; - (A1) —VV(T)VV(T)]/kVUV (0). (A8)

By substituting the decomposition In the third approach one uses decomposition (A2) to rewrite
the identityu’u, =1 as

U, (1) = vy (1) +KVu, (1), /2 +1Vu, (T)k, 2 (A2)
(k"uv) (I Vuv) +vVy, =1. (A9)

into Eq. (Al), wherd" was defined after Eq. (8), ang,
satisfies the equatiorie’v, =0 and|Vv, =0, one can show Sincek"u, andv'v,, are known quantities, Eq. (A9) provides
that athird expression fdu,,. By rewriting the 1 on the right side
of Eq. (A9) in terms of the initial values of the quantities on the
d; (Vu + au) =0, dr(kVuv) =0, d, (quv) =2vVa,. (A3) left side, one can rewrite Eq. (A9) in the form of Eq. (A8). All
three approaches have their uses. Equation (A4) is the covari-
ant version of Eq. (11), and Egs. (A5) and (A8) are the
covariant versions of Eq. (14) fajjand its analog foy.
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Appendix B: Covariant Lagrangian for the Particle

O
Motion dap 1 S+ qg
F_or a particle in an electromagnetic field the normalized do H dgy” dpYy +d(p9) g
motion®®
=- vax, Y2 +avdx, O B1 _ M dy, pdE A B7
S= e ) v g (B1) 96 dp  06dp 6 B7)

Traditionally, one parameterizes the particle motioninterms ah agreement with Egs. (37) and (38). One can reproduce
the proper tima, which is a Lorentz invariant. In this case Eg. (39) by multiplying Eq. (B6) by—2d(py“ and Eq. (B7)
by -dg0, and adding the resulting equations.

12
S= - ngXVdTXV) taldrx, éﬂr. (B2) Appendix C: Evaluation of the Four-Potential
The left side of Eq. (34) contains the teday, /dg, which
By applying the Euler-Lagrange equations to the integrand ahust be evaluated at the position of the particle. In the section
Eq. (B2), one finds that Multiple Scale Analysis of the Particle Motionwe used
Egs. (42), (43), and (46) to make a guiding-center expansion of

d (drxu + au) =d, x’ 9,8y, (B3) a, beforewe took the convective derivative. Specifically, we
wrote
in agreement with Eq. (8). Alternately, one can parameterize [ (0) (1)]
dya, =|dg +£d;||a,’ +ea\|, C1
the particle motion by the phage=k"x,, which is also a oH [ 0 1] H (€1)
Lorentz invariant. In this case
where
s=-[{aprdp)” ravdpHo. (B9 0
X" GgXy Xy a;(J):au (C2)

By using the decompositions (35) and (36) one can rewritis the four-potential evaluated at the guiding center and
Eq. (B4) as

ad) =y9,a, +60g,a, (C3)

S = - gd(py"dqayv +ol(,,e)MZ
is the correction to the four-potential caused by the oscillation
+bVdyyy + Pd(p9/2+Q/2] de.  (B5)  of the particle about the guiding center. Since the guiding-
center coordinateg("?) and 81 are functions ofg, by
construction,
By applying the Euler-Lagrange equations to the integrand of

Eq. (B5), one can show that da, _da, (ca)
dgy  om
d g
d g 1 dyu +p. 0 and
do vy V2 dep HO
dpy”dyyy +dgf
H ) 5| dau ay(-Dv ﬂ dau do(-1) dau (5)
dgy dg, oy dgol d(pl L
oY d 10dp db 0
T R dyv 2 er d ﬁ’% (86)
¢ ¢ It follows from Egs. (C1), (C4), and (C5) that
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da ﬂo) P Eq. (C1) is better because it facilitates the identification of
D—#D =_H (C6)  combinations of terms that are oscillatory and, hence, do not
Odeg g affect the guiding-center motion.
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