Two-Dimensional Analysis of the Power Transfer
between Crossed Laser Beams

The indirect-drive approach to inertial confinement fusion wave divided by the background electron density, and the
involves laser beams that cross as they enter the hohlraum. Iaignify that only the low-frequency response to the pondero-
acoustic waves in the plasma at the overlap region can transfaotive force was retained.

power between the beams. Since this could adversely affect the

implosion symmetry, it is important to understand the mecha- Beam 1
nisms that make such a transfer possible. In this context, two \
studies have been made of the interaction of crossed laser
beams mediated by an ion-acoustic wave. Keiel.? per-
formed a one-dimensional analysis of the steady-state power
transfer, emphasizing the effects of different beam frequencies
and the inhomogeneity of the plasma. Eliseteal 3 performed
two-dimensional simulations of the interaction of equal-fre-
guency beams in a homogeneous plasma. In addition to
observing atime-dependent power transfer between the beamsﬁ,1525
they observed several secondary processes and supplemented

their numerical simulations with one-dimensional analyses Gfigure 66.30

certain processes. Here, we present a two-dimensional anafyeometry of the interaction of crossed laser beams. The beam widths are
sis of the power transfer between beams of unequal frequenggual and denoted by, and the beam intersection angle is denotef e

in a homogeneous plasma, for both the transient and steac&bgrafztenstlc coordinates and n me.asure distance in the propagation
. irections of beams 1 and 2, respectively.
State regimes.

7

Beam 2

Governing Equations By substituting the Ansaetze
Laser beams that cross interact via ion-acoustic waves in
the irradiated plasma. The interaction geometry is shown in

(&) = A(&n.t) expi (kaé - ext)

Fig. 66.30 and is governed by Maxwell’s wave equétion 3)
+ Ao(é.n.t) exp[i (ko = wzt)] +cC.
(ﬁt% + 0w - CZDZ) A, = —w@n A, (1)
and
fpr the electromagnetlc. potential together with the ion-acous- n (f,ﬂ,t) - n(f, ﬂ,t) exp[i(klf _ kz’?)] +ec, (4)
tic (sound) wave equatién
(0tt + 2ved, —C§D2)n| — lc§D2<A§>. ) into Egs. (1) and (2), and making the slowly varying envelope
2 approximation, one can show that
The electromagnetic potenti#, = (vh/c_c,)(r‘ne/rr';)]/2 is the _ 2 )
quiver velocity of electrons oscillating in the high-frequency 35'651 B _'(we /2(‘)1\'1) A exp(lwt),
electric field divided by a characteristic speed that is of the (5)

order of the electron thermal speegdjs the low-frequency

0, A = —i(w2 /2c,v, In* A exp(-iwt) ,
electron-density fluctuation associated with the ion-acoustic n’e ( e /202 2) A p( )
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and in Fig. 66.31, for the case in whicl/wg = 0.1. Both coeffi-

cients are normalized tew2w? /4w,wsV,Vs, Which, apart
(5tt +2vgd, + wg) n=-w2AA exp(-iwt), (6) frqm a.factor of A5L|2 is the §patia| growth rate Qf stimglated

Brillouin scattering (SBS) in the strong-damping limit. Al-
though the Lorentzian approximation for becomes less

wherev, is the group velocity of the higher-frequency beam;accurate as the magnitude of the frequency-detuning param-

Vv, is the group velocity of the lower-frequency beass,w—  eter increases, the Lorentzian approximatiorffisraccurate

w»is the difference between the beam frequenkigsk, -k,  for arbitrary frequency detuning. For values\wfjwg larger

is the ion-acoustic wave vector; ang = cks is the ion-  than 0.1, there are significant discrepancies between the ap-

acoustic frequency. The characteristic variabasdy measure  proximate and exact expressions for both coefficients.

distance in the propagation directions of beams 1 and 2,

respectively. The time derivatives were omitted from Egs. (5) 0.6
because the time taken for the laser beams to cross the interac- 0.4 L
tion region is much shorter than the time taken for the @ '
ion-acoustic wave to respond to the ponderomotive force. § 0.2 |-
@
. o 00
Steady-State Analysis =
In steady state, the beams interact according to & 02 -
-04
. 2
55A1:('0"5)|A2| A, -0.6
(7) 1.0
_ 2
Onho =(ia + B)| Al Ap., B os|
2 .
o
a
where the nonlinear coefficients @ 0.6 |-
e
g 04
£
(@]
. wgwg(wg —wz) g 02
= 5 , £
2w,V ga)@; - wz) + 4v§w28 0.0 L4 L
-1.0 -0.5 0.0 0.5 1.
8 )
Frequency detunin
B _ wgwgvsw P1577 q y g
> )
WyVsp %wg - wz) + 4v§w25 Figure 66.31

Nonlinear coefficientsx and 3 [Egs. (7)], normalized to the resonant gain
Since | w| << wy, the differences between; andw, andv, coefficient, plotted as functions of the frequency detuning parandétey

andv2 were neglected in the first of Egs. Enh the Lorentzian for the ca;e |n.wh|(:rvs/wS =0.1. The coefflmen@r andp che.iracterlze the
. . real and imaginary parts, respectively, of the ion-acoustic response to the
approximation

ponderomotive force. The solid lines represent the exact coefficients
[Egs. (8)] and the dashed lines represent the approximate coefficients [Egs. (9)].

—w2wd WEWV,
0!=4 662S+ At B=4 e5szi v 9)
wzvz( VS) wzvz( VS) Equations (7) are solved subject to the boundary conditions
where the frequency-detuning parameder w — ws. The Al(o,r]) = A, AZ(E, 0) = phy, (10)

coefficientsa and characterize the real and imaginary parts,
respectively, of the ion-acoustic response to the ponderavherepis the ratio of the amplitudes of the incident beams. By
motive force [see Eg. (6)]. They are plotted as function® of changing variables according to
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O 2as] and P2(I,y) is the power in the cross section of beam 2 that is
By = A expiafs|Ao| dE' a distancey from the entrance to the interaction region. By
(11) combining Egs. (13), one can show that

B, = Ao exp-iaf|ALar), 2R =[1-exp(R)], (16)

one can reduce Egs. (7) to
from which it follows that

0B =~fB°B, 9B =AB[ B (12)
R(xy)=- Iog{l— exp(—rx)[l— exp(—y)]} . @an

It is convenient to define the normalized intensities
It then follows from Eqg. (17), and the relatiohs= dyR and

= (B /|Aof” and 1z = |8, /|l I, =rexp(R), that
the normalized distances ( )
eX —
2 2 ly(x.y) = PAY :
x=20A[ & andy =28/A|"n, exp(rx) -1+ exp(-y)
and the normalized beam width r exp(rx) (18)
Io(xy) =

exp(rx) -1+ exp(-y)’
| = 24|A|* w/sine,

By combining Egs. (13), one can also show that
where w is the physical beam width ané is the beam

intersection .angle (see Fig. 66.30). In terms of these dimen- Po(xy) = Iog{1+ exp(y)[exp(rx) _1]}- (19)
sionless variables, Eqgs. (12) become

Oyl ==laly, 9yl =lily (13)  Equation (19) and the relations = d,P, and I, = exp(-P)
are consistent with solutions (18).
and the boundary conditions [Egs. (10)] become
The beam-intensity profiles are displayed in Fig. 66.32, for

11(0,y) =1, 15(x,0)=r, (14) the case in which=3 andr = 0.01. Notice that the intensity of
beam 1 is nearly constant and the intensity of beam 2 is nearly
wherer = | p|2 is the ratio of the beams’ intensities. independent of. Whenrl << 1, asitis for Fig. 66.32, Egs. (18)

reduce tol; = 1 andl, = r expf) in agreement with the
Despite the fact that Egs. (13) are nonlinear and describmearized versions of Egs. (13).
beam propagation in two directions, there is a way to solve
them analyticall?- It is convenient to define The beam-intensity profiles are also displayed in Fig. 66.33,
for the case in which= 3 andr = 0.1. Notice that the intensity
profiles are highly two-dimensional. Beam 1 is depleted as it
R(xy) =on'1(><, y')dy', propagates in the direction, and beam 2 is amplified as it
(15)  propagates in the direction. Consequently, the depletion of
X , . beam 1 along the characteris§ic= | is more rapid than its
PZ(X' y) =Jo IZ(X ,y) o', depletion along the characterisyie 0, and the amplification
of beam 2 along the characteristic 0 is more rapid than its
Physically, R (x,1) is the power in the cross section of beam lamplification along the characteristic=1.
that is a distancefrom the entrance to the interaction region,
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It follows from Egs. (17) and (19) that Since the normalized incident powet,ithe fractional power
transfer isT(1)/1. This fractional power transfer is plotted as
P (%y) - Po(x,0) = B(0,y) - R(x.Y); (20) @ function ofl in Fig. 66.34. It is not difficult to show that
T(1)/ = r[exp(l) -1] for rl << 1 andl ~ 1, and T(1)/1 =1
for | >> 1.
the power gained by beam 2 must equal the power lost by
beam 1. The power transf&(l,1) — P,(1,0) is denoted by (1) Despite the complexity of the beam evolution, which is two-
and is given by dimensional and nonlinear, the power transfer is characterized

by two dimensionless parameters. The firsis simply the

(1) = Iog{ exp(-rl) + exp(l)[l— exp(—rl)]} . (2 ratio of the incident beam intensities. The sechnigpends on
several dimensional parameters that characterize the beams

(@) (b)

P1578

Figure 66.32
Beame-intensity profiles [Egs. (18)] for the case in which the normalized beamwi@tand the ratio of the incident beam intensitie€.01. Notice that the
intensity of beam 1 is nearly constant and the intensity of beam 2 is nearly independeastlafear theory predicts.

(@) (b)
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Figure 66.33
Beame-intensity profiles [Egs. (18)] for the case in which the normalized beamwi@&land the ratio of the incident beam intensitie<.1. Notice that the
intensity profiles are highly two-dimensional.
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Fractional power transfer from beam 1 to beam 2 [Eq. (21)] plotted as a 8 '
function of the normalized beamwidtlior two values of, the ratio of the f 20+ —
incident beam intensities. The dashed line corresponds @01, and the g
solid line corresponds to= 0.1. % 15F n
$ 10 .
and the plasma. As a numerical example, suppose that the® 05 1
electron density, = 1070 cm™3, the electron temperatufg = a
1 keV, the ion temperatuig = 0.5 keV, the laser wavelength 0.0 l I I l l
Ao = 0.35um, the laser intensityy = 10> Wenm2 and the 00 05 10 15 20 25 3
beamwidthw = 1 mm. For these parametérs2.7. One can  piss1 Distance (x)
infer the value of for other parameters by using the fact that,—
Figure 66.35

with the electron-to-ion temperature ratio fixéds propor-

. . . Normalized phase shifts [Egs. (22)] plotted as functions of position for the
tional tongAglgw and is inversely proportional ®Q.

case in which the normalized beamwibtitt8 and for two values of the ratio

of the incident beam intensities. The dashed lines correspordX01, and
Since Eq_ (21) is valid for 0 &< 1t the angular dependence the solid lines correspondites 0.1. The spatial inhomogeneity of these phase

oflis also of interest. Whedi= 0, 3 |,60|2 is the spatial growth ~ shifts causes the beams to be deflected.

rate of SBS. For an ion-acoustic wave subject to Landau

damping, this growth rate is independen®8f° In this case, either beam would measure a larger normalized phase shift on

| is inversely proportional to si#h the power transfer is larger the left side of the beam.

for beams that are nearly parallel or antiparallel because they

overlap for a longer distance. The importancedcf O is For beams of moderate width~1), the variation of phase

measured relative i@ andvg, both of which are proportional with distance is approximately linear and the beam deflection

to sin(6/2). Thus, the power transfer is more sensitive toanglest; andg, are easily estimated. It follows from the laws

detuning when the beams are nearly parallel and less sensitivegeometrical optics that

when the beams are nearly antiparallel.

When & # 0, the interaction of beams 1 and 2 causes their 6 =[@(1) = @(0)]/kyw, 6, =[%:(0) - @o(1)] kow. (23)
phases to be shifted lgy andg,, respectively. It follows from
Egs. (11) and (15) that
By combining Egs. (22) and (23), and neglecting the difference
Q(y) =aP, (|,y)/2p Iy, Cﬂz(x) = apl(x,l)/zﬁ lo. (22) betweerk; andk,, one can show that

The normalized phase shifs(1,y) and B(x,1) are plotted as 6,6, = (a/kp SnO) T()/1]. (24)
functions of position in Fig. 66.35. An observer traveling with
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Both beams are deflected in the same angular direction: N(&n.t) = n(& n,t)exp(iwt), (25)
anticlockwise whem < 0 and clockwise whe> 0. Because

the fractional power transfer dependsland, hence, off,  which satisfies the simplified equation

the beam deflection angle [Eq. (24)] depends on badind

B. It is evident from Fig. 66.31 that the magnitude of the (0 +vs —10)N = -i(wsAo/2) As . (26)

beam deflection angle is largest whéh~ vs. Whend =0 or

0= -w, the beams are not deflected. Subiject to the normalized boundary and initial conditions
For wide beamsl| (>> 1) the phase of beam 1 still varies Ar(0,n,t) =1,  Ay(&,n,0)=1, (27)

approximately linearly with distance and the first of Eqgs. (24)

is still valid. Unfortunately, the variation with distance of thewhich differ from the physical conditions by a factoro#{,
phase of beam 2 is highly nonlinear, and it is difficult toand the initial condition

estimate the beam deflection angle and focusing distance. In

this case, however, the power transfer from beam 1 to beam 2 N(E,n,O) =0, (28)
is complete: the irradiation symmetry is destroyed and the
issues of beam deflection and focusing are irrelevant. the solution of Eq. (26) and the second of Egs. (5) is

The beam deflection angle is larger for beams that are nearly
parallel or antiparallel because the nonlinear phase shifts that  Ay(n,t) =1+ yJ’t ('7/V2t 3/2 I1[2y nt'/vz)]/z]
deflect the beams are proportional to the power transfer. For
the same reason, the beam deflection angle is more sensitive xexp[ —|5 ]dt'
to detuning when the beams are nearly parallel and less (29)
sensitive to detuning when the beams are nearly antiparallel.
N(n.t) = (wsAO/Z [2y nt' /v, ) ]
Transient Analysis ,
Equations (18) and (21) describe completely the steady- xexp[— Vs _|6 ]dt ’
state power transfer between beams 1 and 2. However, it is
important to know how long the beam interaction takes tavhere
reach steady state. If this saturation time is comparable to the

duration of the interaction, the transient power transfer must _( ) y2
also be determined. = |wéwg A ? [ (30)

The case in whicld = —wg has been studied theoretically is the temporal growth rate of SBS in an infinite plasma and
and experimentall}%11 In steady state, beam 2 is unam-1,, denotes a modified Bessel function of the first kind, of
plified. However, the response of the ion-acoustic wave to arderm (rather than a beam intensity). It is evident from this
steady ponderomotive force includes a resonant transient thatlution that the linear evolution of beam 2 is one-dimen-
is required to satisfy the initial conditions. This resonansional. Ast — o,
response produces a frequency-downshifted component of
beam 2. In turn, the frequency-downshifted component of 5 )
beam 2 gives rise to a component of the ponderomotive forc@?(r’ t - exp[y ”/VZ(VS B '6)]’
that drives the ion-acoustic wave resonantly. Because of this (32)
feedback mechanism, the transient (SBS) grows conaderabN [leAO/Z —|5]exp[y fI/Vz _|5)]
and lasts for a time that is long compared to the damping tlme
of the ion-acoustic wave.

in agreement with the linearized versions of Egs. (13).

We consider here the complimentary case in which
|5| << ws, and the linearized equations can be simplified and The normalized intensity of beam 2 is plotted as a function
solved exactly. It is advantageous to work in terms of the ioref v¢ in Fig. 66.36 for the case in which the spatial growth
acoustic amplitude parameteryzry/vzvS = 3 and for three values @ The oscil-
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250 ' — ' = For a fixed value ofj, the saturation time is inversely
proportional tosin(6/2) 8.2 However, in the present context,
200 the maximal value of) is w/sin@ and the saturation time is
150+ — inversely proportional tcsinesin(e/z). Thus, the saturation
time is longer for beams that are nearly parallel or antiparallel,

Intensity
amplification

100 - N and the increase in saturation time is larger for beams that are
- nearly parallel.
50 (2)5=03y yp
0 | | | |

It is evident from Figs. 66.32 and 66.33 that two-dimen-
60 : : : sional evolution signifies the convective depletion of beam 1,
which is a nonlinear effect. When the beams are only moder-
ately wide or the ratio of the incident beam intensities is small,
the steady-state interaction of the beams is approximately one-
dimensional and is consistent with the linearized Egs. (31). For
20 - these cases we expect the transient evolution of the beams to be
well described by Egs. (29). However, when the beams are
(0)6=1.0% wide or the incident intensities are comparable, the depletion
0 ' ' : ' of beam 1 is significant and the nonlinear Egs. (5) and (26)
must be used to determine the transient evolution of the beams.

40 |- -

Intensity
amplification

Numerical Simulations

Equations (5) and (26) were solved numerically, and the
— total power passing through the exit boundary of each beam
. was determined as a function of time. The power amplification
— of beam 2 is plotted as a functionwf in Fig. 66.37 for the
case in whichy?n/v,vg =3 and for three values @ The
| . dashed line corresponds ite= 0.01, for which the maximal
0 5 10 15 amplification is 101, and the solid line corresponds+®.1,

Time @4 for which the maximal amplification is 11. Although plotting
the power amplification rather than the absolute power trans-

Figure 66.36 fer disguises the fact thayl)/I <1, it facilitates a comparison
Intensity amplification of beam 2 [which follows from the first of Egs. (29)] Of the analytical and numerical results. In particular, the
plotted as a function ot for the case in which the spatial growth parameterdeviation of the two numerical curves from one another signals
y2n/vovs =3. ()= 0.3vs (b) 5= 1.0vs; (c) 5= 3.0vs. the onset of nonlinearity.

Intensity
amplification

(c)0=3.0y
| .

P1582

lations in beam intensity are due to the beating of the driven By comparing Figs. 66.36 and 66.37 one notes that when

response and the resonant transient. As the magnitude of = 0.01, the predictions of linear theory are quantitatively

increases, the maximal transient intensity decreases less thamrect ford = 3.0 vg and qualitatively correct fod = 1.0vg

the steady-state intensity, so the transient becomes more iandd = 0.3vg. Whenr = 0.1, the predictions of linear theory

portant. For the case in whiah= 0, the linear saturation are qualitatively correct fod = 3.0vg and incorrect fod =

time 9 1.0vgandd = 0.3vg. The numerical results show that the on-
set of nonlinearity is more rapid, and its effect on the transient

ts = 2y2r7/v2v§. (32) and steady-state power amplification is more dramatic when

the incident intensity of beam 2 is high or the normalized

Whend # 0, some oscillations persist for alonger time, but thebeam width is large [see the second of Egs. (8) and (9), and

beam intensity is of the order of the steady-state intensity &ig. 66.31].

this time: the saturation time does not depend sensitivedy on

and is well approximated by Eq. (32). When nonlinearity is important, the interaction saturates
more quickly than linear theory predicts. The extent to which

LLE Review, Volume 66 79



Two-DIMENSIONALANALYSIS

50 = — T — — this condition that the nonlinear saturation time is inversely
40 // ()5=0.3 proportional toy2n. For fixedn, the nonlinear saturation time
5 / is inversely proportional tei n(6/2), as is the linear saturation
58 30 _ time [EqQ. (32)]. However, in the present context the maximal
g £ / value ofnp is w/sin@ and the nonlinear saturation time is
a E— 20 - - proportional tocos(6/2).
® 10}/ -
/f Summary
0 L L L The power transfer between crossed laser beams made
30 possible by an ion-acoustic wave was studied in detail. Despite
rNo ] ' ! ' the complexity of the beam evolution, which is two-dimen-
25+ [/ \ (b)5=1.0y¢ - sional and nonlinear, a simple formula was derived for the
.S 20 - // \\ _| steady-state power transfer. This power transfer depends on
g kS sl \ ] two dimensionless parameters: the ratio of the incident beam
5 % | ~ - intensities and the normalized beamwidth. The normalized
g 10 o — beamwidth is proportional to the physical beamwidth and the
© 5 /\ — intensity of the higher-frequency beam, and is inversely depen-
dent on the detuning of the laser difference frequency from the
0 ' : ' : ' ion-acoustic frequency. Numerical simulations showed that
the transient power transfer is larger than the steady-state
_| power transfer and usually oscillates in time. The convective
s i depletion of the higher-frequency beam saturates the power
5B transfer more quickly than the damping of the ion-acoustic
% é B wave. The deflection of each beam by the other was also
a g i studied briefly.
T _
. The analysis of this article is based on the standard fhodel
in which the beams are assumed to be monochromatic and their
15 interaction is assumed to be in steady state. This simplified
o1583 Time () model allows one to understand the basic physics of the power
transfer from the higher-frequency beam to the lower-fre-
Figure 66.37 quency beam. A more realistic motielould allow the beams

Power amplification of beam 2 plotted as a functiontibr the case inwhich  to have many frequency components. The analysis of such a

the spatial growth parametgr®/v,vs =3. The power amplification was el in both the transient and steady-state regimes, will be
determined numerically for two values mfthe ratio of the incident beam .
the subject of future work.

powers. The dashed line corresponds t00.01, for which the maximal
amplification is 101, and the solid line corresponds=®.1, for which the
maximal amplification is 11. (&)= 0.3vs; (b) = 1.0vs; (c) d=3.0vs. ACKNOWLEDGMENT
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