Self-Consistent Stability Analysis of Ablation Fronts
with Large Froude Numbers

In inertial-confinement fusion (ICF), the ablation front of the A qualitative description of convective (or ablative) stabi-
imploding capsules is hydrodynamically unstabfeThe lization can be obtained by using the incompressible sharp
heavy material of the compressed pellet is accelerated by theundary modéi-10consisting of two fluids of constant den-
low-density ablating plasma, thus making the pellet interfacsity separated by an interface of zero thickness with mass
unstable to density perturbations (Rayleigh-Taylor instabilflowing from the heavy to the light fluid. For subsonic ablation
ity).3 The classical treatmehof this instability occurring at  flows, the perturbed velocity field is assumed to be incom-
the interface of a heavy fluid with uniform densfy, sup- pressible(D W= O) through the interface. It is easily shown
ported by a light fluid with uniform densitg,, yields the that the assumption of divergence-free velocity perturbations
growth rateyy = Arkg, whereg is the acceleration and is not consistent with an accelerating equilibrium flow, i.e., the
Ar = (ph - P )/(ph +p|) is the Atwood number. It is note- equation describing the perturbation cannot be used to deter-
worthy that, in the classical case, the growth rate monotomnine the equilibrium profiles. Since the equilibrium is
ically increases with the mode wave numkeand the At- one-dimensional, the incompressibility condition leads to a
wood number is constant. However, in ICF, the convection afiniform velocity profile U = constany}, in clear contradiction
ablated material through the interface leads to a reduction efith the mass conservation that requires a uniform mass flow
the growth rate with respect to the classical ve@qﬁyd <1) (pU = constant and a jump in the profiles. In addition, the
and, for sufficiently short wavelengths, the instability is sup-model requires a closure equation, as the number of unknowns
pressed20 Thus, only those modes with wave numberexceeds the number of equations. Several closure equations
smaller than a critical valdié16(k <k., wherek, is the cutoff  have been proposed by different autiot8leading to dis-
wave number) are unstable. In addition, the density profile afrepancies in the final results. In Ref. 10, the sharp boundary
ICF targets monotonically decreases in the ablation and blownodel is improved by a self-consistent calculation of the
off regions, thus complicating the definition of a light-fluid density jump occuring at the ablation front. Nevertheless, an
density (o) to be used in the definition of the classical At-additional closure equation [Eq. (5) of Ref. 9] is still needed
wood number. For a monotonic density profile and modend the model is not self-consistent.

wavelength smaller than the density-gradient scale length,

Monotonic equilibrium profiles of ablation fronts can only
be reproduced by retaining the effect of finite thermal conduc-
tivity in the energy equation. Thus, for consistency, the effect
of thermal conduction should be retained in the stability
the growth rate of the classical Rayleigh-Taylor instabilityanalysis as well. Kull and Anisimov developed a mb e
(without ablative flow) isyy = +/9/Lmin » WhereL,in is the  isobaric model) that includes thermal conduction and neglects
minimum density-gradient scale length. This result has ledther less important physical effects such as finite Mach
several authofs?0 to approximate the Atwood number with number. Their model is self-consistent because it can be solved
an asymptotic formulaéAT =11+ kLmin) that reproduces the to determine the equilibrium profiles as well as to carry out
classical results for long- and short-wavelength modes, arttie stability analysis. However, in Ref. 4, Kull and Anisimov
for py << py. In this article, the Atwood number is derived for analytically solve the isobaric model without determining the
equilibria with ablative flow, and it is shown that the classicakelf-consistent equilibrium. They assume instead that a sharp
formula does not apply to ablation fronts. The ablative Atwoodoundary exists between the heavy and the light fluids. Al-
number depends on the density-gradient scale length, thieough their model is self-consistent, their solution is not.
mode wavelength, and the law of thermal conduction. Later, KulP numerically solves the self-consistent isobaric

kL>>1, where L =p(dp/ dy)_l,
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model and finds a large discrepancy with the sharp boundagndFr > 10, but significant discrepancies exist for lavgeA
results. The numerical results of Kulilso agree with the more detailed comparison between analytical, semi-anal-
results of Ref. 6. The latter can be fitted by the well-knowrytical, and numerical results is presented in Discus-
formula sion section.

y = aT@ - BrkVy, (1) In this article, the importance of a growth rate formula valid
over a large range afs is emphasized. In fact, numerical
simulations show that direct- and indirect-drive ICF capsule

whereV, is the ablation velocity angl;, B are given later in  implosions have different instability growth rates. This could
the section orStability Analysis. This formula has been be related to the different mechanism of energy transport—
derived by numerically solving the exact eigenvalue problemindirect-drive ICF is dominated by radiation transport and
including electronic heat transport ¢ T, v=2.5), for large  direct drive by electronic thermal conduction. In the diffusive
Froude numbersF¢ = 5-9, see Table | of Ref. 5), where radiation modef! the heat flux transported by radiation heat
Fr =VZ2 /gLy andLis the characteristic width of the ablation conduction is proportional to the temperature gradient
front and will be specified in the next section. The numerica(q = —KDT) and the effective radiation thermal conductivity
results of KulP and Takab® have also been confirmed by k =160 T3I(T)/3, where o is the Stefan-Boltzmann con-
several two-dimensional simulations of accelerated targettant, and(T) is the Rosseland mean free path. According to
and capsule implosior$:19 Ref. 21,I(T) can be approximated by a power law with the
power index dependent on the material properties. For ex-
The great difficulties in the analytic solution of the self-ample, inan optically thick, fully ionized homogeneous plasma,
consistent problem had prevented the derivation of an analy(T) ~ T3->andk ~ T6-5. The variance of the power index has
tic growth-rate formula that reproduces the numerical result@rovided the motivation to carry out the stability analysis for
Only recently, some attempts have been made to close thasbitrary values of (k ~ TV) and to determine a generalized
gap by solving the self-consistent problem using asympformula for the growth rate.
totic techniques.
In this article, we present the analytical solution of the
The first attempt is found in Ref. 12, where the Wentzeleigenvalue problem derived from the linearized isobaric
Kramers-Brillouin (WKB) approximation is used to determinemodel of Kull and Anisimo¥ for long-wavelength perturba-
the cutoff wave number in the case of electronic heat condutions kL << 1), closing the gap between theory and numerical
tion (v=2.5). Based on this analytic estimate, V. V. Bychkov,computations, and extending the validity of the growth-rate
S. M. Goldberg, and M. A. Liberman derive an approximatdormula to a large range ofs. The analysis is limited to> 1
growth-rate formula, similar to Eq. (1), wifh=2.5-3.2 and and large values of the Froude number, thus restricting the
a?= (pl - Pz)/(Pl + pz), wherep, is the peak density apg  unstable spectrum to wavelengths longer than the width of the
is the critical density. In Ref. 16, the cutoff formula for long-ablation front. In fact, as shown in Ref. 16, the cutoff wave
wavelength modes ariet > 1 is derived self-consistently for number for large-Froude-number equilibria occurs at long
an arbitrary power law dependence of the thermal conductiomavelengths: k.Lg ~]/Frﬁ <<1. Configurations with
(K ~TY, v >1) using boundary layer theory. The eigenvalueFr > 1 are typical for ablation fronts characterized by pure
equation is solved in the overdense, ablation, and blowo#lectron heat conduction (such as those considered in Ref. 6),
regions, and the solutions are asymptotically matched. F@ome indirectly driven targets with large ablation velocities,
v = 2.5, this formula agrees with the analytic estimate ofind some directly driven targets with a strong radiation emis-
Ref. 12 and reproduces the numerical results of Ref. 5 faion [such as those containing poly-vinyl-chloride (PVC
different values of. or GH3CI)].

A semi-analytical, self-consistent analysis is also carried The growth rate is obtained by performing a boundary layer
out in Ref. 13 by matching the analytical solution of theanalysis in the regions of different scale lengths for the pertur-
ablation region with the numerical solution of the blowoff bation and subsequent asymptotic matching. The analytic
region. The growth rate of Ref. 13 and the fully analytictheory is compared with the numerical results of Kaihd
formula derived in this article are in agreementior 2.5  Takabé for different values oFr andv.
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This article is organized as follows: First, the isobaric model L= Yh—1 Akg
describing the evolution of accelerated ablation fronts is pre- 0~ Yh  PaVa
sented; next, the equilibrium profiles are derived, a stability
analysis is performed, and the growth-rate formulas are ré-or classical electron thermal conductions 5/2, andk, is
ported. Finally, in the discussion section, the growth-ratgiven by Spitzef2
formulas are compared with the numerical results.

(6)

. 321Y? @
SN 2d(2)A\ze*\m,

Isobaric Model

We consider an ablatively accelerated fluid in steady state.
In the ablation-front frame of reference, the evolution of the
mass densityp, velocityv, and temperatur€is described by whereA is the Coulomb logarithm and
the following conservation equations:

®(Z)=(Z +4.16)/(Z+0.24).

p _
r3 +Otv=0 2) As will be shown later, the constary is proportional to the
density-gradient scale length at the ablation front.
p%+vﬂﬂv@— ~Hp+pg ®) Equations (2), (3), and (5) represent a complete set of
four equations for the four variablpsvy, vy, andp that can be
T used to study the equilibrium and stability of accelerated
PCy % v DDTEZ —pUlv+DIOT, (4)  ablation fronts.

where g = gey(g < 0), p=pT/A is the hydrodynamic pres- Equilibrium Profiles
sure,c, = A‘l/(yh —1) is the specific heat at constant volume,  The equilibrium profiles can be derived from Egs. (2), (3),
and y, is the ratio of the specific heats. The constantind (5) by settin@/at = 0. Although a detailed description of
A= p/(ni + ne)zrq/(1+ Z) represents the average particlesuch profiles is given by Kull in Ref. 5, we summarize herein
mass, wherary; is the ion massZ is the atomic number, the main results. The density profile obeys the following first-
andn;, ng are the ion and electron particle densities, respemrder differential equation obtained by combining Egs. (2)
tively. The thermal conductivitx has a power law depen- and (5):
dence on the temperature,=k,(T/T,)", whereT, is the
ablation temperature. dé _ Evﬂ(f f) (8)
dy LO
For realistic ICF implosions, the energy equation can be
simplified by assuming that the sound sp€gdt the ablation whereéyis an integration constant. The appropriate boundary
surface is much larger than the ablation velodifyi.e., a conditions for ablation fronts require the density profile to be
negligible Mach numbe (M V,/Cs << 1) and the den- flat at the peak valuef( =0 for £ =1, leading toéy =1) and
sity-gradient scale Iengtb (dp/dy) is much smaller evanescentinthe downstream or expansion redion Q for
than the stratification lengticZ /g. Following the work of y - —w). The steepness of the profile depends on the value of
Kull and Anisimov# the simplified energy equation can be L, that is determined by the thermal conduction and the
rewritten in divergence-free form, ablation rate. Using Eq. (8), the density-gradient scale length
can be written ag = LO/[EV 1- E)l and its minimum value
is proportional td_g, Ly =|(v+1 "+1/v" Lg. As described
O % *LoVa v+2E 0, ©)  inRef. 16, the lengthg can also be relatéd to the distabhge
between the peak of the density and thepbint.

whereé = p/p, is the density normalized to its peak vatde Although Eg. (8) cannot be solved in closed form, an
andL is the typical width of the ablation front, approximate solution can be found in proximity of the peak
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density (overdense region), where> 0, & = 1, and in the ity, i.e., V(te) =0, P() =0, and p(+x) = 0. Because of
blowoff region, wherg/ < 0, § << 1: the complicated spatial dependence of the coefficients,
Eg. (10) cannot be solved in closed form. However, an approx-
0L DW imated solution can be found for large valuesFofand
& overdense =1 €710 & powort = H'—OH . (9 long-wavelength mode§¢ >> 1,0 << 1). The presence of the
vy .
small parametef] makes Eq. (10) solvable by asymptotic
methods such as boundary layer theory. First, the equation is
Equation (9) shows that the density profile is sharp near th&lved in regions of different scale lengths for the perturba-
peak density, wherd. = Ly, and becomes smooth in the tions. Then, the solutions are asymptotically matched at the
expansionregion, where = —vy and-y >> L. The equilib-  boundaries of each region. The asymptotic matching and the
rium velocity profile can easily be derived from the massoundary conditions lead to a unique value of the growth rate
conservation equatioED E(pU) = O]. Since the ablated mate- y. Using the shape of the density profile and the scale length
rial is flowing toward the light fluid, thetd =Ue,, U <0,  of the perturbations, three regions can be identified (see
and pU = const In the overdense region, the velocltly Fig. 65.21): (1) the overdense region, whgre> [, (2) the
approaches a constant valUk{y - oo) =-V,, and its mag- ablation front, wherey ~ [, and (3) the blowoff region,
nitude monotonically increases in the blowoff regionwhere -y >> [.

[U(y - —) - —OO].

Overdense Ablation Blowoff
region

It is important to observe that the density-, velocity-, and region | front
temperature-gradient scale lengths are determined by thg
thermal-conductivity coefficient, the ablation rate, and the
power indexv. The profiles become smoother &g or
Vv increases.

%

Stability Analysis

The linear stability analysis proceeds in the standard manj
ner. Following Ref. 16, all perturbed quantities are written as
Q =Q(y) exp(ikx +yt), and the linear equations can be com-
bined into a single fifth-order differential equation,

Heavy fluid Light fluid P
TC3834
Figure 65.21
Density profile with regions of different scale lengths for the perturbations.
x [ I:[(l_af + (99)&3{" + 62&)] HereA is the mode wavelength.

Region 1: The Overdense Region
+‘79(ra5+‘79)[59&3fv+ Dﬁzé] In ICF capsule implosions, the heavy-fluid region is the
overdense portion of the shell whefe=sky~1, p=p,,
E=p/pa :1—exp(—§//|])+o[exp(—29/D)], andL >> L. In
+ 0020 + i&;gvﬂ =0, (10)  thisregion and to lowest orderdaxp(—y/D), Eq. (10) reduces
OFr to a constant-coefficient fifth-order differential equation,

where® = p/(p&"*), §=ky, Fa = —y/KVy , Fr =V2/|dLo (ag —1)(ral . ay)(mag 0y 4T D)&:h exp(9/0)=0, (11)

is the Froude number] = k™10, O=kLy, and L =L/Lg.

Equation (10) is an eigenvalue equation for the growth raterherel™; = —y/kV, and the superscriptdenotes the heavy-
y =-T4kV,;. The eigenfunction must satisfy the boundaryfluid region. The solution of Eq. (11) can be written in the
conditions corresponding to a vanishing perturbation at infinfollowing form:
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oh = (ahe‘9 +bhed ™V +chey wh(oz) = 1- Dz[l—bh(l— D)+[}Dl/"]
o v\ ¢ 2 3
+dheTad + ghed y)e 9/0 (12) . (1_bh)%]2 Z__[p2_+o([,4)g (17a)
o 2 6 0
where ah, bh, ch, dh, g7 are integration constants and - o .
a* :lli\1+4D(D—ra)l/2 0. In order to satisfy the bound- X"(0ra,02) = JZO Xi(Ora 0. (17b)

ary conditions of vanishing perturbations ato,

ch =dh =qg" =0, and Eq. (12) reduces to the simple form
It is important to observe that the paraméi€y, is small for

long-wavelength modes and large Froude numbers. Indeed,
51 = (ahe-T + phe )i, sy CITal=0y/(0%) < Oy u/(kVs) = TFr <<1. Thus, each
term of the series in Eq. (17b) can be further expanded in
powers ofll;:
It is important to observe that the incompressible theory

(00 = 0) yields only the sonic solution 220

X5 =8"0Or,)z + bhémra)2%+?5
Psonic ~exp[—§/—§//D]. 53 an
+(0r,) Ot 72 +22%
Equation (13) shows that a new solution is introduced by the

finite thermal conductivity and, because of its diffusive char-

acter, we denote the second term in Eq. (13) as the diffusion or + bHOr )4E|z4 +z_3 +§22 +52D
entropy solution. The asymptotic matching conditions can be @ 2 2 E

greatly simplified by the following choice of the integration 5
constants: +O[(Dra)

@ (18a)

Dl/v

ah=1-ph, ph=Bh-g——
ra

(14)

2
xh=o0, ¥h= —2bh§DFa)Ez+%E+ o[(mra)2 E (18b)
whereB", B must be determined from asymptotic matching,
and the normalization conditioa” + b" =1 has been used. The next step is to solve Eq. (10) in the ablation-front region
The heavy-fluid solution [Eq. (13)] can be rewritten using theand asymptotically match that solution with Eq. (16).
ablation-front variablez = y/0 and expanding™ in powers
of O anddr ,, Region 2: The Ablation-Front Region
The ablation front is the region where the density, velocity,
) 0 and temperature profiles undergo sharp variations. In this
+0My -2 +2(0r,)" +..0 (15  region, §~0, L ~ Lo, andé ~ 1. Sinceé = p/p, ~1, Eq. (8)
O cannot be analytically solved and an explicit expression for the
spatial dependence of the density profile cannot be found.
A short calculation yields Thus, itis more convenient to usas the independent variable
in Eqg. (10). By denoting&)a as the solution in the ablation
Eph(y ~0)= e—Z[Lph(D 2)+ )"(h(D | )] (16)  region and after some straightforward manipulations, Eq. (10)
can be rewritten in the following operator form:

0
@ =Tal- DDr2
0 a

where Wh(Oz) and ¥"(Or,,02) can be written as an Lo+ OLy+ P L+ [ Ly|®2 =0, (19)
O-series
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where
Lo =a,(0r +az)azlmr Lev+ (Lo, +1) (e +az)], (20a)
v+2 2
Ly==- 2 (Ora)°, (20b)
L, =-3,(0r +d,)3,L - (Or +4,)
((or +0,)&” +02] -4, 0T, (20c)
L,=0rL+a,L-1, (20d)

0, =" H1-8)0;, L=8V/(1-€), T =To&, Tc=y Kd,
and z=y/0 is the ablation-front coordinate ¢ 1 in the
ablation-front region). Furthermore, each operatocan be
expanded in powers dfll;, and the eigenfunction can be
expressed as a double power series,

L=y L(or.),
j=0

¢3= 5 o2, (21)
j=0

~ _ ©o ~ k

8= 3 B3(0r2)

x~
11
o

1-£68(8) ¢ dn
W, = -
37 ¢ E 6 A nv+1(1_,7)2
JERVAVE &
Iln (X)lx:("l dx%, (23c)
_1-¢& ¢ dn
Vo = & I{(o) nv+i(1- )2’ (23d)
_ dn

where T, (x) =1/x% +a(x-1) -1, and&(0) is the density at
z=0. To determine the integration constants, the solution in
the ablation front must be asymptotically matched with the
solution in the heavy-fluid region. This can be accomplished
by taking the limit of§ - 1(z - ) in Eq. (22). According to
standard boundary layer theory, the asymptotic matching will
occur if a common region of validity of the two solutions
exists. Substitutingl—¢& =e™2 +O(e‘22) and matching the
lowest-order term of Eq. (22) with Eq. (16) yielfs=C2=D?2
=E2=0, andA?= 1. The first- and second-order matchings in
[, yield ®§ = B"W;, g, =b"(W; +W,). The functions
®g; and ®§, can also be derived from Eq. (19) and, because
of the lengthy expressions, they are reported in Appendix A.

The next step is to solve Eq. (19) to zeroth ordéenlin
and first/second order in, i.e.,

The next step is to solve Eq. (19) order by order. To lowest

order in andOr 5, Eq. (19) yields

D3, = A2, + BAY, + CAW, + DAY, + EAY, | (22)

whereA?2, B2, C2 D2 andE2 are the integration constants. The

five solutions can be written in the following integral forms:

w=t ws Tf A9, (23a)
w 1EF), 16 T) 8 (23b)
2 '3 ED 2 VIl nV+l(1_l7)2 n%’

22

Looa)%o =0 and LOO&J%O = —Lzoa)go.

Matching the] and[J2 terms of the solutions with Eq. (16)
yields

whereB2 =1~ b"(1- ) + B T#V. The functionsb2, and 3,
are important to describe the eigenfunctif to the desired
accuracy; they are also reported in Appendix A.

Region 3: The Blowoff Region

The blowoff or expansion region is located downstream
with respect to the ablation front. In this regiony ~1,
L >> Ly, andé = (-Lo/w)"” <<1. The analysis can be sim-
plified by introducing the new variable
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c= Q/(VEV) y[1+O ] Sinceo and0V are small, the differential operator and the
eigenfunction can be expanded in powers ahd1,

and rewriting Eq. (10) in the following form:

Mj = 3 My O,
k=0

% Mo®' +0 M@ +02M,d! =0, (25) (29)
@l &l = el H
v =Y opo", op= Yo, 0V,
whereo = |ra|V(D/v21 , and the superscriptienotes vari- n=0 =
ables in the low-derisity fluid,
Each term of the series satisfies the boundary condition
(Z N oo) = 0. Substituting Eq. (29) into Eq. (25) and col-

Mo = 1 U 1 1 01 Iectlng terms corresponding to the lowest powetoadnd
0~ c]/" El E vOFrr2 %t gzyv’ Vv leads toMgy®}, = 0, which results in
ad (26a)
(92 ——ﬁ — - =o. 30
1 102~ 0 =0+ e Ol (30)
—A[12
M = dyD VZ]/V(l—E)
The solution of Eq. (30) satisfying the boundary conditions at
_E@ 1 +D o1, 10¢ g infinity can be written in terms of the Kummers’ confluent
y ZZI/V Edy Zl/v y ZJ/V Hl—f . .
O 0 hypergeometric functiobl(a, b, X),
D 1 "2|:| .
*Fyve PR (26b) ®ly = G¢¥ve?U(a b, 2),
(31)
as-— L L1 .1
10 1 0 2vOFrTg 2v v
M, == g 26
2= LB e I % g + 07 200

The other terms of the series in Eq. (29) can be found from
Eqg. (25) in a similar manner. Particularly useful for matching

0y =~(1-¢&)9,, and £ = (7v¢)"". Focusing on the values is the termdl that satisfiesMog®!, /v = ~My®l,. How-

of v > 1, Eq. (25) yields different solutions according to theever, because of its complexity, we simplify such an equation

magnitude obv: (1) ov << 1 and (2ov >> 1. by assuming that, to lowest orderfih 0, andOr ,, the
eigenvalue has the classical foy = Klg|. This assumption
Solution 1: ov<<1 is verified later by the matching conditions. First, observe that

Since the growth rate of the long-wavelength motles{  for y2 = Klg|, Eq. (31) reduces to
1) scales as the classical growth rigte- M) the condition
ov << 1 can be rewritten in the following form: &)|00 = ¢Vvelr (1+J/V.25),

0% v Fr <<1. (27)
wherefl (a, X) is the incomplete gamma function. By rewriting

My = -02¢ DZZ Vv and substitutingbly, into Eq. (25), the
For large Froude numbers, Eq. (27) can be satisfied only faquation ford! 10 can be solved in closed form, yielding
density profiles withv > 2 and wave numbers

bl = ZJ/C’Q WM (2v,20)- VM (142, 20)|, (32)

2

0 1 -
O<< . (28)
% E where u = v/(v -1). To achieve matching with the solution in
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the ablation front, it is important to derive the asymptotic _ 1 1 36b
behavior of the solution in the blowoff region for small = v2 OFrr2 ,7"*32 ’ (36)
Combining Egs. (31) and (32) leads to the following form of
the eigenfunction: 1 1
V\é = ;ﬁu nl/v
~y oy
P+ P10 010050, 0 1010
1 Eﬁu n]/"Hl—fDu Eau n¥vBvnpo
1+1
= Q¢ {A(t+ad+.)-B () (2+bl+..) o, -1 By N (360)
ugiu r’]/\/ Edu 1_ E'

2Woz2v(1+ 7+ )}, (33)

U 1 0n 1

W, = [y - =l - =, 36d

where ly Eﬂu eI Hﬁ y (36d)

Mi+v] _2Vo reo

Mra+iv] v B=ps (342)  andé¢ = (yavn)*". Observe thal/A ~ (JFr)2e9 <<1, and

the variable& ~ (JA)Y” <<1. Thus, each operatt¥; can be

expanded in powers QUA) ,and the elgenfunctiomt can
be expanded in powers Afand (D’A)

,61:

10 Mi+v] pa g 2Ye0
4= ADr[l+a+]/v] %B l|:| 1% E’ (34b) DDd]/v
W = ZWn '
N G L) S T (37)
v+l NE b SR tDDDJ/V
® :n§o¢nA : Zq’nJDAD :

Substitutingd = @/(vf") Eq. (33) can be rewritten as the sum

of three power series id. It is important to observe that the To lowest order inA and (D’A) , EQ. (35) reduces to
power series in Eq. (33) cannot be matched with’thend V\boq’oo =0, where

ar , power series of the ablation-front solution. This suggests

that a transition region exists between the ablation front and

the blowoff regions. The solution in such a region must match 0 = v2 ”Eﬁ” +,7WE

the ablation front as well as the blowoff region solution. 1 v

O, 5 v O
x 0,7E/ nﬁn—2V0n+T—n]/V E (38)

By introducing the layer variablg = ¢ /o# and the opera-
tor d, = ~(1-&)d, . Eq. (25) can be rewritten in the following
form: This equation can be further simplified by introducing a new

. . . . function xt = ®t/p¥v and by integrating three times with
VP! + AWO! + AW 0! + AW, =0, (35) respect ton. A straightforward manipulation leads to the
following second-order differential equation:
whereA = g#, the superscriptdenotes the transition region,

and _1
T32%t _ ot — at (1 -pove 8 LYK
vr; “0,7)( -x'=A J’Ode e J’Odqoe
O 10 n —eYH t
—o.5 - +B' [,d6 eH9™ -Ct, (39)
Wo =0, [0, v E IO
X 0 Hn M, 101 _,_0-,2%4_1& +i% (36a) whereA!, B!, C! are the constants of integration. The solution
"El-& " n¥VOvn UD v of Eqg. (39) can be written as a linear combination of the
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homogeneous and particular solutions, where
)?t :AIXK+BtXE+Cth+DtXB +Eth , (40) ( ) [.14 F(Z/.l) oo((A)'l'[J)u/V
Fals)=-=—5 dw,
H 20
where x&, xE, x€ are the particular solutions corresponding V¥ (s+p)fis @
to each term in the right-hand side of Eq. (39) ald x£ are (46)
the homogeneous solution®!(and E! are integration con- e r(u)
stants). Next, we observe th)pg =1 and we rewrite Eq. (39) Fa(s) = TS Y
for the other four solutions by introducing the new variable ( IJ)
T =n¥H. A short calculation yields
Here,[(x) is the gamma function and = 7% . The behavior
vid2 xt - ud, xt - p?xt = pPn(r), (41a) of the particular solutions for — o and 7 -~ 0 can be
determined by expanding Egs. (44) and (45) in proximity of the
where poles. A short calculation yields
N(r) = Alp? IT d9(0“/"e‘“9) Ie d(P((D“/VeW) Pr=0)=qrHd+ H ;4B
0 0 XA @ v-1
+Bly [ do(gH/veho) (41b) 0 0
IO ( ) +(P2T2H+1ﬂ-_ v T+ (47&)
0 23v-2 O
The homogeneous solutions can be easily calculated from
Eq. (41a), yielding p Vo1 v+1 O
T - 0)=———7°H +——+... 47b
XA(T = =) v+l wr 8 (470)
XH =tH2K (Zuﬂ/r/v) ,
(42) U O
P(r=0) =
T=0 —6r“%+ T
XxH =tH?) (2/14/T/V) Xe(r=0)=6 2v-1 H
0 v |
purlm ¥ .
whereK ,(x) andl ,(x) are the modified Bessel functions. To * Ot % 2(3v -2) r E’ (47¢)

determme the two partlcular solut|oq§ and XB- Eq. (41a)

is transformed in Laplace space, 1
XE(1 = o) =T (u)uHV - —1H2e7HT = (47d)

Hv
d 2y +
é( s ,u DYt = AlFA(s) +B'Fg(s).  (43)  where
S [ vs
o=@ el pocod?
The Laplace transforms ofk and x§ are the particular v-1 Ch-v' vOvO 48
solutions of Eq. (43): _ y (48a)
® = - v-1)’
~p 'u4|_( eIJZ/VS 0 uT q
=-— X
XA v IJ 2+/—l I]./S 1+X[J)
o gy p 0K KO
ooy + w2, (44) =50 "oy o
(48b)

v

A P v

Equations (47) and (48) determine the lowest-order solution
in the transition region. By inspection, one can immediately
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conclude that the exponentially growing soluti)pE does not Ha &+ 0 R 1
match the solution in the light-fluid region, and the! - gv+l 2v2gev+l
generates arfll, series forn=0/vA&" that cannot be h h -

. . B"+0Or 1
matched by the ablation layer solution. Thus, weDdet - Dra% R(€)- ?rr, ﬁ%
E'=0in Eq. (40) and rewrite the transition region solution as vé ¢

—ctepC HA 5B
Bpy = C'PG, + Aldy, + Bldg, x SH Bl
v
where
- P razD A+ - BV Ry€ 1+ Q€+ ]D_E3v’ (51)

5 =nY, ®f=n¥xRk, and ®F =n¥xE.

Some higher-order terms in theand & ~ (D’A)]/V series are  where

also important; they are reported in Appendix B.

The growth rate of the instability can be found by matching
the solutions in the ablation front, the transition, and the
blowoff region. First, we combine the terms of the transition
region into a single function

ot = Ct(ég + AP + A2DG +)

Ro =1~ Ozp(1-b")+ Or,B"z,

&:E

Q.L:

%

P~ Oz(1-b")-Ob

(52a)
hv+ 10

v

vzo -1 Q =[v(v-)(v-1] ™", (520)

93 -11v2 + 4qv

t ot DU ...D thl/vyP Q=
+A %DOO +A¢’10 DV 0 Lt EH' B'n VXB . (49) (V —1)2(3V _ 2) (520
Qq =[2v2(2v-1)(av-1)|
Then, we rewrite the transition region solution near the abla-
tion region by substituting) = Jv AV into Eg. (49) and ar
. L 1 a
taking the limit of € - 0, R(&)=1 O
Bt - tDEDVV
®'(n - 0, - 0)=C' 7 ) (or.)? oo (520
O kg 2 O 2(v-1?(2v-1(3v-2)e2v-)
+...
651 &w? " o
Vi R(&)=1+ 02—+ (52¢)
ooov k(¢ 23v-2)¢v
{ofu-clad]-wa) 2207 5
Atg, O O Fz( ) 1 Here, zp =S _ &0)"V /(v-n). Matching Eg. (50) with
¥ %DA O 53" ( Yl ) Eqg. (51) yieldns ?he following set of equations:
w000 6 50
Oay O Qt2v 2(5) (50) Ry ot DED’I/V __g :_Rl (53a)
wal V2 Ry’

Equation (50) must match the ablation-front solution in the
limitof & — 0. The asymptotic behavior of the ablation-front
solution neag = 0 can be obtained from the section covering
the Ablation-Front Region, leading to

26

Bh =-

nod Algfi+0o(a )] +Ble;

QA0

AT,(1+0r,Q/BN) (530)
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+1 ~ 2=
Bt =A% pa+ Hlal) (53c) klo << [V(2V+2)/VFr]v/( v
v
kg hir Al Solution 2: ov>>1
y2 =1-b"(1-0+ A3F2 ' (53d) Forov >> 1, the solution of Eq. (25) can be determined

by following the procedure described in Ref. 16. The differen-
tial operators and the eigenfunction are expanded in powers
The next step is to match the solutions for the transition anaf 1/v:
blowoff regions. Taking the limit of Eq. (48) foy -~ « and

A - 0 yield o -
e w= 5wl §=3 a65E, 6o

wherei = 0,1,2. Substituting Eq. (58) into Eq. (25) and
O gt - atdd V0 , . _
=[C - r(u)ul‘VB -@A Ol DU]/ [1+O Af])] collecting terms up to the first two orders irv Jields the
= following equations:

A3 K9 g i ofan)]. (54)
v +1§ y2 H [ | (ra5+dy) (03 —1) c(d)% —1)53'0 =0, (59)

Upon the substitutiod = An, the terms of this equation must
match the powers af in Eq. (33). A short calculation yields

- o!
2 _ 2 _ | R 2 _ 0
(raa + ag,) (09 1) q(% 1)q>1 + (raa + ay) (09 1) =2

NEDE -5 R,
T 5
(55) [ 20(ras+05)- = 5(r 5+0 )(a )cmc
2 put v+18 1+O(D]/V A)
2= v A 1+ kg > QA ' 0
Fa5(0"9|ncdg,—lnc)c+(1—5) lﬁy(ra6+a§,)+1g

Equations (53) and (55) determine the order of magnitude of

the constants. It is easy to show thBf ~AVV/I, <<1, x ((92 —1)c~p|0 =0, (60)
Bt ~ AV*D/V - At << Al, and B~ 1. Equations (53) and Y

(55) can be used to determine the instability growth rate and

the parameteB. Retaining all terms up to ordefF ;B"and],  where

the instability growth rate satisfies the following equation:

D/v . C= g/(vf"), and 09:—(1—£)dc

y(k =< kc) - \/AT K| - Ava., (56)  The function&b'0 can be written as a combination of the three
decaying homogeneous solutions of Eq. (59):

where
&)I :AI&)I +B|&)| +C|a)|
2 0 A B (of
1+ o OV 0= r(v\:rl) r2(v;1)' where

ol =e¥, b= e‘9J‘y derXJ'Xd—n, (61a)
Equation (56) represents the growth rate of the instability for e C(’])

v> 2 and
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e2n — 1T ad) 4 0 1-6 10

ARy S} _ X 2 _ - —-—r=0. 65
o = e[ dxe X[ dn ) (61b) ra-175'a TFa+e) of 0 (65)
Solving Eq. (65) yields the growth-rate formula:
The next step is to determine the coefficiedtsB', C' by
matching the solutiom'0 with the ablation-front solutio®?. [0 0\2L20s 10 0
Using the 1v expansion of the ablation-front solution, y :\s“ATk|9| - (AT) k“VaVio _(1+ AT)kVav (66)
where
&)a:u+1|n_c+ C[l_bh(l_l_ ra)] v
J v.o A—? — 1_(:VV)1/ VO - Va (67)
=—\77 0 = )
x +1an+‘1 55 1+(gv)*" ° (ov
v _

Note the different coefficients af*’V in the Atwood numbers
2 m-5 1 o Ll 0 aE defined by Egs. (67) and (57). Itis important to remember that
t——7 BT SE” (1_ ra) o5 24 ”C% Eq. (66) has been derived using the dxpansion and, to the
lowest order in W, yo = (yv)¥" and A2 = Ar. Furthermore,
replacing AQ with Ar and Vig, with V, /(1o V) in Eq. (66)
3 . .
¢ @—bh(1+ Fa)+i[(1—bh[1+ ra]) would alsq reprqduce th_e cutoff wave nur_nber_obtalned in
2v Ref. 16 by including the higher-order corrections wn Thus,
we conclude that replacir@v)w with po VY in Eq. (66)
improves the accuracy of the growth-rate formula up to the

x1+56+2lnc(1—36) first order in 10

i-9)
Y = Arkig - ARV ~ (L5 ATV, (68)
9 0,.a010
YO ra5[ o —b"(1+ ra)] H O5z0  where
(62)

Voo = (69)

and matching the lowest power o/ih ®2 and @} yields Ho CHV Ar 1+ po OV
A =(1-¢)/5,8'=C'=0.
Although Eg. (68) is valid over a large rangeud > 1, a
The first-order correctiorﬁ)'1 can be obtained by solving significant degradation of its accuracy is expected to occur for
Eq. (60), v - 1, where the Y expansion breaks down. This problem is
addressed in the next section, where the range of validity of the

ol = m_Cey +(1-9)c} &>IC _ (63)  growth-rate formulas is discussed.

)

Summary of the Growth-Rate Formulas forFr >> 1
The constantsq, b*:, and the dispersion relation are deter-  For values ob> 2, two different growth-rate formulas have
mined by matchingD'O and dJ'l with Eq. (62): been derived according to the magnitude of the wave number:

— 2 pv
V= Arkd - By, for Kg<< > vFrg ", (700)

h_ 2 O o6 0 2 0O1-r,d
b" = - In 0
14T, 5 v(1-0) Hi-or,Hi+or, g
(64) and
C]I-ZZ 1_ra _ ‘q‘ 21,2
e Y = Arklg - ARV ~ (L4 Ar)va,

for kiy >> (v2+5 Fr)ﬂ : (70b)
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where A1, B, and Vo are defined by Egs. (57) and is numerically solved. Figure 65.23 shows plots of the normal-

(69), respectively. ized growth rateyly/V, calculated using Eg. (70) (solid
lines) and one numerically derived in Ref. 5 for 2.5 for

For values of 1 ¥ < 2, the analysis of the previous sectiondifferent values of the Froude number (dots). Remarkable

still applies. However, because corrections due to higheagreement between numerical and analytical results is ob-

orders of 1v are not included in the derivation, the growth-tained. In Fig. 65.24, the analytic growth rate is compared with
rate formula [Eqg. (68)] shows poor agreement with the numerthe numerical results of Ref. 5 for different valuevaind

cal results forv < 1.5. Figure 65.22(a) shows the unstablefixed Froude number. The solid lines represent the result of the
spectrum obtained by Eq. (68) and the numerical results @nalytic theory and the dots are the numerical results. The

Ref. 5 forv = 1.5, 1.2, and 1.15. Note the degradation inanalytic formula [Eq. (70)] is also compared with the self-
accuracy of the analytic growth rate ok 1.5. The analytic consistent growth rate derived in Ref. 13. A significant dis-

formula can be improved by observing that, for- 1, the  agreement between the results of Ref. 13 and Eq. (70) is found

cutoff wave number is so small that th¥Y corrections can be  for large values ofv. Figure 65.25 shows the plot of the
neglected in the analysis and the eignevalue equation can bestable spectrum fov = 8 obtained from the numerical
numerically solved in the blowoff region. It is found that by computations of Kufl (dashed line), Eq. (70) (solid line), and
modifying g to g +0.12/v?2, the matching conditions are the growth-rate formula of Ref. 13 with zero Mach number

satisfied over a large range of Froude numberyand*, thus  (dotted line).
leading to a general growth-rate formula valid for & < 2:

Next, Eqg. (70) is compared with other growth-rate formulas

obtained by fitting numerical results. The most commonly

y= \/ATk|g| - A% k2 VaVho _(1+ AT)kVa’ (712) used formula has been derived by Takabel in Ref. 6 for
spherical geometry, electronic heat conductior 2.5), and

where large values of the Froude number. Following Ref. 6, the
numerically derived growth rate can be fitted by the following

V. 0.12

W, =—2a h= U+ —— 71b formula:
bo IJbD]/V Ho = Ho V2 ( )

y =arkg - BrkV,, (72)
andAr is defined by Eq. (57). Figure 65.22(b) shows that fowhere
values ofv close to unity, excellent agreement is obtained
between the numerical results of Ref. 5 and the modified at =09G002,
formula [Eq. (71)].
.075
Discussion Br = 2_35&50 G02, (73)
The validity of the asymptotic formula has been tested by Ps
comparing the growth rate obtained from Egs. (70) and (71)
with the numerical results of Ref. 5, where the isobaric model G=gr /02
S/ ~¥s
102 E Figure 65.22
] Unstable spectrumylL, /V, versukLg) cal-
culated using (a) Eq. (68) and (b) Eq. (71)
y_LO 103F 4 (solid lines) compared with the numerical
a ] results of Ref. 5 (dots) for = 1.5, 1.2, and
1.15 andFr = 5.
104 N

TC4101
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1m E T IIIIII| T IIIIII| T IIIIII| T IIIIII| T III“E : I j j T IIIII j j T IIIII ! ! I:
101 £ Fr=1 il 102 .
L I ] ]
\% 102¢ E
a 3 ; Ybo g3l -
r ] Va i g
103 = :
i I 1041 7
104 ¢ 3
100
TC4100 TC4099
Figure 65.23 Figure 65.24
Unstable spectrum)(Lq/V, versuskLg) calculated using Eq. (70) (solid Unstable spectrumyLy/V, versuskLo) calculated using Egs. (70) and
lines) compared with the numerical results of Ref. 5 (dotsy foR.5. (71) (solid lines) compared with the numerical results of Ref. 5 (dots) for

v=1.2, 2.5, 8 anffr = 5.

and ps, C;, andrg are the sonic density, sound speed, and
position of the sonic point, respectively. Siregis almost

independent of the equilibrium parameteos & 0.9), we 0.05¢ . — —
focus our attention of. It is important to remember that, I
while Egs. (72) and (73) have been derived for spherical 0.01L |
geometry including finite Mach number, Eq. (70) is valid for 0 6055_ E
slab geometry, neglecting the Mach number. Since the only Lo T ]
isobaric dimensionless parameter is the Froude number, theﬁ
coefficient By must be rewritten in terms &fr. Using the 0.001¢ E
isobaric profiles [Eq. (9)], we defingas the distance at which 0.0005- 3
g(ys) = Ps/Pa=(|—0/V ys)]/" << 1, and correlate the param- [
eterG to the Froude number, 0.0001L |

| | PR BT R | i

.- 04 1, [, o 5&Do.s - 0.001 0.002 0|£05 0.02  0.05
Fr Ve EE pSH ) TC3822 0
Figure 65.25

wherer, is the radial location of the peak density. Table | offlot of the normalized growth rate versiigor v = 8 andFr = 5. The solid
line represents Eq. (70), the dashed line is the numerical result of Ref. 5, and

Ref. 5 shows values of the relevant dimensionless parametgrs (. line is Eq. (16) of Ref. 13.
for G=2. According to these values, Takabe’s coefficients can
be rewritten in the following form:

Br =186 Fr02, Table 65.1:  Equilibrium parameters of Refs. 5 and 6.

oy, P2 tior, P8 sop, P (7P G=2

B3rs E EQrS E E foN E . fa/Ts Fr Pa/Ps Ys/Ts 6
0.899 5.88 25.0 0.26 0.99
Observe thab is very weakly dependent on the equilibrium 0.903 714 50.0 0.30 1.00
parameters, and its values are always close to l@ﬂit=y 1).
Table 65.1 shows the values @torresponding to the equili-

0.904 8.70 98.0 0.34 1.01

30 LLE Review, Volume 65



SELF-CONSISTENTSTABILITY ANALYSIS

briain Table | of Ref. 5. Sinagis approximately constant, the Appendix A: Higher-Order Correction to ® in the
coefficient depends mainly on the Froude number. The nexAblation-Front Region

step is to find the best filf;) for Eq. (70) based on a formula  In this appendix, important higher-order corrections to the
similar to Takabe’s(ym = a\?g - kaa). The fitting proce- eigenfunction in the ablation-front region are reported. Those
dureis straightforward. The err(),r—yfit) isminimized over corrections are terms of Eq. (21), and they are derived by
the portion of the unstable spectrum of interest to ICE{1 solving Eq. (19) order by order. After a very lengthy calcula-
<A <200um). Since the typical cutoff wavelengihis of the  tion, these terms can be written in the following convenient
order of 1um, the minimization condition can be written in the form:

convenient form

-§ @p 2 Goa(n) E
a —
oe 200, P53 = +z°+2z- > dn0
P =0, — —J’A (v - vsit) 2dr. (76) f H B Il nv+i1- n) 5
S o g H
The two minimizing conditions yield the valuesaaindb that T Kog(f) C (A1)
are subsequently fit with a power law formuba~ FrHa and a B
b ~ FrHb). For the values dfr reported in Table | of Ref. 5
(5 <Fr <9), the described procedure leads to the following fit 4 -3 2
~ 1-é0 "  z° 5z O
of Eq. (70): P2, == 2+ + T + 5z
g. (70) =77 Ej 2 o
Vit = 0.9Fr003 kg —2.0Fr0ky,. (77) £ dn pov

n Hy
_ .[1 nv*i(1-n)? .[1 dXHD Cos Vs KM%’ (A2)
The good agreement between Eqs. (77) and (72) confirms the
accuracy of the analytic derivation. Furthermore, the general
analytic formulas [Egs. (70) and (71)] are valid for arvy 1 &3?1 =0, ®3 = Epgff - th(qu + qu), (A3)
and can be applied to configurations that are not described by
pure electron heat conduction.

Conclusions - g _Il nv+i(1-n)?

The stability analysis of accelerated ablation fronts is car-
ried out self-consistently for an arbitrary power law dependence
of the thermal conductivity(~T" with v> 1) and large Froude
numbersfr > 1). The eigenvalue equation is solved in differ- .Il
ent regions of the density profile (overdense, ablation, and
blow-off regions), and the solution is asymptotically matched.

5 dy + BNGy (x )g (A4)

The growth-rate formula is derived from the matching condi- 531 kg Dl & & dn
tions, and its validity has been tested against the numerical CD12 - 0 y D vé Il ’7V+1(1 ’7)
results of Ref. 5. The excellent agreement between the growth-
rate formula and the numerical results shows the high level of
accuracy of the analytic derivation.
g d I L y2v+1 dy, (AS)
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Goz(n) :Iln dx%xv—l+l —]%z+ 2)+

el 0
“wld)= [, ,7V+1?1n-n)2
J'ln [, y2‘}+1(§/.‘: Y (A7)
Goul) = kg -0 +az s
_LX yV+1gLy 7 Gos(y), (A8)
usl)= [} i)
s S

1 x ytl-1 01 0
=l y2v+2(1_y)dy+ZDxV+1_lD' (A10)

Gy (x) =

Note that these corrections are essential to the derivation of

Egs. (51) and (62).

Appendix B: Higher-Order Correction to ® in the
Transition Region

(B2)

dx x Ho(y)XE (y)

&% = xt(n)[” PIR
E
O2 gud o
+ Vw2 g H - B5

where x2, x5, and®4, are defined iSolution 2: ov >> 1,
and

y y
Hao(y) = _Io O"Hoo(f)JfI0 dgeHOY

In this appendix, the higher-order corrections to the
eigenfunction in the transition region are reported. Those

corrections are terms of Eq. (37), and they are derived by

solving Eq. (35) order by order. T@andA corrections tobgo
and ‘D@o can be written in the following form:

®§ =n¥v(1-¢), (B1)

32

[C do-opgiolee”. (o)

Hao(r) :I; dee-uesz dgeHe™ (B7)
Haa(n) = [ = R()

,Hoo(n) 2 e k) ©8)

nvo v-2" v-2
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Kot = [ doe7se""
+(an7—1 +]_)e_l”lj/“ Ig d(lElJ(P]/“ . (B9)

Observe that Egs. (B1) and (B2) include allfherrections

to (DSO and 53%. These terms are essential for the derivation

of Egs. (49) and (50).
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