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In inertial-confinement fusion (ICF), the ablation front of the
imploding capsules is hydrodynamically unstable.1,2 The
heavy material of the compressed pellet is accelerated by the
low-density ablating plasma, thus making the pellet interface
unstable to density perturbations (Rayleigh-Taylor instabil-
ity).3 The classical treatment3 of this instability occurring at
the interface of a heavy fluid with uniform density ρh, sup-
ported by a light fluid with uniform density ρl, yields the
growth rate γ cl TA kg= , where g is the acceleration and
AT h l h l= −( ) +( )ρ ρ ρ ρ  is the Atwood number. It is note-
worthy that, in the classical case, the growth rate monoton-
ically increases with the mode wave number k, and the At-
wood number is constant. However, in ICF, the convection of
ablated material through the interface leads to a reduction of
the growth rate with respect to the classical value γ γ cl <( )1
and, for sufficiently short wavelengths, the instability is sup-
pressed.4–20 Thus, only those modes with wave number
smaller than a critical value14–16 (k < kc, where kc is the cutoff
wave number) are unstable. In addition, the density profile of
ICF targets monotonically decreases in the ablation and blow-
off regions, thus complicating the definition of a light-fluid
density (ρl) to be used in the definition of the classical At-
wood number. For a monotonic density profile and mode
wavelength smaller than the density-gradient scale length,

kL L d dy>> = ( )−1 1, ,where ρ ρ

the growth rate of the classical Rayleigh-Taylor instability
(without ablative flow) is   γ cl g L. min , where Lmin is the
minimum density-gradient scale length. This result has led
several authors1,20 to approximate the Atwood number with
an asymptotic formula A kLT = +( )1 1 min  that reproduces the
classical results for long- and short-wavelength modes, and
for ρl << ρh. In this article, the Atwood number is derived for
equilibria with ablative flow, and it is shown that the classical
formula does not apply to ablation fronts. The ablative Atwood
number depends on the density-gradient scale length, the
mode wavelength, and the law of thermal conduction.

Self-Consistent Stability Analysis of Ablation Fronts
with Large Froude Numbers

A qualitative description of convective (or ablative) stabi-
lization can be obtained by using the incompressible sharp
boundary model7–10 consisting of two fluids of constant den-
sity separated by an interface of zero thickness with mass
flowing from the heavy to the light fluid. For subsonic ablation
flows, the perturbed velocity field is assumed to be incom-
pressible ∇ ⋅ =( )ṽ 0  through the interface. It is easily shown
that the assumption of divergence-free velocity perturbations
is not consistent with an accelerating equilibrium flow, i.e., the
equation describing the perturbation cannot be used  to deter-
mine the equilibrium profiles. Since the equilibrium is
one-dimensional, the incompressibility condition leads to a
uniform velocity profile (U = constant), in clear contradiction
with the mass conservation that requires a uniform mass flow
(ρU = constant) and a jump in the profiles. In addition, the
model requires a closure equation, as the number of unknowns
exceeds the number of equations. Several closure equations
have been proposed by different authors7–10 leading to dis-
crepancies in the final results. In Ref. 10, the sharp boundary
model is improved by a self-consistent calculation of the
density jump occuring at the ablation front. Nevertheless, an
additional closure equation [Eq. (5) of Ref. 9] is still needed
and the model is not self-consistent.

Monotonic equilibrium profiles of ablation fronts can only
be reproduced by retaining the effect of finite thermal conduc-
tivity in the energy equation. Thus, for consistency, the effect
of thermal conduction should be retained in the stability
analysis as well. Kull and Anisimov developed a model4 (the
isobaric model) that includes thermal conduction and neglects
other less important physical effects such as finite Mach
number. Their model is self-consistent because it can be solved
to determine the equilibrium profiles as well as to carry out
the stability analysis. However, in Ref. 4, Kull and Anisimov
analytically solve the isobaric model without determining the
self-consistent equilibrium. They assume instead that a sharp
boundary exists between the heavy and the light fluids. Al-
though their model is self-consistent, their solution is not.
Later, Kull5 numerically solves the self-consistent isobaric
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model and finds a large discrepancy with the sharp boundary
results. The numerical results of Kull5 also agree with the
results of Ref. 6. The latter can be fitted by the well-known
formula

γ α β= −T T akg kV , (1)

where Va is the ablation velocity and αT, βT are given later in
the section on Stability Analysis. This formula has been
derived by numerically solving the exact eigenvalue problem,
including electronic heat transport (κ ~ Tν, ν = 2.5), for large
Froude numbers (Fr = 5−9, see Table I of Ref. 5), where
Fr V gLa= 2

0  and L0 is the characteristic width of the ablation
front and will be specified in the next section. The numerical
results of Kull5 and Takabe6 have also been confirmed by
several two-dimensional simulations of accelerated targets
and capsule implosions.18,19

The great difficulties in the analytic solution of the self-
consistent problem had prevented the derivation of an analy-
tic growth-rate formula that reproduces the numerical results.
Only recently, some attempts have been made to close this
gap by solving the self-consistent problem using asymp-
totic techniques.

The first attempt is found in Ref. 12, where the Wentzel-
Kramers-Brillouin (WKB) approximation is used to determine
the cutoff wave number in the case of electronic heat conduc-
tion (ν = 2.5). Based on this analytic estimate, V. V. Bychkov,
S. M. Goldberg, and M. A. Liberman derive an approximate
growth-rate formula, similar to Eq. (1), with β = 2.5−3.2 and
α ρ ρ ρ ρ2

1 2 1 2= −( ) +( ), where ρ1 is the peak density and ρ2
is the critical density. In Ref. 16, the cutoff formula for long-
wavelength modes and Fr > 1 is derived self-consistently for
an arbitrary power law dependence of the thermal conduction
κ νν~ ,T >( )1  using boundary layer theory. The eigenvalue

equation is solved in the overdense, ablation, and blowoff
regions, and the solutions are asymptotically matched. For
ν = 2.5, this formula agrees with the analytic estimate of
Ref. 12 and reproduces the numerical results of Ref. 5 for
different values of ν.

A semi-analytical, self-consistent analysis is also carried
out in Ref. 13 by matching the analytical solution of the
ablation region with the numerical solution of the blowoff
region. The growth rate of Ref. 13 and the fully analytic
formula derived in this article are in agreement for ν = 2.5

and Fr > 10, but significant discrepancies exist for large ν’s. A
more detailed comparison between analytical, semi-anal-
ytical, and numerical results is presented in the Discus-
sion section.

In this article, the importance of a growth rate formula valid
over a large range of ν’s is emphasized. In fact, numerical
simulations show that direct- and indirect-drive ICF capsule
implosions have different instability growth rates. This could
be related to the different mechanism of energy transport—
indirect-drive ICF is dominated by radiation transport and
direct drive by electronic thermal conduction. In the diffusive
radiation model,21 the heat flux transported by radiation heat
conduction is proportional to the temperature gradient

q T= − ∇( )κ  and the effective radiation thermal conductivity
κ σ= ( )16 33T l T , where σ is the Stefan-Boltzmann con-
stant, and l(T) is the Rosseland mean free path. According to
Ref. 21, l(T) can be approximated by a power law with the
power index dependent on the material properties. For ex-
ample, in an optically thick, fully ionized homogeneous plasma,
l(T) ~ T3.5 and κ ~ T6 .5. The variance of the power index has
provided the motivation to carry out the stability analysis for
arbitrary values of ν (κ ~ Tν) and to determine a generalized
formula for the growth rate.

In this article, we present the analytical solution of the
eigenvalue problem derived from the linearized isobaric
model of Kull and Anisimov4 for long-wavelength perturba-
tions (kL << 1), closing the gap between theory and numerical
computations, and extending the validity of the growth-rate
formula to a large range of ν’s. The analysis is limited to ν > 1
and large values of the Froude number, thus restricting the
unstable spectrum to wavelengths longer than the width of the
ablation front. In fact, as shown in Ref. 16, the cutoff wave
number for large-Froude-number equilibria occurs at long
wavelengths: k L Frc 0 1 11~

ν
ν− << . Configurations with

Fr > 1 are typical for ablation fronts characterized by pure
electron heat conduction (such as those considered in Ref. 6),
some indirectly driven targets with large ablation velocities,
and some directly driven targets with a strong radiation emis-
sion [such as those containing poly-vinyl-chloride (PVC
or C2H3Cl)].

The growth rate is obtained by performing a boundary layer
analysis in the regions of different scale lengths for the pertur-
bation and subsequent asymptotic matching. The analytic
theory is compared with the numerical results of Kull5 and
Takabe6 for different values of Fr and ν.
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This article is organized as follows: First, the isobaric model
describing the evolution of accelerated ablation fronts is pre-
sented; next, the equilibrium profiles are derived, a stability
analysis is performed, and the growth-rate formulas are re-
ported. Finally, in the discussion section, the growth-rate
formulas are compared with the numerical results.

Isobaric Model
We consider an ablatively accelerated fluid in steady state.

In the ablation-front frame of reference, the evolution of the
mass density ρ, velocity v, and temperature T is described by
the following conservation equations:

∂ρ
∂

ρ
t

+ ∇ ⋅ =v 0 (2)

ρ ∂
∂

ρv
v v g

t
p+ ⋅ ∇





= −∇ + (3)

  
ρ ∂

∂
κc v vv

T

t
T p T+ ⋅ ∇





= − ∇ ⋅ + ∇ ⋅ ∇ , (4)

where g ey= <( )g g 0 , p T A= ρ  is the hydrodynamic pres-
sure,   c A hv = −( )−1 1γ  is the specific heat at constant volume,
and γh is the ratio of the specific heats. The constant

  A n n m Zi e i= +( ) +( )ρ . 1  represents the average particle
mass, where mi is the ion mass, Z is the atomic number,
and ni, ne are the ion and electron particle densities, respec-
tively. The thermal conductivity κ has a power law depen-
dence on the temperature, κ κ= ( )a a

v
T T , where Ta is the

ablation temperature.

For realistic ICF implosions, the energy equation can be
simplified by assuming that the sound speed Cs at the ablation
surface is much larger than the ablation velocity Va, i.e., a
negligible Mach number M M V Ca s= <<( )1 , and the den-
sity-gradient scale length L d dy= ( )[ ]−ρ ρ 1  is much smaller
than the stratification length C gs

2 . Following the work of
Kull and Anisimov,4 the simplified energy equation can be
rewritten in divergence-free form,

∇ ⋅ + ∇





=+v L Va v0 2 0
ξ

ξ
, (5)

where ξ ρ ρ= a  is the density normalized to its peak value ρa,
and L0 is the typical width of the ablation front,

L
A

V
h

h

a

a a
0

1≡ −γ
γ

κ
ρ

. (6)

For classical electron thermal conduction, ν = 5/2, and κa is
given by Spitzer,22

κ
πa

a

e

T

Z Ze m
=

( )
32

2

5 2

3 2 4Φ Λ
, (7)

where Λ is the Coulomb logarithm and

Φ Z Z Z( ) +( ) +( ). 4 16 0 24. . .

As will be shown later, the constant L0 is proportional to the
density-gradient scale length at the ablation front.

Equations (2), (3), and (5) represent a complete set of
four equations for the four variables ρ, νx, νy, and p that can be
used to study the equilibrium and stability of accelerated
ablation fronts.

Equilibrium Profiles
The equilibrium profiles can be derived from Eqs. (2), (3),

and (5) by setting ∂ ∂t = 0. Although a detailed description of
such profiles is given by Kull in Ref. 5, we summarize herein
the main results. The density profile obeys the following first-
order differential equation obtained by combining Eqs. (2)
and (5):

d

dy L

ξ ξ ξ ξν= −( )+1

0

1
0 , (8)

where ξ0 is an integration constant. The appropriate boundary
conditions for ablation fronts require the density profile to be
flat at the peak value (′ =ξ 0  for ξ = 1, leading to ξ0 1= ) and
evanescent in the downstream or expansion region (ξ → 0  for
y → −∞). The steepness of the profile depends on the value of
L0 that is determined by the thermal conduction and the
ablation rate. Using Eq. (8), the density-gradient scale length
can be written as L L= −( )[ ]0 1ξ ξν  and its minimum value5

is proportional to L0, L Lmin = +( )[ ]+ν νν ν1 1
0 . As described

in Ref. 16, the length L0 can also be related to the distance Le
between the peak of the density and the 1/e point.

Although Eq. (8) cannot be solved in closed form, an
approximate solution can be found in proximity of the peak
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density (overdense region), where y > 0, ξ ≈ 1, and in the
blowoff region, where y < 0, ξ << 1:

ξ ξ
ν

ν

overdense blowoff≈ − ≈ −






−1 0 0
1

e
L

y
y L , . (9)

Equation (9) shows that the density profile is sharp near the
peak density, where L L. 0 , and becomes smooth in the
expansion region, where   L y. − ν  and − >>y L0 . The equilib-
rium velocity profile can easily be derived from the mass
conservation equation ∇ ( ) =[ ]⋅ ρU 0 . Since the ablated mate-
rial is flowing toward the light fluid, then U ey= U , U < 0,
and ρU = const. In the overdense region, the velocity U
approaches a constant value U y Va→ ∞( ) = − , and its mag-
nitude monotonically increases in the blowoff region
U y → −∞( ) → −∞[ ].

It is important to observe that the density-, velocity-, and
temperature-gradient scale lengths are determined by the
thermal-conductivity coefficient, the ablation rate, and the
power index ν. The profiles become smoother as κa or
ν increases.

Stability Analysis
The linear stability analysis proceeds in the standard man-

ner. Following Ref. 16, all perturbed quantities are written as
Q Q y ikx t1 = ( ) +( )˜ exp γ , and the linear equations can be com-
bined into a single fifth-order differential equation,

∂ ξ ∂ ∂ ξ ∂

ξ ∂ ξ

∂ ξ ∂ ∂ ξ

ξ

ν

ν

ν

ˆ ˆ ˆ ˆ

ˆ

ˆ ˆ ˆ

ˆ ˜ ˆ ˜

˜ ˆ ˜

ˆ ˜ ˜ ,

y a y y a y

a y

y a y y

L

Fr

Γ Γ

Γ Φ Φ

Γ Φ Φ

Φ Φ

+( ) − +( )[ ]
× ∈ +( ) + ∈∇[ ]
+ +( ) + ∈∇[ ]

+ ∈∇ +
∈

=+

2

2

2 21
0 (10)

where ̃ ˜Φ = ( )+ρ ρξν 1 , ŷ ky= , Γa akV= −γ , Fr V g La= 2
0

is the Froude number, ̂∇ = ∇−k 1 , ∈= kL0 , and L̂ L L= 0 .
Equation (10) is an eigenvalue equation for the growth rate
γ = −Γa akV . The eigenfunction must satisfy the boundary
conditions corresponding to a vanishing perturbation at infin-

ity, i.e., ṽ ±∞( ) = 0 , p̃ ±∞( ) = 0, and ρ̃ ±∞( ) = 0 . Because of
the complicated spatial dependence of the coefficients,
Eq. (10) cannot be solved in closed form. However, an approx-
imated solution can be found for large values of Fr and
long-wavelength modes (Fr >> 1, ∈ << 1). The presence of the
small parameter ∈ makes Eq. (10) solvable by asymptotic
methods such as boundary layer theory. First, the equation is
solved in regions of different scale lengths for the perturba-
tions. Then, the solutions are asymptotically matched at the
boundaries of each region. The asymptotic matching and the
boundary conditions lead to a unique value of the growth rate
γ. Using the shape of the density profile and the scale length
of the perturbations, three regions can be identified (see
Fig. 65.21): (1) the overdense region, where ŷ >> ∈, (2) the
ablation front, where ̂ ~y ∈, and (3) the blowoff region,
where − >> ∈ŷ .

TC3834

Overdense
region

Ablation
front

Blowoff
region

ρ

ρ

∂y ρ̃~
ρ̃
L

∂yṽ ~ ṽ
λ

∂y ρ̃~
ρ̃
λ

∂y ṽ ~
ṽ
λ∂y ṽ ~ ṽ

L

∂y ρ̃~
ρ̃
L

ρ~

Heavy fluid Light fluid

Figure 65.21
Density profile with regions of different scale lengths for the perturbations.
Here λ is the mode wavelength.

Region 1:  The Overdense Region
In ICF capsule implosions, the heavy-fluid region is the

overdense portion of the shell where ˆ ~y ky≡ 1,   ρ ρ. a ,
ξ ρ ρ≡ = − − ∈( ) + − ∈( )[ ]a y O y1 2exp ˆ exp ˆ , and L >> L0. In
this region and to lowest order in exp ˆ− ∈( )y , Eq. (10) reduces
to a constant-coefficient fifth-order differential equation,

∂ ∂ ∂ ∂ˆ ˆ ˆ ˆ
˜ exp ˆ ,y a y y y a

h y2 21 0−( ) +( ) ∈ − + − ∈( ) ∈( ) =Γ Γ Φ (11)

where Γa akV= −γ  and the superscript h denotes the heavy-
fluid region. The solution of Eq. (11) can be written in the
following form:
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Ψh h

h

z z b

b
z z

O

∈( ) = − ∈ − − ∈( ) + ∈[ ]
+ −( ) ∈ − ∈ + ∈( )









1 1 1

1
2 6

1

2
2

3
3

4

ˆ

,

β ν

(17a)

˜ , , ˜ , .χ χh
a

j
j a

jz z∈ ∈( ) = ∈( ) ∈
=

∞
∑Γ Γ

0
(17b)

It is important to observe that the parameter ∈Γa is small for
long-wavelength modes and large Froude numbers. Indeed,
∈ = ∈ ( ) < ∈ ( ) = ∈ <<Γa a cl akV k V Frγ γ 1. Thus, each
term of the series in Eq. (17b) can be further expanded in
powers of ∈Γa:

˜

,

χ0
2 2

3 3
2

4 4 3
2

5

2

6
2

24 2

5

2
5

h h
a

h
a

a

h
a

a

B z b z
z

z
z z

b
z z

z z

O

= ∈( ) + ∈( ) +












+ ∈( ) + +












+ ∈( ) + + +












+ ∈( )[ ]

Γ Γ

Γ

Γ

Γ (18a)

˜ , ˜ .χ χ1 2

2 2
0 2

2
h h h

a ab z
z

O= = − ∈( ) +






+ ∈( )[ ]










Γ Γ (18b)

The next step is to solve Eq. (10) in the ablation-front region
and asymptotically match that solution with Eq. (16).

Region 2:  The Ablation-Front Region
The ablation front is the region where the density, velocity,

and temperature profiles undergo sharp variations. In this
region, ˆ ~y ∈, L ~ L0, and ξ ~ 1. Since ξ ρ ρ≡ a ~ 1, Eq. (8)
cannot be analytically solved and an explicit expression for the
spatial dependence of the density profile cannot be found.
Thus, it is more convenient to use ξ as the independent variable
in Eq. (10). By denoting ̃Φa  as the solution in the ablation
region and after some straightforward manipulations, Eq. (10)
can be rewritten in the following operator form:

L L L L0 1
2

2
4

4 0+ ∈ + ∈ + ∈[ ] =˜ ,Φa (19)

˜

,

ˆ ˆ ˆ

ˆ ˆ ˆ

Φ

Γ

h h y h y h y

h y h y y

a e b e c e

d e q e ea

= + +(
+ + )

−

− − ∈

−

+

α

α (12)

where a b c d qh h h h h, , , ,  are integration constants and

α ± = ± + ∈ ∈−( )[ ] ∈1 1 4 2Γa . In order to satisfy the bound-
ary conditions of vanishing perturbations at +∞ ,
c d qh h h= = = 0, and Eq. (12) reduces to the simple form

˜ .ˆ ˆ ˆΦh h y h y ya e b e e= +( )− − ∈−α (13)

It is important to observe that the incompressible theory

∇ =( )⋅ ṽ 0  yields only the sonic solution

˜ ~ exp ˆ ˆ .ρsonic − − ∈[ ]y y

Equation (13) shows that a new solution is introduced by the
finite thermal conductivity and, because of its diffusive char-
acter, we denote the second term in Eq. (13) as the diffusion or
entropy solution. The asymptotic matching conditions can be
greatly simplified by the following choice of the integration
constants:

a b b Bh h h h

a
= − = − ∈

1
1

, ˆ ,β
ν

Γ
(14)

where Bh, β̂  must be determined from asymptotic matching,
and the normalization condition a bh h+ = 1 has been used.
The heavy-fluid solution [Eq. (13)] can be rewritten using the
ablation-front variable z y= ∈ˆ  and expanding a− in powers
of ∈ and ∈Γa,

    
α − − ∈

∈
+ ∈ − ∈ + ∈( ) +









. Γ

Γ
Γ Γa

a
a a1 2 2

2
2 2

K . (15)

A short calculation yields

˜ ˆ ~ ˜ , , ,Φ Ψ Γh z h h
ay e z z∈( ) = ∈( ) + ∈ ∈( )[ ]− χ (16)

where Ψh z∈( ) and ˜ , ,χ h
a z∈ ∈( )Γ  can be written as an

∈-series
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where

  
L0 1= ∈ +( ) ∈ + +( ) +( )[ ]∂ ∂ ∂ ξ ∂ ξ ∂ν ν

z z z z zL LΓ Γ ˆ ˆ , (20a)

  
L1

2

2
2= ∈( )

+ξν

Γc
aΓ , (20b)

  

L2

2

= − ∈ +( ) − ∈ +( )
∈ +( ) +[ ] − ∈

∂ ∂ ∂ ∂

∂ ξ ∂ ∂ν

z z z z

z z z

L

L

Γ Γ

Γ Γ

ˆ

ˆ , (20c)

  L4 1= ∈ + −Γ ˆ ˆ ,L Lz∂ (20d)

∂ ξ ξ ∂ν
ξz = −( )+1 1 , L̂ = −( )−ξ ξν 1 , Γ = Γaξ , Γc k g≡ γ ,

and z y= ∈ˆ  is the ablation-front coordinate (z ~ 1 in the
ablation-front region). Furthermore, each operator Li can be
expanded in powers of ∈Γa, and the eigenfunction can be
expressed as a double power series,

Li
j

ij a
j

a

j
j
a j

j
a

k
jk
a

a
k

L= ∈( )

= ∈

= ∈( )

=

∞

=

∞

=

∞

∑

∑

∑

0

0

0

Γ

Φ Φ

Φ Φ Γ

,

˜ ˜ ,

˜ ˜ .

(21)

The next step is to solve Eq. (19) order by order. To lowest
order in ∈ and ∈Γa, Eq. (19) yields

˜ ,Φ Ψ Ψ Ψ Ψ Ψ00 0 1 2 3 4
a a a a a aA B C D E= + + + + (22)

where Aa, Ba, Ca, Da, and Ea are the integration constants. The
five solutions can be written in the following integral forms:

Ψ Ψ0 1
1 1= − = − ( )ξ

ξ
ξ

ξ
ξ, ,z (23a)

Ψ2

2

1 1 2
1

2

1

1
= − ( ) + ( )

−( )











∫ +

ξ
ξ

ξ
ν

η
η η

ηξ ν
ν

z T
d , (23b)
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1 1 2

1

1

1

1

6 1
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= − ( ) −
−( )







( ) − 



∫

∫

+

+

+

ξ
ξ

ξ η
η η

ξ
ν

η ν

ν

z d

z x
x

x
dx , (23c)

Ψ4 0 1 2
1

1
= −

−( )( ) +∫
ξ

ξ
η

η ηξ
ξ

ν
d

, (23d)

z
dξ η

η ηξ
ξ

ν( ) =
−( )( ) +∫ 0 1 1

, (23e)

where T x x xα
α α( ) = + −( ) −1 1 1, and ξ(0) is the density at

z = 0. To determine the integration constants, the solution in
the ablation front must be asymptotically matched with the
solution in the heavy-fluid region. This can be accomplished
by taking the limit of ξ → → ∞( )1 z  in Eq. (22). According to
standard boundary layer theory, the asymptotic matching will
occur if a common region of validity of the two solutions
exists. Substituting 1 2− = + ( )− −ξ e O ez z  and matching the
lowest-order term of Eq. (22) with Eq. (16) yields Ba = Ca = Da

= Ea = 0, and Aa = 1. The first- and second-order matchings in
∈Γa yield Φ̃ Ψ01 1

a hB= , Φ̃ Ψ Ψ02 1 2
a hb= +( ) . The functions

Φ̃03
a  and Φ̃04

a  can also be derived from Eq. (19) and, because
of the lengthy expressions, they are reported in Appendix A.

The next step is to solve Eq. (19) to zeroth order in ∈Γa
and first/second order in ∈, i.e.,

  L00 10 0Φ̃a =   and  L L00 20 20 00
˜ ˜ .Φ Φa a= −

Matching the ∈ and ∈2 terms of the solutions with Eq. (16)
yields

˜ , ˜ ,Φ Ψ Φ Ψ10 1 1 20

2

2
1

2
a a a hB

z
b= − = − −ξ

ξ
(24)

where B ba h
1

11 1= − − ∈( ) + ∈β̂ ν . The functions ̃Φ12
a  and Φ̃21

a

are important to describe the eigenfunction Φ̃a  to the desired
accuracy; they are also reported in Appendix A.

Region 3:  The Blowoff Region
The blowoff or expansion region is located downstream

with respect to the ablation front. In this region, − ˆ ~y 1,
L L>> 0 , and   ξ ν ν

. −( ) <<L y0
1

1. The analysis can be sim-
plified by introducing the new variable



SELF-CONSISTENT STABILITY ANALYSIS

LLE Review, Volume 65 23

ς νξ ξν= ∈ ( ) = − + ( )[ ]ˆ ,y O1

and rewriting Eq. (10) in the following form:

1
00 1

2
2ν

σ σM M Ml l l˜ ˜ ˜ ,Φ Φ Φ+ + = (25)

where σ νν ν
= ∈( )[ ]−

Γa

1
, and the superscript l denotes vari-

ables in the low-density fluid,

M
Fry y

a
0 1 1 2 1

1 1 1

1

1 1 1
1= −





 −

+
∈













+∂
ς

∂
ς ξ ν ζ ζν ν νν

ν
ˆ ˆ ,

Γ
(26a)

M y

y y y

y

1
2

1

1 1 1

2

1

1

1 1 1

1

1

= − ∇
−( )

− + −




 −











× + ∇






∂
νζ ξ

∂
ζ

∂
ζ

∂
ζ

ζ
ξ

∂
νζ

ν

ν ν ν

ˆ

ˆ ˆ ˆ

ˆ

ˆ

ˆ , (26b)

M y y y y2
4 3 2 21 1

1
1

1= + −






+ ∇
−

+ ∇




ν

∂ ∂
νζ

∂ ζ
ξ

∂
νζˆ ˆ ˆ ˆ

ˆ ˆ , (26c)

∂ ξ ∂ζŷ = − −( )1 , and ξ νζ ν= ∈( )1 . Focusing on the values
of ν > 1, Eq. (25) yields different solutions according to the
magnitude of σν: (1) σν << 1 and (2) σν >> 1.

Solution 1:  σνσνσνσνσν << 1
Since the growth rate of the long-wavelength modes (∈ <<

1) scales as the classical growth rate γ ~ kg( ) , the condition
σν << 1 can be rewritten in the following form:

∈ <<
− +ν
ν

ν
νν

2 2 2
1Fr . (27)

For large Froude numbers, Eq. (27) can be satisfied only for
density profiles with ν > 2 and wave numbers

∈<<




+

−1
2 2

2

ν
ν
ν

ν
ν

Fr
. (28)

Since σ and ∈1/ν are small, the differential operator and the
eigenfunction can be expanded in powers of σ and ∈1/ν,

M Mj jk
k

k

l
n
l n

n
n
l

ni
l i

i

= ∈

= = ∈

=

∞

=

∞

=

∞

∑

∑ ∑

ν

νσ

0

0 0

,

˜ ˜ , ˜ ˜ .Φ Φ Φ Φ

(29)

Each term of the series satisfies the boundary condition
Φ̃ni

l ζ → ∞( ) = 0. Substituting Eq. (29) into Eq. (25) and col-
lecting terms corresponding to the lowest power of σ and
∈1 ν  leads to M l

00 00 0Φ̃ = , which results in

ζ∂
ν

∂ ζ
ν

ζζ ζ
ν2

2 00
11 1

0− − +
∈









 =−

Fr a

l

Γ
Φ̃ . (30)

The solution of Eq. (30) satisfying the boundary conditions at
infinity can be written in terms of the Kummers’ confluent
hypergeometric function U(a, b, x),

˜ , , ,

, .

Φ

Γ

00
1

2

2

1

2

1

2

1

l
l

a

C e U a b

a
Fr

b

= ( )

= −
∈

− = −

−ζ ζ

ν ν ν

ν ζ

(31)

The other terms of the series in Eq. (29) can be found from
Eq. (25) in a similar manner. Particularly useful for matching
is the term ̃Φ10

l  that satisfies M Ml l
00 10 10 00

˜ ˜Φ Φν = − . How-
ever, because of its complexity, we simplify such an equation
by assuming that, to lowest order in ∈, ∈1/ν, and ∈Γa, the
eigenvalue has the classical form γ 2 = k g . This assumption
is verified later by the matching conditions. First, observe that
for γ 2 = k g , Eq. (31) reduces to

˜ , ,Φ00
1 1 1 2l

lC e= +( )ζ ν ζν ζ Γ

where ΓΓΓΓΓ(a, x) is the incomplete gamma function. By rewriting
M10

2 2 1= −∇ ∇ −ˆ ˆζ ζ ν  and substituting ̃Φ00
l  into Eq. (25), the

equation for ̃Φ10
l  can be solved in closed form, yielding

˜ , , ,Φ10

1
12

2 2 1 2 2l lC
e= ( ) − +( )[ ]

µ
ζ ν

ν
ζ ν ζ ν ν ζΓ Γ (32)

where µ ν ν= −( )1 . To achieve matching with the solution in
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the ablation front, it is important to derive the asymptotic
behavior of the solution in the blowoff region for small ζ.
Combining Eqs. (31) and (32) leads to the following form of
the eigenfunction:

˜ ˜

,

Φ Φ00 10

1 1

1 2

1 2 1

2 1

1

l l

l l l l lC A a B b

+

= + +( ){ − ( ) + +( )

− + +( )}

+

σ

ζ ζ ζ ζ

σ ζ ζ

ν

ν ν

νK K

K (33)

where

A
al =
+[ ]

+ +[ ] − 





Γ
Γ

Γ
1 1

1 1

2 21ν
ν

σ
ν ν

µ
, (34a)

a
A a

a

bl
l

=
+[ ]

+ +[ ] −



 −









1 1 1

1 1
2 1

21Γ
Γ

ν
ν

σ
ν

µ
, (34b)

B
a

b
a

bl l=
+

−( )
[ ]

= + −ν
ν

ν
1

1
2

1
3

Γ
Γ

, . (34c)

Substituting ζ νξν= ∈ ( ), Eq. (33) can be rewritten as the sum
of three power series in ∈. It is important to observe that the
power series in Eq. (33) cannot be matched with the ∈ and
∈Γa power series of the ablation-front solution. This suggests
that a transition region exists between the ablation front and
the blowoff regions. The solution in such a region must match
the ablation front as well as the blowoff region solution.

By introducing the layer variable η ζ σ µ=  and the opera-
tor ∂ ξ ∂ηu = − −( )1 , Eq. (25) can be rewritten in the following
form:

W W W Wt t t t
0 1

2
2

4
4 0˜ ˜ ˜ ˜ ,Φ ∆ Φ ∆ Φ ∆ Φ+ + + = (35)

where ∆ = σµ, the superscript t denotes the transition region,
and

W u u

u u u u

0 1

1
2

2

1

1

1 1 1 1

= −






×
−

−






+








 + +













∂ ∂
η

∂ η
ξ

∂
η νη

∂
ν

∂
ν η

ν

ν , (36a)

W
Fr a

1 2 2
1 1

2=
∈ +ν η

ν
νΓ

, (36b)

W u

u u u

u u u

2 1

1
2

1

1

1 1

1

1

1 1

1

1

=

− −




 −

+ −
















− −




 −

ν
∂

η

∂
η

η
ξ

∂ ∂
η νη

∂ ∂
η

∂ η
ξ

ν

ν ν

ν , (36c)

W u4 1
1

1

1= −




 −

−∂
η

η
ξ νν , (36d)

and ξ νη ν= ∈( )∆ 1 . Observe that ∈ ∈( ) <<−( )∆ ~ Fr
ν
ν2 1 1, and

the variable ξ ν~ ∈( ) <<∆ 1 1. Thus, each operator Wi can be
expanded in powers of ∈( )∆ 1 ν , and the eigenfunction Φ̃t  can
be expanded in powers of ∆ and ∈( )∆ 1 ν ,

W Wi in
n

n

t
n
t n

n
n
t

nj
t

j

j

= ∈





= = ∈





=

∞

=

∞

=

∞

∑

∑ ∑

0

0 0

∆

Φ Φ ∆ Φ Φ
∆

ν

ν

,

˜ ˜ , ˜ ˜ .

(37)

To lowest order in ∆ and ∈( )∆ 1 ν , Eq. (35) reduces to
W t

00 00 0Φ̃ = , where

W00 2 1

2 2
1

1 1

2
1

= − +






× − + + −






ν
∂ ∂

η

∂ ν η∂ ν∂ ν
η

ν
η

η η ν

η η η ν . (38)

This equation can be further simplified by introducing a new
function ˜ ˜χ η νt t= Φ 1  and by integrating three times with
respect to η. A straightforward manipulation leads to the
following second-order differential equation:

νη ∂ χ χ θ φ

θ

µ µ µ

µ

η
µθη µφθ

µθη

2 2
0 0

0

1 1 1

1

− −

−

− =

+ −

∫ ∫

∫

˜ ˜

,

t t t

t t

A d e d e

B d e C (39)

where At, Bt, Ct are the constants of integration. The solution
of Eq. (39) can be written as a linear combination of the
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homogeneous and particular solutions,

˜ ,χ χ χ χ χ χt t
A
P t

B
P t

C
P t

D
H t

E
HA B C D E= + + + + (40)

where χ χ χA
P

B
P

C
P, ,  are the particular solutions corresponding

to each term in the right-hand side of Eq. (39) and χ χD
H

E
H,  are

the homogeneous solutions (Dt and Et are integration con-
stants). Next, we observe that χC

P = 1 and we rewrite Eq. (39)
for the other four solutions by introducing the new variable
τ η µ= 1 . A short calculation yields

ντ∂ χ µ∂ χ µ χ µ ττ τ
2 2 2˜ ˜ ˜ ,t t t− − = ( )Π (41a)

where

Π τ µ θ θ φ φ

µ θ θ

τ µ ν µθ θ µ ν µφ

τ µ ν µθ

( ) = ( ) ( )
+ ( )

∫ ∫

∫

−

−

A d e d e

B d e

t

t

2
0 0

0
. (41b)

The homogeneous solutions can be easily calculated from
Eq. (41a), yielding

χ τ µ τ ν

χ τ µ τ ν

µ
µ

µ
µ

D
H

E
H

= ( )

= ( )

2

2

2

2

K

I

,

,

(42)

where Kµ x( )  and Iµ x( )  are the modified Bessel functions. To
determine the two particular solutions χ A

P and χ B
P, Eq. (41a)

is transformed in Laplace space,

d

ds s s
A F s B F s

t
t t

A
t

B
ˆ

ˆ .
χ ν µ

ν
µ
ν

χ+ + +








 = ( ) + ( )2 2

2 (43)

The Laplace transforms of χ A
P and χ B

P are the particular
solutions of Eq. (43):

ˆ

,

χ µ
ν

µ
µ

µ

µ ν

µ

µ ν

µ
ν

µ
ν

A
P

s

s

x

e

s

e

x
dx

dy y y

x

= − ( )
+( )

+( )

+

−∞

∫

∫

4

2 1

2
0

2
1

2
2

Γ

(44)

ˆ , ,χ µ µ
ν

µ
µ µ

ν
µµ

µ
ν

µ
ν

µ

B
P

s
e

s
s= − 





( ) − +









+

+( )Γ
Γ

2

1
1 1 (45)

where

F s
s s

d

F s
s s

A s

B

( ) = − ( )
+( )

+( )

( ) = − ( )
+( )

∞
∫

µ
ν

µ
µ

ω µ
ω

ω

µ
ν

µ
µ

µ

µ ν

µ

µ

4

3 2

3

3

2Γ

Γ

,

.

(46)

Here, ΓΓΓΓΓ(x) is the gamma function and µ ν
ν= −1 . The behavior

of the particular solutions for τ → ∞  and τ → 0  can be
determined by expanding Eqs. (44) and (45) in proximity of the
poles. A short calculation yields

  

χ τ φ τ µ
ν

τ

φ τ ν
ν

τ

µ

µ

A
P ≈( ) = +

−
+





+ −
−( )

+








+

0 1
2 1

1
2 3 2

1

2
2 1

L

L , (47a)

χ τ ν
ν

τ ν
ντ

µ
A
P → ∞( ) = −

+
+ + +





−
1

1
1

2
2 1 L , (47b)

  

χ τ θ τ µ
ν

τ

θ τ ν
ν

τ

µ

µ

B
P ≈( ) = +

−






+ −
−( )









+

0 1
2 1

1
2 3 2

1

2
1

L

L , (47c)

χ τ µ µ
µν

τµ ν µ µτ
B
P e→ ∞( ) = − ( ) −− − −Γ 1 2 , (47d)

where

φ
µ

ν
ν

ν
µ
ν ν

φ ν
ν ν

µ ν

1

2

2

1

1

1

2 3 1 2 1

= − ( )
−

+
−







∈





=
−( ) −( )

Γ
Γ , ,

,
(48a)

θ µ
ν

µ
ν

µ
ν

θ ν
ν ν

µ
µ ν

1

2 1 2 1

= −



 −





=
−( ) −( )

e Γ , ,

.
(48b)

Equations (47) and (48) determine the lowest-order solution
in the transition region. By inspection, one can immediately



SELF-CONSISTENT STABILITY ANALYSIS

26 LLE Review, Volume 65

conclude that the exponentially growing solution χE
H  does not

match the solution in the light-fluid region, and the χD
H

generates an ∈Γa  series for η ν ξν= ∈ ∆  that cannot be
matched by the ablation layer solution. Thus, we set Dt =
Et = 0 in Eq. (40) and rewrite the transition region solution as

˜ ˜ ˜ ˜ ,Φ Φ Φ Φ00 00 00 00
t t C t A t BC A B= + +

where

˜ ,Φ00
1C = η ν   ˜ ,Φ00

1A
A
P= η χν   and  ˜ .Φ00

1B
B
P= η χν

Some higher-order terms in the ∆ and ξ ν~ ∈( )∆ 1  series are
also important; they are reported in Appendix B.

The growth rate of the instability can be found by matching
the solutions in the ablation front, the transition, and the
blowoff region. First, we combine the terms of the transition
region into a single function

  

˜ ˜ ˜ ˜

˜ ˜ ˜ .

Φ Φ ∆Φ ∆ Φ

Φ ∆Φ
∆

Φ

t t C C C

t A A A t
B
P

C

A B

= + + +( )
+ + + ∈



 +













+

0 1
2

20

00 10

1

01
1

L

L
ν

η χ
ν

ν (49)

Then, we rewrite the transition region solution near the abla-
tion region by substituting η ν ξν= ∈ ∆  into Eq. (49) and
taking the limit of ξ → 0 ,

˜ ,

,

Φ
∆

∆
∆

∆

t t

t t

t
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kg

A O B
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A
F

η ξ
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ξ ξ νγ ν ξ

φ ξ θ
ν

ξ
ξ

φ
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ξ
ξ

ν

ν ν

ν

ν

ν
ν

→ →( ) = ∈
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

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+ + ( )[ ] +{ } ∈
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
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+ ∈
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
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+

+

0 0
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
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Q

B Ft

3

2
2

2 2

ξ

ν
θ
ξ

ξν

L

∆
. (50)

Equation (50) must match the ablation-front solution in the
limit of ξ → 0 . The asymptotic behavior of the ablation-front
solution near ξ = 0 can be obtained from the section covering
the Ablation-Front Region, leading to

˜

ˆ

ˆ

Φ

Γ Γ Γ

Γ

Γ

a

a

h
a

h
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a
a

R R

B b Q
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F Q
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ν
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



Q4
3ξ ν , (51)

where

R z b B z

R B z b b

h
a

h

a h h

0 0 0

1 1 0

1 1

1
1

1

= − ∈ −( )+ ∈

= − ∈ −( )− ∈ +





Γ ,

,
ν

ν
ν

(52a)

Q
z

Q1
0

2
11

2 1 1= − = −( ) −( )[ ]−ν
ν

ν ν ν,    , (52b)

Q
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3 2

2

4
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9 11 4

1 3 2

2 2 1 3 1

= − +
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= −( ) −( )[ ]−
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ν ν

ν ν ν

,

,
(52c)

  

F a

a

1 1

2

2 2 1

1
2 1 1

2 1 2 1 3 2

ξ
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ν ν ν ξ

ν

ν

( ) = − ∈
−( ) −( )

+
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Γ
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F a
2 11

2 3 2
ξ

ν ξν( ) = + ∈
−( )

+−
Γ

L . (52e)

Here, z nn
n0 0 0= ( ) −( )−

=
∞∑ ξ νν . Matching Eq. (50) with

Eq. (51) yields the following set of equations:

R C
kg R

R
t
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2
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0
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
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, , (53a)

B
A O B

Q B
h

t t

a a
h

= − ∈





+ ( )[ ] +

+ ∈( )ν
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∆
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∆Γ Γ
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,
, (53b)
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Bt a= + ∈





+
ν β

ν
ν ν

ν1 1
1∆ Γˆ , (53c)

− = − − ∈( ) +kg
b

Ah
t

aγ 2 3 21 1
∆ Γ

. (53d)

The next step is to match the solutions for the transition and
blowoff regions. Taking the limit of Eq. (48) for η → ∞  and
∆ → 0 yields

˜ ,
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Φ ∆
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∆
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(54)

Upon the substitution ζ η= ∆ , the terms of this equation must
match the powers of η in Eq. (33). A short calculation yields
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Equations (53) and (55) determine the order of magnitude of
the constants. It is easy to show that Bh

a~ ∆ Γ1 1ν << ,
B A At t t~ ~∆ ν ν ξ+( ) <<1 , and β̂ ~ 1. Equations (53) and
(55) can be used to determine the instability growth rate and
 the parameter ̂β . Retaining all terms up to order ∈ΓaBh and ∈,
the instability growth rate satisfies the following equation:

γ βk k A k g kVc T a<<( ) = − , (56)

where
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Equation (56) represents the growth rate of the instability for
ν > 2 and

k L Fr0
2 2 2

<< [ ]+( ) −( )
ν ν ν ν ν

.

Solution 2:  σνσνσνσνσν >> 1
For σν >> 1, the solution of Eq. (25) can be determined

by following the procedure described in Ref. 16. The differen-
tial operators and the eigenfunction are expanded in powers
of 1/ν:
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where i = 0,1,2. Substituting Eq. (58) into Eq. (25) and
collecting terms up to the first two orders in 1/ν yields the
following equations:
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where

δ ν ν= ∈( )1 ,  ς νξν= ∈ ( ) ,   and  ∂ ξ ∂ςˆ .y = − −( )1

The function ̃Φ0
l  can be written as a combination of the three

decaying homogeneous solutions of Eq. (59):
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The next step is to determine the coefficients Al, Bl, Cl by
matching the solution ̃Φ0

l  with the ablation-front solution Φ̃a .
Using the 1/ν expansion of the ablation-front solution,
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and matching the lowest power of 1/ν in Φ̃a  and Φ̃0
l  yields

Al = −( )1 δ δ , Bl = Cl = 0.

The first-order correction ̃Φ1
l  can be obtained by solving

Eq. (60),

˜ ln ˜ .ˆΦ Φ1 11l y l
C
le C= + −( )ς

δ
δ (63)

The constants Cl
1 , bh, and the dispersion relation are deter-

mined by matching ̃Φ0
l  and Φ̃1

l  with Eq. (62):
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Solving Eq. (65) yields the growth-rate formula:

γ = − ( ) − +( )A k g A k V V A kVT T a bo T a
0 0 2 2 0 01 , (66)

where
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Note the different coefficients of ∈1/ν in the Atwood numbers
defined by Eqs. (67) and (57). It is important to remember that
Eq. (66) has been derived using the 1/ν expansion and, to the
lowest order in 1/ν, µ ν ν

0
11= ( )  and A AT T

0 = . Furthermore,
replacing AT

0  with AT and Vbo
0  with Va µ ν

0
1∈( )  in Eq. (66)

would also reproduce the cutoff wave number obtained in
Ref. 16 by including the higher-order corrections in 1/ν. Thus,
we conclude that replacing ∈( )ν ν1  with µ ν

0
1∈  in Eq. (66)

improves the accuracy of the growth-rate formula up to the
first order in 1/ν:
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2 2 1 , (68)
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Although Eq. (68) is valid over a large range of ν’s > 1, a
significant degradation of its accuracy is expected to occur for
ν → 1, where the 1/ν expansion breaks down. This problem is
addressed in the next section, where the range of validity of the
growth-rate formulas is discussed.

Summary of the Growth-Rate Formulas for Fr  >> 1
For values of ν > 2, two different growth-rate formulas have

been derived according to the magnitude of the wave number:
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where AT, β, and Vbo are defined by Eqs. (57) and
(69), respectively.

For values of 1 < ν < 2, the analysis of the previous section
still applies. However, because corrections due to higher
orders of 1/ν are not included in the derivation, the growth-
rate formula [Eq. (68)] shows poor agreement with the numeri-
cal results for ν < 1.5. Figure 65.22(a) shows the unstable
spectrum obtained by Eq. (68) and the numerical results of
Ref. 5 for ν = 1.5, 1.2, and 1.15. Note the degradation in
accuracy of the analytic growth rate for ν < 1.5. The analytic
formula can be improved by observing that, for ν → 1, the
cutoff wave number is so small that the ∈1/ν corrections can be
neglected in the analysis and the eignevalue equation can be
numerically solved in the blowoff region. It is found that by
modifying µ0 to µ ν0

20 12+ . , the matching conditions are
satisfied over a large range of Froude numbers and ν → 1+, thus
leading to a general growth-rate formula valid for 1 < ν < 2:

γ = − ′ − +( )A k g A k V V A kVT T a bo T a
2 2 1 , (71a)

where

′ =
′ ∈

′ = +V
V

bo
a

µ
µ µ

νν
0

1 0 0 2
0 12

,
.

, (71b)

and AT is defined by Eq. (57). Figure 65.22(b) shows that for
values of ν close to unity, excellent agreement is obtained
between the numerical results of Ref. 5 and the modified
formula [Eq. (71)].

Discussion
The validity of the asymptotic formula has been tested by

comparing the growth rate obtained from Eqs. (70) and (71)
with the numerical results of Ref. 5, where the isobaric model

is numerically solved. Figure 65.23 shows plots of the normal-
ized growth rate γL Va0  calculated using Eq. (70) (solid
lines) and one numerically derived in Ref. 5 for ν = 2.5 for
different values of the Froude number (dots). Remarkable
agreement between numerical and analytical results is ob-
tained. In Fig. 65.24, the analytic growth rate is compared with
the numerical results of Ref. 5 for different values of ν and
fixed Froude number. The solid lines represent the result of the
analytic theory and the dots are the numerical results. The
analytic formula [Eq. (70)] is also compared with the self-
consistent growth rate derived in Ref. 13. A significant dis-
agreement between the results of Ref. 13 and Eq. (70) is found
for large values of ν. Figure 65.25 shows the plot of the
unstable spectrum for ν = 8 obtained from the numerical
computations of Kull4 (dashed line), Eq. (70) (solid line), and
the growth-rate formula of Ref. 13 with zero Mach number
(dotted line).

Next, Eq. (70) is compared with other growth-rate formulas
obtained by fitting numerical results. The most commonly
used formula has been derived by Takabe et al. in Ref. 6 for
spherical geometry, electronic heat conduction (ν = 2.5), and
large values of the Froude number. Following Ref. 6, the
numerically derived growth rate can be fitted by the following
formula:

γ α β= −T T akg kV , (72)
where
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Figure 65.22
Unstable spectrum (γ L Va0  versus kL0) cal-
culated using (a) Eq. (68) and (b) Eq. (71)
(solid lines) compared with the numerical
results of Ref. 5 (dots) for ν = 1.5, 1.2, and
1.15 and Fr = 5.

TC4101

ν = 1.5

ν =
1.15

ν = 1.2

Fr = 5(a)

10–210–310–4

kL0

γL0
Va

10–2

10–3

10–4

kL0

10–210–310–4

ν = 1.5

ν =
1.15

ν = 1.2

Fr = 5(b)



SELF-CONSISTENT STABILITY ANALYSIS

30 LLE Review, Volume 65

TC4100 kL0

10–4

γL0
Va

Fr = 1

5

20

50
100

200

10–3 10–2 10–1 100

10–3

10–4

10–2

10–1

100

TC4099 kL0

10–2

γL0
Va

ν =  2.5

ν =  8

ν =  1.2

10–3

10–4

10–210–310–4

Figure 65.24
Unstable spectrum (γ L Va0  versus kL0) calculated using Eqs. (70) and
(71) (solid lines) compared with the numerical results of Ref. 5 (dots) for
ν = 1.2, 2.5, 8 and Fr = 5.

and ρs, cs, and rs are the sonic density, sound speed, and
position of the sonic point, respectively. Since αT is almost
independent of the equilibrium parameters (αT . 0.9), we
focus our attention on βT. It is important to remember that,
while Eqs. (72) and (73) have been derived for spherical
geometry including finite Mach number, Eq. (70) is valid for
slab geometry, neglecting the Mach number. Since the only
isobaric dimensionless parameter is the Froude number, the
coefficient βT must be rewritten in terms of Fr. Using the
isobaric profiles [Eq. (9)], we define ys as the distance at which
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(74)

where ra is the radial location of the peak density. Table I of
Ref. 5 shows values of the relevant dimensionless parameters
for G = 2. According to these values, Takabe’s coefficients can
be rewritten in the following form:
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Observe that θ is very weakly dependent on the equilibrium
parameters, and its values are always close to unity θ . 1( ) .
Table 65.I shows the values of θ corresponding to the equili-

Figure 65.23
Unstable spectrum (γ L Va0  versus kL0) calculated using Eq. (70) (solid
lines) compared with the numerical results of Ref. 5 (dots) for ν = 2.5.
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Figure 65.25
Plot of the normalized growth rate versus ∈ for ν = 8 and Fr = 5. The solid
line represents Eq. (70), the dashed line is the numerical result of Ref. 5, and
the dotted line is Eq. (16) of Ref. 13.

Table 65.I: Equilibrium parameters of Refs. 5 and 6.

G = 2

Fr θ

0.899 5.88 25.0 0.26 0.99

0.903 7.14 50.0 0.30 1.00

0.904 8.70 98.0 0.34 1.01

r ra s ρ ρa s y rs s
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bria in Table I of Ref. 5. Since θ is approximately constant, the
coefficient β depends mainly on the Froude number. The next
step is to find the best fit (γfit ) for Eq. (70) based on a formula
similar to Takabe’s γ fit = −( )a kg bkVa . The fitting proce-
dure is straightforward. The error γ γ−( )fit

2  is minimized over
the portion of the unstable spectrum of interest to ICF (1 µm
< λ < 200 µm). Since the typical cutoff wavelength λc is of the
order of 1 µm, the minimization condition can be written in the
convenient form

∂ε
∂

∂ε
∂

ε γ γ λ
λ

λ

a b
d

c

c= = = −( )∫0 0
2200

, , .fit (76)

The two minimizing conditions yield the values of a and b that
are subsequently fit with a power law formula (a Fr a~ µ  and
b Fr b~ µ ). For the values of Fr reported in Table I of Ref. 5
(5 < Fr < 9), the described procedure leads to the following fit
of Eq. (70):

γ fit = −0 9 2 00 03 0 15. . .. .Fr kg Fr kVa (77)

The good agreement between Eqs. (77) and (72) confirms the
accuracy of the analytic derivation. Furthermore, the general
analytic formulas [Eqs. (70) and (71)] are valid for any ν > 1
and can be applied to configurations that are not described by
pure electron heat conduction.

Conclusions
The stability analysis of accelerated ablation fronts is car-

ried out self-consistently for an arbitrary power law dependence
of the thermal conductivity (κ ~ Tν with ν > 1) and large Froude
numbers (Fr > 1). The eigenvalue equation is solved in differ-
ent regions of the density profile (overdense, ablation, and
blow-off regions), and the solution is asymptotically matched.
The growth-rate formula is derived from the matching condi-
tions, and its validity has been tested against the numerical
results of Ref. 5. The excellent agreement between the growth-
rate formula and the numerical results shows the high level of
accuracy of the analytic derivation.
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Appendix A: Higher-Order Correction to Φ̃  in the
Ablation-Front Region

In this appendix, important higher-order corrections to the
eigenfunction in the ablation-front region are reported. Those
corrections are terms of Eq. (21), and they are derived by
solving Eq. (19) order by order. After a very lengthy calcula-
tion, these terms can be written in the following convenient
form:
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where Ta(x) is derived in the section on the Ablation-Front
Region and
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Note that these corrections are essential to the derivation of
Eqs. (51) and (62).

Appendix B: Higher-Order Correction to Φ̃  in the
Transition Region

In this appendix, the higher-order corrections to the
eigenfunction in the transition region are reported. Those
corrections are terms of Eq. (37), and they are derived by
solving Eq. (35) order by order. The ξ and ∆ corrections to ̃Φ00

C

and Φ̃00
A  can be written in the following form:

˜ ,Φ0
1 1C = −( )η ξν (B1)

˜ ,Φ1 2
1

0
1

1
C kg d= − −( )

−∫γ
η ξ η

ξ
ν η

(B2)

˜ ,Φ2
2 2

2
1

2
1

1

1
1

1C O O
kg= + +

−
+ ( )





+ −






+η ν
ν

ξ ξ
γ

ν (B3)

˜

˜ ,

Φ

Φ

10 2
1

2

0

10
1 2 1 001

A
E
H

E
H

x E
H

A

kg dx

x

H y y

y
dy

kg

= ( )
( )[ ]

( ) ( ) + ( )

∞

+

∫

∫

γ
η χ η

χ

χ

ν γ
φ η

ν η

ν
(B4)

˜

,

Φ01
1

2 0

01
1

1
1

1

2
1

A
E
H

E
H

x E
H

D
H

dx

x

H y y

y
dy= ( )

( )[ ]
( ) ( )

+ ( )






( ) −












∞ +∫ ∫η χ η
χ

χ

ν

φ η
µ

µ
ν

χ η

ν η

ν
µ

ν

Γ
(B5)

where χE
H , χD

H , and Φ̃00
A  are defined in Solution 2: σνσνσνσνσν >> 1,

and
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Observe that Eqs. (B1) and (B2) include all the ξ-corrections
to Φ̃00

C  and Φ̃10
C . These terms are essential for the derivation

of Eqs. (49) and (50).
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