
Angular Dependence of Stimulated Brillouin Scattering 
in Homogeneous Plasma 

Stimulated Brillouin scattering (SBS)] is the decay of an 
incident, or pump, light wave (0)  into a frequency-down- 
shifted, or Stokes, light wave ( I )  and an ion-acoustic wave (2). 
The conservation of energy and momentum in this process is 
reflected in the frequency and wave-vector matching condi- 
tions 

the second of which is illustrated in Fig. 60.13(a). For future 
reference, notice that the ion-acoustic wave number k2 is 
maximal for directly backward scatterering and is equal to zero 
for directly forward scattering. 

SBS is important in the field of inertial confinement fusion 
(ICF), because it can scatter the incident light away from the 
target, thereby reducing the amount of energy available to 
drive the compressive heating of the nuclear fuel. ICF experi- 
ments have involved plasmas with density and temperature 
scale lengths shorter than 100 p m  for much of the last two 
decades, and analyses of parametric instabilities such as SBS 
have focused on the effects of these plasma inh~mogeneit ies.~ 
However, current experiments are designed to produce plas- 
ma conditions relevant to the proposed National Ignition 
Facility and involve plasmas with millimeter scale lengths. 
There has been a resurgence of interest in the predictions of 
the simpler homogeneous-plasma model because such long 
scale lengths diminish the importance o l  the effects of 
plasma inhomogeneities. 

Traditionally, analyses of SBS begin with the determination 
of yo, the temporal growth rate of SBS in an infinite homoge- 
neous plasma. It is well known that yo is maximal for directly 
backward scattering and is equal to zero for directly forward 
scattering.' Physically, this behavior occurs because the 
ponderomotive force that drives the ion-acoustic wave is 
proportinnal to the square of the ion-acoustic wave number. 
Recognition of this behavior has led to the commonly held 
belief that backward SBS should dominate experiments in- 
volving long-scale-length plasmas. . .- 

/ 
The problem with this conclusion is that SBS cannot grow 

exponentially in time, with growth rate yo, for a time longer 
than that taken for light to cross the interaction region.4 In 
current experiments, this transit time does not exceed a few 
picoseconds. In contrast, the temporal pulsewidth of a typical 

, laser is a few nanoseconds, and the initial period of temporal 
growth is followed by a much longer period of spatiotemporal 

PI294 k, growth. If the incident laser intensity is less than the threshold 
intensity for the absolute instability, SBS will eventually 
saturate due to the convection of the Stokes and ion-acoustic 

Figure 60.13 waves out of the interaction region. If this convective satura- 
Interaction geometry for SBS The angular dependence of yo. the temporal tion occurs on a nanosecond time scale, the angular depen- 
growth rate of SBS, stems trom the fact that k2 = 2ko sin 9. 

- dence of the scattered light will be determined predominantly 
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by the physics of steady-state amplification. The goal of the 
work presented in this article is to determine how the convec- 
tive amplification of the Stokes wave depends on the scattering 
angle and the conditions under which a steady-state analysis 
is applicable. 

Governing Equations 
The starting point for this investigation is Maxwell's wave 

equation 

for the vector potential, together with the ion-acoustic wave 
equation 

These equations were d e r i ~ e d ~ . ~  under the assumption that the 
backgound plasma is uniform and at rest. The vector potential 
is normalized in such a way that A,, represents the velocity of 
electrons oscillating in the high-frequency electric field di- 
vided by a characteristic speed that is approximately equal to 
the electron thermal speed and nl represents the low-frequency 
electron-density fluctuation associated with the ion-acoustic 
wave divided by the background elecron density. The symbol 
we denotes the electron plasma frequency,6 and the symbol c, 
denotes the ion-acoustic speed? Only the low-frequency plasma 
response to the ponderomotive force was retained, as is signi- 
fied by the ( ) in Eq. (3). 

SBS involves the interaction of twolight waves and an ion- 
acoustic wave. These waves are coupled because of the elec- 
tron current and the ponderomotive force, both of which are 
nonlinear. Because the effects of this coupling manifest them- 
selves ah slow spatial and temporal modulations of the wave 
amplitudes, the vector potential is written as 

Ah (r, t )  = z { b  exp[i(k, r -  of)] 

+A, (x, y ,  t )  exp[;(kl . - m~t)]], (4) 

where ko and k l  are parallel to the xy plane, ( o o ,  ko) and 
(wl, k,)  satisfy the dispersion relation w2 = 02 +c2k2, and 

In this linearized analysis of the initial evolution of SBS, the 
amplitude of the incident wave is held fixed. The electron- 
density fluctuation is written as 

where 0 2  = c,k2 and A2 satisfies an equation similar to 
Eq. (5). By substituting Ansaetze (4) and (6) into Eqs. (2) and 
(3), and collecting terms of like frequency and wave vector, 
one finds that 

(a, + v 2  . V +  v 2 )  B~ = yOBl 

In Eqs. (7) the dependent variables 

are proportional to the action amplitudes of the Stokes and ion- 
acoustic waves, respectively, and the group velocities 

Phenomenological damping terms were added to each wave 
equation. The Stokes wave is damped by electron-ion colli- 
sions6 and 

For plasmas in which ( q  /mi)''' n: w2 /k2 << ( ~ ~ / m ~ ) l ' ~ ,  the 
Landau contribution to the ion-acoustic damping rate7 is given 

by 

Relation ( I  1) is based on the assumption that the ion-acoustic 
wavelength is much longer than the electron Debye length, an 
assumption that is also inherent in Eq. (3). The coupling 
parameter 
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where the peak amplitude of the incident wave is given by the 
convenient formula 

It is clear from Fig. 60.13(b) that k2 = 2ko sin @ . Thus, one can 
exhibit the angular dependence of the coupling parameter and 
the ion-acoustic damping rate by writing 

A preliminary analysis of Stokes generation in a plasma, which 
includes the convection of the ion-acoustic wave, has been 
made by McKinstrie et ~ 1 . ~  The inclusion of ion-acoustic 
wave convection allows SBS to be absolutely unstable when 
the laser intensity is sufficiently high. However, in the 
convectively unstable regime, the Stokes output tends to a 
time-asymptotic steady state, and the gain exponents for Stokes 
generation and Stokes amplification are identical, as one 
should expect. Thus, one can avoid the mathematical difficul- 
ties associated with the analysis of Stokes generation and still 
obtain useful information regarding the angular dependence of 
SBS by analyzing Stokes amplification in the convectively 
unstable regime. 

The interaction geometry for Stokes amplification is shown 
in Fig. 60.14(a). Initially, 

yo (4) = yb (sin $)ll2 , v2 (@) = vb sin m . (14) 

where the subscript b denotes values appropriate for backward 
SBS. In a similar vein, 

v2x = -c, sin 4.  (15) 

Steady-State Amplification of the Stokes Wave 
In experiments typical of ICF the growth of the Stokes 

wave is initiated within the plasma by ion-acoustic fluctua- 
tions. This process is referred to in the nonlinear optics literature 
as Stokes generation and has been analyzed by Boyd, Rzazewski, 
and  arum.^ By neglecting the convection of the acoustic 
wave, they showed that the time-asymptotic Stokes output can 
be written as the product of two terms: a source factor that 
depends on the amplitude of the acoustic fluctuations and an 
exponential gain factor that does not depend on the amplitude 
of the acoustic fluctuations. Furthermore, the exponent of the 
gain factor is identical to that for the Stokes amplification 
process, in which an externally generated Stokes wave is 
amplified convectively as it propagates through the medium. 

At time t = 0 the leading edge of the externally generated 
Stokes wave enters the plasma with unit amplitude and initi- 
ates the instability. The ion-acoustic wave has zero amplitude 
at its entrance boundaries. For simplicity, we assume that the 
plasma is square and that its boundaries are aligned with the x 
and y axes. Thus, for t > 0, 

For a plasma with sides of length 100 pm, the transit time of 
the Stokes wave is 0.3 ps. In contrast, the transit time of the 
ion-acoustic wave is of the order of 7(mi/rne)112 ps for an 
electron temperature of 1 keV. Since the duration of a typical 
laser pulse is of the order of 1 ns, the information that a side 
boundary is present at y = 0 will not reach the plasma interior 
until the later stages of a typical experiment. Since the ampli- 
tude of the Stokes wave at its entrance boundary is independent 
of y, the initial evolution of SBS in the plasma interior is 
approximately one-dimensional and is governed approximately 

Figure 60.14 
Group-velocity geometry for SBS. (a) Thex component of v2 

is always negative. (b) The initial evolution of SBS is ap- 
proximately one-dimensional because the convection of 
portions of the ion-acoustic wave away from a particular 
Stokes ray is compensated by the convection of neighboring 
portions of the ion-acoustic wave toward that Stokes ray. 
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by the equations 

where v2, is defined to be positive. 

Physically, this simplification occurs because the convec- 
tion of portions of the ion-acoustic wave away from aparticular 
Stokes ray is compensated by the convection of neighboring 
portions of the ion-acoustic wave toward that Stokes ray, as 
shown in Fig. 60.14(b). Notice that the preceding argument did 
not depend sensitively on the shape or alignment of the plasma. 

The consequences of the one-dimensional model 
[Eqs. (18)] will now be studied, under the assumption that the 
instability grows and saturates convectively in a time that is 
short compared to the duration of the laser pulse. In steady 
state, the boundary conditions are 

yl = 17. These parameters, which are used throughout most of 
this article, correspond to a singly ionized plasma with a 
background electron density of 10I9/cm3, an electron tempera- 
ture of I keV, an ion temperature of 0.1 keV and a length of 
100 pm, and a laser intensity of 5 x 10l4 w/cm2. 

300 

4 s .= 200 - 
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Figure 60.15 
Steady-state amplitudes of the Stokes (solid line) and ion-acoustic (broken 
line) waves [Eqs. (20)] plotted as functions of distance for the case in which 
the damping parameters all = 0 and a21 = 52. and the pump-strength 

parameter yl = 17. These parameters are all independent of the scattering 
angle 2$. Distance is measured in units of the plasma length 1. 

It is not difficult to show that It follows from the first of Eqs. (20) that the convective gain 
associated with the Stokes amplification process, which is 
defined as B1 (l)/B1 (0) , is given by lo 

{p cosh[p(l- x)] + a, sinh[/3(1- x)]} exp(adx) 
Bl(x) = [p cosh(p1) + a, sinh(/31)] G =  

p e x ~ ( a d l )  

p cosh(p1) + a, sinh(p1) ' 
(23) 

It follows from Eqs. (14), (21), and (22) that the auxiliary 
parameters used in Eq. (23) are all independent of the scatter- 
ing angle 2@. This fact has two important consequences. 

where the auxiliary parameters 

and 

The wave amplitudes B,(x) and ( ~ 2 ~  /v lx ) l l2  B2 (x) are plotted 
in Fig. 60.15 for the case in which a l l  = 0, %1 = 52, and 

First, although yo, the temporal growth rate of SBS, is 
proportional to (sin @)li2, the steady-state convective gain 
associated with this one-dimensional model of Stokes ampli- 
fication is independent of the scattering angle.'' Typically, 
al << a2. When pl<< 1 one can write 

where the spatial growth rate 
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In typical nonlinear optics experiments the low acoustic speed that the component of the ion-acoustic velocity in the direction 
results in strong spatial damping of the acoustic wave and of the Stokes velocity is always negative [Eq. (15)l. 

Equation (26) is independent of the acoustic speed, as one 
should expect. The exact and approximate gain exponents 
[Eqs. (25) and (26)] are plotted as functions of the pump- 
intensity parameter ( ~ 1 ) ~  in Fig. 60.16 for the case in which 
q 1  = 52. For a pump-intensity parameter of 600, which 
corresponds to a laser intensity of approximately 
1015 w/cm2, use of the approximate gain exponent leads to 
an estimate of the intensity of the Stokes output that is five 
orders of magnitude too low! This result shows the importance 
of retaining the effects of ion-acoustic wave convection in 
analyses of SBS in plasmas.9 

" 
0 200 400 600 

PI388 Pump-intensity parameter 

Figure 60.16 
Exact (solid line) and approximate (broken line) gain exponents of SBS 
[Eqs. (25) and (26)] plotted as functions of the pump-intensity parameter (yl)2 

for the case in which all = 0 and a21 = 52. The large discrepancy between the 

gain exponents demonstrates the importance of ion-acoustic wave convection. 
This result distinguishes plasmas from most other nonlinear optical media. 

It is well known that the steady-state convective gain 
becomes infinite when the denominator of Eq. (23) vanishes. 
This singularity can occur when y > a 2 / 2  and signifies the 
onset of absolute instability. The second important conse- 
quence of the fact described after Eq. (23) is that, in the context 
of this one-dimensional model, the absolute instability condi- 
tion for SBS is independent of the scattering angle.ll Physi- 
cally, the existence of absolute instability stems from the fact 

The results described in the preceding two paragraphs are in 
apparent contradiction to the well known fact that yo + 0 as 
@ + 0 and, hence, that directly forward SBS does not exist. 
One can resolve this apparent contradition by realizing that the 
response of the acoustic wave to the ponderomotive force of 
the pump and Stokes waves is like that of a driven harmonic 
oscillator, in which the oscillator takes several damping times 
to attain its steady-state response. Since v2 is proportional to 
sin@, the saturation time associated with this one-dimensional 
model of SBS tends to infinity as the scattering angle tends to 
zero, and use of the steady-state gain formula is inappropriate 
in this limit. 

Transient Evolution of SBS 
The exact solutions of Eqs. (18) have been obtained for a 

finite plasma by Bobroff and ~ a u s l ~  and by Williams and 
~ c ~ 0 w a n . l ~  However, these solutions are written in terms of 
infinite sums of modified Bessel functions, and, because of 
their complexity, a different approach is taken here. Since the 
duration of a typical laser pulse is comparable to the transit 
time of the acoustic wave, one might suspect that the initial 
evolution of SBS does not depend sensitively on the finite- 
plasma boundary conditions. In this vein, consider the evolu- 
tion of SBS in an infinite plasma. The arrival of an externally 
generated Stokes wave at x = 0 is modeled by adding a 
source term 

to the first of Eqs. (18). The corresponding temporal growth 
and saturation of the Stokes output Bl(l,t) will be studied 
analytically. The results obtained from this approximate analy- 
sis will then be verified by solving Eqs. (18) numerically for a 
finite plasma. 

It is shown in the Appendix that, consistent with Eq. (27), 
the Stokes wave evolves according to 

t 
Bl (x, t )  = ulx G, (x, t')dt', 

0 

where 
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x 11[ 
2YO[k + 7-72Xt)(~lXt - 

Z'lx + Z'2x 

x exp[- VI (X + v2xt) - ~ 2 ( ~ 1 x t  - 4 
Z'lx + Z'2x Z'lx + Z'2x 1 

is the Green function that describes the effect on the Stokes 
wave at the point (.r,t) of an impulse applied to it at the point 
(0,O). The impulse response Gll(l,t) is displayed in Fig. 60.17 
for the case in which a1 1 = 0, $1 = 52, and yl = 17. The impulse 
response grows in time until it attains its maximal amplitude at 
t = t*. Subsequently, it decays in a time comparable to the 
growth time. Since the time-asymptotic Stokes output is pro- 
portional to the area under the impulse response curve 
[Eq. (28)], it is reasonable to define the saturation time t, 

as 2t*. Using the fact that 

PI389 Time 

Figure 60.17 
Impulse response of the Stokes wave at its exit boundary x= 1 [Eqs. (28) and 
(29)] plotted as a function of time for the case in which a l l  = 0, a21 = 52, and 
yl = 17. Time is measured in units of the ion-acoustic transit time l/vz, . 

(z) - exp(z ) / (2n~)~ '~  (30) 

as z -+ W ,  one can see that 

Gl 1 (x, t) - exp i 2Yo[(~ + Z'2Xt)(Z'lXt - x)]lI2 

Z'lx + 7J2x 

for large values of t. Let ~ ( x ,  t) be the exponent in Eq. (3 I ). 
Then t*, the time of maximal growth, is found from the 
condition 

It is not difficult to show that 

where 

It can also be shown that 

in keeping with Eqs. (23)-(25). 

The preceding analysis is consistent with previous analyses 
in the plasma physics literature: in which Fourier analysis was 
used to determine the impulse response function y(vx),  de- 
fined as the time-asymptotic temporal growth rate of the 
portion of the impulse response that convects with x velocity 
vX. It follows from Eq. (31) that 
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where 

The impulse response function y(vx) is displayed in 
Fig. 60.18. Consider the portion of the impulse response that 
convects with velocity v,. This portion of the impulse response 
travels a distance 1 in a time l/v, , at which point it has grown 
by a factor proportional to e ~ ~ [ ~ ( v ~ ) l / v , ] .  Thus, y(vx)/vx 
is the spatial growth rate of this portion of the impulse re- 
sponse. In the figure this spatial growth rate is the slope of a 
straight line from the origin to the point (u,, y ( ~ x ) )  on the 
impulse response curve. It follows from the figure that the 
amplitude of the impulse response at x = 1 increases with time 
until t, = l/v, , where v, , the velocity of maximal spatial gain, 
is found from the condition 

Subsequently, the amplitude of the impulse response decreases 
with time. It is clear physically that definition (38) is identical 

to definition (32). To establish their equivalence mathemati- 
cally, one need only observe that, with x fixed, 

Since v2 << u1, << 52 for all scattering angles, and it 
follows from Eqs. (15) and (33) that ts is proportional to 
l/sin @ . I 1  This result verifies the statement that the saturation 
time tends to infinity as the scattering angle tends to zero. The 
angular dependence of the saturation time is displayed in 
Fig. 60.19(a). For a scattering angle of 30°, the saturation time 
is longer than that for directly backward scattering by a factor 
of approximately 4. For a scattering angle of lo0, this factor 
is approximately equal to 11. Typically, al << a, ,  and it 
follows from Eq. (33) that 

The coefficient of the saturation time appearing on the right 
side of Eq. (40) is independent of the plasma length and the 
scattering angle. It is plotted as a function of yl in Fig. 60.19(b) 
for the case in which a21 = 52. Provided that the value of y 
is not too close to its absolute threshold value of a2 12, the 
saturation time is much less than the transit time of the ion- 
acoustic wave, and our use of the infinite-medium Green 
function seems reasonable. As a further check of the validity 
of this approximation, Eqs. (1 8) were solved numerically for a 
finite plasma by a computer code based on the method of 
characteristics. The numerically determined Stokes output is 
plotted as a function of time in Fig. 60.20 for the case in which 
g l  = 52 and yl = 17. The saturation time of 0.30 1/v2, 
predicted by Eq. (40) is consistent with the numerically deter- 
mined Stokes output displayed in Fig. 60.20. The coefficient 
of the saturation time is also plotted as a function of the elec- 
tron density and temperature in Figs. 60.21(a) and 60.21(b), 
respectively. The assumption that backward SBS grows and 

I I I I 1 saturates convectively in a time that is short compared to the 
0.0 I I I 

0.0 0.2 0.4 0.6 0.8 1.0 duration of the laser pulse is valid for the parameters chosen to 

PI390 Observation-frame velocity 

Figure 60.18 

illustrate the results of this article. [See the description of 
Fig. 60.15 that follows Eq. (22).] However, if the plasma 
length, the background electron density, or the laser intensity 
is significantly longer, or higher, than the value chosen for this 

Sketch of the apparent temporal growth rate of the impulse response of the article, or the electron temperature is significantly lower, - 
~ t o k e s  wave [ ~ q .  (37)).   he temporal growth rate is measured in units of KJ- backward SBS does not saturate and the steady-state results of 
and the observation-frame velocity is measured in units of vl,. 

the section on steady-state amplification do not apply. In this 
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Scattering angle 

~ 1 3 9 1  Pump-intensity parameter 

Figure 60.19 

Characteristics of the convective saturation time of SBS [Eq. (10)l. (a) The 
saturation time, normalized to thc saturation time of backward SBS, is plotted 

as a function of the scattering angle 24~. (b) The saturation time of backward 
SBS, normalized to the transil lime of the ion-acoustic wavc, is plotted as a 

function of the pump-intensity parameter @)'. 
-- 

case, a detailed spatiotemporal analysis of S B S " ~ ~ ~  is re- 
quired. In the strong damping regime typical of nonlinear 
optics experiments, Eq. (40) reduces to 

The saturation time is still proportional to llsin $ , as it must be, 
but is independent of the acoustic speed. 

As discussed in the preceding paragraph, the saturation time 
associated with the one-dimensional model described herein 
tends to infinity as the scattering angle tends to zero. It is 
reasonable to conclude that, at any instant of time, the Stokes 
output decreases as the scattering angle decreases. However, a 

detailed spatiotemporal analysis of SBS in a finite plasma"~13 
is required to quantify the angular dependence of the Stokes 
output. Furthermore, as the scattering angle decreases and the 
one-dimensional saturation time increases, other saturation 
mechanisms for SBS become more important. In the context 
of linear theory, the only other saturation mechanism is the 
convection of the ion-acoustic wave in the y direction. 
McKinstrie et a1.l4 have shown that this lateral convection of 
the ion-acoustic wave can saturate forward SBS on a time scale 
short compared to the one-dimensional saturation time and 
that the importance of lateral convection increases as the 
scattering angle decreases. However, as early saturation re- 
duces the Stokes output, the general conclusion of this 
article-that the Stokes output decreases as the scattering 
angle decreases-is still correct. 

PI381 Time 

Figure 60.20 
Stokes amplitude at x=  1 plotted as a function of time for the case in which all 

=0, @ I =  52. and yl = 17. Time is measured in units of the ion-acoustic transit 
time. The evolution of the Stokes wave was determined by solving Eqs. (18) 
numerically for a finite plasma. The convective saturation time observed in 

this simulation is consistent with the prediction of Eq. (40). 

Finally, it should be mentioned that numerical simulations 
of SBS in homogeneous plasma have been made by Amin et 

for the complimentary case in which the ion-acoustic 
wave is subject to viscous damping. In principle, the preceding 
analysis applies also to this case; however, the second of 
Eqs. (14) shouldread v2 = vb sin2 $.The consequences of this 
modified angular dependence for the one-dimensional model 
described herein are profound: First, forward SBS is abso- 
lutely unslable for arbitrary laser intensity. Second, even if the 
laser intensity is low enough that sideward and backward SBS 
are not absolutely unstable, the convective saturation time for 
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Electron density 

PI392 Electron temperature 
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Figure 60.21 
Characteristics of the convective saturation time of SBS [Eq. (4011. (a) The 

saturation time, normalized to the transit time of the ion-acoustic wave, is 
plotted as a function of the background electron density, in units of 1019/cm3, 
for an electron temperature of I keV. (b) The saturation time. normalized to 
the transit time of the ion-acoustic wave. is plotted as a function of the electron 
temperature, in keV, for a background electron density of 1019/cm3. In both 

cases the ratio of the ion and electron temperatures is 0.1, and the laser 
intensity is 5 x 1014 WIcm2. 

sideward SBS is likely to be comparable to the temporal 
pulsewidth of the laser. In both cases a transient two-dimen- 
sional analysis of S B S ~ ~  is required. 

angle: Forward SBS always occurs in the transient regime, 
and the intensity of the scattered light is less than that predicted 
by a steady-state analysis. In particular, no light is emitted in 
the direction parallel to the wave vector of the incident wave. 
Thus, the commonly held belief that backward SBS should 
dominate experiments involving long-scale-length plasmas 
is correct, but for reasons other than that on which it was 
originally based. 

Finally, although the analysis of this article was directed at 
SBS, Eqs. (7) apply to other parametric instabilities such as 
stimulated Raman scattering (SRS). Thus, subject to the con- 
straints described in the previous section, the main analytical 
results of this article should be valid for SRS. 
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Appendix: Green-Function Analysis of SBS in an 
Infinite Plasma 

The wave amplitudes B, and B2 defined in the section on 
governing equations evolve according to the equations 

(d, +vldX +V!)B~ = yoB2 +Sl(x,t) ,  

(Al )  

(a, - v2ds + v2)B2 = YOBl + S2(x, t), 

where SI and S2 are phenomenological source terms that 
model the way in which SBS is initiated. Equations (Al) can 
be rewritten in the matrix form 

Summary where 
The angular dependence of stimulated Brillouin scattering 

(SBS) in afinite homogeneous plasma was studied. For param- 
eters typical of current ICF experiments, the initial evolution I (A3) 
of SBS is well approximated by a one-dimensional model. In -Yo (3, - v 2 d x  + v2)  

the context of this model, the threshold intensity of the abso- 
lute instability and the steady-state spatial growth rate of the and 
convective instability are both independent of the scattering 
angle. However, the saturation time of the convective instabil- Bl (x, t )  Sl(% t ) 
ity exhibits a strong inverse dependence on the scattering B =  B2 (x, t )  j, S = [  I. (A4) S2 (x. t) 
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ANGUUR DEPENDENCE OF STIMUUTED BRILLOUIN SCA~TERING 

The Green matrix from (5,q) to (x,t), one can rewrite Eq. (A6) as 

satisfies the related equation 

LG = D ,  

where where 

p + a J  -y I[;; 
Y (a, +a,) 

Y = yol(v1 +v2) .  
It is not difficult to verify that the solution of Eq. (A2) is 

One can eliminate the damping terms al and q by defining 

It follows f rom Eq. ( A 8 )  that  the Green function The Green matrix G(5, q) satisfies the conservative equation 
Gij ( X  - XI, t - f ' )  describes the effect on wave i at the position 
(x,t) of an impulse applied to wave j at the position (x', t ').  

It is well known that the Green functions defined by 
Eqs. (AS)-(A7) can be written in terms of modified Bessel 
functions. However, as we are unaware of any derivation of which is the simplest form of Eq. (A6). 
this result published in the plasma physics literature, a simple 
derivation is included in this appendix for the benefit of The Green functions 1(5, q )  and G21(5, q )  satisfy the 
the reader. equations 

The determination of the Green matrix is facilitated by $Eli  = ~ E 2 1 +  6(4)6(17), 3,E21 = ~ E I  I . (A16) 
rewriting Eq. (A6) in terms of the characteristic variables 

It follows from Eqs. (A16) and the theory of characteristics 

5 = x + v 2 t ,  q = v l t - x .  (A9) that El I ( ( ,  q )  and G2i (5, q )  can only be nonzero for 5 2 0 
and q 2 0.  In other words, one has to solve an initial value 
problem in the retarded time variable q on the half-space 5 2 0. 

By using these variables and the fact that A natural way to solve such a problem is by Laplace transform- 
ing in the variable 17. It is not difficult to show that 

where 

~ ( 5 ,  q ; ~ ,  t )  = vl + a2 (A1 1 )  

is the Jacobian determinant associated with the transformation 
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The Laplace transform tables of Abramowitz and stegun17 
were used to invert the Laplace transform, and the Heaviside 
step functions ~ ( 5 )  and H(q) were added to ensure that thc 
Green function equals zero for points outside the domain of 
influence of the source point. Similarly, 

Notice that GI I(<, q) is related to G21(5,  q) by the second of 
Eqs. (A16), as it must be. It follows from Eq. (A15) that - 
~ 1 2 ( 5 . 7 7 )  = E21(77,5) and c z z ( 5 , q )  =c11(%5). 

In terms of the original variables x and t, the conservative 
Green functions are 

x H ( X  + v2t)H(nl t  - x ) ,  (A19) 

x H ( X  + v 2 t ) H ( v l t  - X )  + S ( X  + v2 t )H(n l t  - x ) .  

According to Eq. (A14). the dissipative Green functions are 
related to the conservative Green functions by 

- 
GU (x, t )  = G i j  (x, t )  exp . (A20) 

REFERENCES 

I. J. F. Drake et al., Phys. Fluids 17, 778 (1974) 

2. R. S. Craxton. R. L. McCrory. and J. M. Soures. Sci. Am. 255, 68 
(1986). 

3. C. S. Liu, in Advances in Plasma Physics, edited by A. Simon and 
W. B. Thompson (Wiley, New York, 1976), Vol. 6, p. 121. 

4. A. Bers, in Basic Plasma Physics, edited by A. A. Galeev and R. N. 
Sudan, Handbook of Plasma Physics (North Holland, Amsterdam, 
1Y83), Vol. 1, p. 45 and references therein. 

5. C. J. McKinsuieandM. V. Goldman,J. Opt. Soc.Am. B 9.1778 (1992). 

6. W. L. Kmer, The Physics of Laser Plasma Interactions. Frontiers in 
Physics (Addison-Wesley, CA: 1988), Vol. 73, Chap. 8. 

7. S. Ichimaru, Basic Principles of Plasma Physics; A Statistical 
Approach. Frontiers in Physics (Benjamin, Reading. MA, 1973). 
p. 71. 

8. R. W. Boyd, K. Rzazewski, and P. Namm, Phy?. Rev. A 42. 5514 
(1990). 

9. C. J. McKinstrie, J. S. Li. R. Betti, and E. A. Williams, Paper 103;  
presented at the 23rd Annual Anomalous Conference, Wintergreen, 
VA, 21-25 June 1993. This work is being prepared for submittal to 
Physics of Plasmas. 

10. C. J. McKinstrie and A. Simon, Phys. Fluids 29, 1959 (1986) and 
references therein. 

11. C. J. McKinstrie and R. E. Giacone, Bull. Am. Phys. Soc. 37, 1440 
(1992); R. E. Giacone, C. J. McKinstrie, R. Betti, and H. Chen, Bull. 
Am. Phys. Soc. 38, 1914 (1993). 

12. D. I.. Bobroff and H. A. Haus, J. Appl. Phys. 38.390 (1967). 

13. E. A. W'illiams and R. R. McGohan, in Research Trends in Physics; 
Inertial Conjine~nent F~isinn. edited by K. A. Brueckner (American 
Institute of Physics, New York, 1992). p. 325. 

14. C. 1. McKinskrie, R. Betti.R. E. Giacone,T. Kolher, and J. S. l,i, Phys. 
Rev E 50,2182 (1994). 

15. M. R. Amin etal., Phys. Rev. Lett. 71, 81 (1993). 

16. M. R. Amin etal., Phys. Fluids B 5,  3748 (1993). 

17. M. Abramowitz and I. A. Stegun, cds., Handbook of Mathematical 
Functions (National Bureau of Standards, Washington, D.C., 1964), 
Chap. 29. 

LLE Review, Volume 60 


