CONTENTS

NDDIEE		Page
IN BRIEF		111
CONTEN	TS	v
Section 1	PROGRESS IN LASER FUSION	121
1.A	Implicit and Conservative Difference Scheme for the Fokker-Planck Equation	121
1. B	New Diagnostic Features in the Spectra of Recent Argon-Filled-Target Implosions on OMEGA	134
Section 2	ADVANCED TECHNOLOGY DEVELOPMENTS	146
2.A 2.B	Phase Conversion of Lasers with Low-Loss Distributed Phase Plates Nematic Polymer Liquid-Crystal Wave Plate for	146
2.0	High-Power Lasers at 1054 nm	157
Section 3	LASER SYSTEM REPORT	178
3.A 3.B	GDL Facilty Report The Upgrade to the OMEGA Laser System	
DURI ICA	TIONS AND CONFERENCE PRESENTATIONS	

IN BRIEF

This volume of the LLE Review, covering the period April–June 1993, contains articles on spectral features from argon-filled target implosions on OMEGA, and on the theory of an implicit difference scheme for the Fokker-Planck equation. The advanced technology section includes reports on a novel polymer liquid-crystal wave plate and a new scheme for phase conversion of the OMEGA Upgrade beams that results in greater, smoother energy deposition on fusion targets. Finally, reports on the as-designed configuration of the OMEGA Upgrade and on the newly configured glass development laser system are summarized.

Highlights of the research reported in this issue are

- The theoretical approach to a new, implicit, conservative finite-difference scheme for the Fokker-Planck equation, relating to Coulomb collisions between particles in a plasma is presented. This scheme provides an increase in computational efficiency by using time steps much larger than the thermal collision times, which simulate plasmas far from thermal equilibrium.
- Two types of target fills were used on the concluding series of OMEGA
 experiments prior to shutdown for the Upgrade: low-pressure argon
 mixed with deuterium and high-pressure argon. The results of these
 experiments are presented, showing new diagnostic features in the x-ray
 spectra produced by the implosions. The low-pressure implosions yielded

information on the peak core conditions, such as electron temperature and core density, while the high-pressure implosions yielded information on the cooler, peripheral layer of the core, such as its $\rho\Delta R$.

- A novel phase-conversion technique was developed using a Fourier grating as an optical kinoform. This technique has the advantage of providing very smooth beam profiles on a range of target planes, while avoiding the lossy sidelobes associated with two-level phase plates previously used on OMEGA.
- Liquid-crystal polarizer and wave-plate technology has been frequently reported in past LLE Reviews. This issue highlights a nematic *polymer* liquid-crystal wave-plate design for use at 1054 nm with high laser-damage threshold and potentially low cost. A single-substrate design, with very-low-cost possibility, is also presented.