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spectral range as predicted by theory. Regenerative amplifiers having variable
pulse widths have been implemented in OMEGA and GDL.. All measurements
agree well with the calculations made from that simple theory. This analysis
lends itself to many other systems such as systems with resonant reflectors,
multimirror cavities, etc. It can also be used for an injected pulse having an
arbitrary temporal profile or phase modulation.
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Shaping of Nanosecond Linearly Chirped Pulses

The importance of detailed laser pulse shapes in optical communications,
ultrafast spectroscopy, and laser fusion has seen increasing recognition recently.
Pulse shaping has traditionally been difficult to perform, and no approach has
been entirely successful in achieving the goals of fast rise time, flexibility,
stability, and contrast. Laser pulses have been shaped by performing techniques
in time domain, frequency domain, or in a combination thereof.! Time-domain
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puise-shaping techniques, whichinclude gain saturation (or saturable absorption),
acousto-optic, and electro-optic techniques, have been proposed for certain
temporal modulations. Frequency-domain pulse shaping,>'!
plished by using diffraction gratings, has the capability of producing a wide
range of picosecond and femtosecond pulse shapes and has been used in both
optical communications and uitrafast spectroscopy.

which is accom-

Inlaserinertial-confinement fusion, relatively long pulses with detailed pulse
shapes are required to influence the fusion capsule’s implosion dynamics.!2
Useful pulsc-shaping techniques should be able to provide both nanosecond
pulses and flexible pulse shapes. Time-domain, electro-optical pulse-shaping
techniques, which have long been studied, have difficulty achieving 100-ps
response times and accurately controlled flexible pulse shapes. Frequency-
domain pulse-shaping techniques (well known for their flexibility) therefore
become the candidates for laser-fusion technological research.

Frequency-domain pulse shaping, however, is usually applied to ultrashort
pulses where their relatively broad bandwidths allow for easy separation of
the frequency components of the laser beam within a reasonable distance
(=1 m)>~!" In laser fusion, because of other requirements such as beam
smoothing'? and frequency conversion,'* the laser bandwidth must often be
carefully limited. The difficulty of stretching and shaping a narrow-band,
~60-ps laser pulse from a mode-locked oscillator to ~10 ns has limited the
application of spectral pulse-shaping techniques in laser fusion.* Skupsky ez al.
recently proposed a spectral-beam-deflection, pulse-shaping scheme using an
electro-optical device to encode the taser beam with phase-modulated bandwidth
for spectral pulse shaping.' The advantage of this scheme is that afier pulse
shaping the laser beam can be sent into an inverse electro-optical device to
remove the encoded phase modulation and narrow the bandwidth. This scheme
would reduce the bandwidth concern of using spectral pulse shaping in laser
fusion. However, appropriate electro-optical devices are not yet available for use
in this application.

This article reports on the stretching and shaping of nanosecond linearly
chirped pulses using an all-optical, passive, two-grating pulse-shaping
system.?~7 We focus on the temporal response of a linearly chirped pulse shaped
by aunit-step spectral mask (a sharp edge at the spectral plane). The rise time is
studied as a function of the laser bandwidth, frequency chirp, and the spectral
resolution of the pulse-shaping system. We have also designed a lens system
placed inside the two-grating pulse-shaping system to provide the large effective
grating scparation and control the spectral resolution for the shaping and
stretching of narrow-band pulses. Laser pulses are originaily generated from an
Nd: YLF mode-locked osciliator. A single-mode optical fiber is used to produce
the required bandwidth. These pulses are then sent to the passive two-grating
system for siretching and shaping. The benefit of the passive pulse-shaping
system is its simplicity, flexibility, and reproducibility. The band width concern,
associated with very fast rise-time applications, can be solved by using Skupsky’s
scheme! once the active electro-optical device is available for bandwidth
generation and reduction.
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Basic Equations

The fundamental frequency-domain pulse-shaping scheme was invented by
E. B. Treacy in 1969.> Two parallel gratings were originally used for pulse
compression or expansion. This scheme was later extended for pulse shaping by
introducing a spectral mask and a retro-reflecting mirror after the grating pair.3
Figure 53.31 shows a similar scheme with the use of transmission gratings
operating in the Littrow configuration. The spectral angular dispersion
[ (= db/dM\) is generated when the laser beam passes through the first grating.
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Spectral
!: L 4 mask
E6419 Mo

Fig. 53.31
The basic pulse-shaping and stretching scheme. Two representative waves A] and A3
show the spectral dispersion and group delay.

After the dispersive laser beam propagates a distance L, its spectral angular
dispersion is cancelled by the second grating, which has the same groove spacing
as the first grating but an opposite incidence angle. The grating pair spatially
separates the frequency components of the input laser pulse. The phase and/or
amplitude of these spectral components are then modified by a spectral mask.
Upon returning through the grating pair, these modified spectral components are
recombined to form the desired pulse shape. Two representative waves A and A,
depict the spatial separation and group delay between different frequency
components. Note that the distance traveled by the A component is longer than
the distance traveled by the A, component. This produces a linearly chirped
pulse. Because of the linear relationship between frequency and time, a linearly
chirped pulse can be shaped in the frequency domain and then mapped directly
into the time domain.

The function of the two-grating pulse-shaping system showninFig. 53.31 can
be expressed by one stretching function and one spectral-filtering function. The
stretching function can be expressed as exp(ik,LB?®?) in the frequency domain,>
where ® is the frequency shift from the central frequency ®,, k. is
the wave vector at central frequency w,, L is the grating separation, and
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B = d6/dw = —(A%/21c)T describes the angular dispersion. The spectral-filter
function for this system, with a Gaussian beam of waist w,, located at the spectral
mask M(x), is?

2 e de V 7
= -2 x--—— ) : !
S(w) — j_wM(x)exp{ 2(x dmw] /uo}dx (1

For the particular pulse-shaping scheme shown in Fig. 53.31, dx/dw=PBL.If we
consider only the frequency-dependent terms, we can write the stretched and
shaped pulse as

Eou () = Ein(@)exp|ik, L 00” )5(0) , @)

where E;,(0) and E, () represent the input and output pulses in the frequency
domain, respectively. Equations (1) and (2) are well studied in pulse compression
and spectral pulse shaping. Inthis article we apply these two equations specifically
to pulses with a large frequency chirp.

Spectral pulse shaping can be represented more intuitively by using the
following three parameters: the length spanned by all frequency components
on the spectral mask Ax; the group delay At between the limiting spectral
components; and the spectral resolution N, For a laser pulse with a bandwidth
Aw = —(2mc/A?)AL passed through the grating pair as shown in Fig. 53.31, the
spatial separation of the frequency components can be understood by the simple
geometric relation

Ax =BLA® =TLAL . 3

This equation simply depicts the space-frequency relation dx/dw=pLforEq.(1).
The group delay introduced by the system (round trip) is 4Ax tan6/c,
where 0 is the grating angle in the Littrow mode. By using Eq. (3) and
B = db/dw = 2 tanb/(k.c), this group delay can be rewritten as 2k B2 LAw. For
an input chirped pulse E;,(0) =A;;(®) exp[ip;,(m)], where A;,(c) and ¢y (w) are
real functions, the total phase shift of the output shaped pulse shown in Eq. (2)
1s equal to

o) = 0y (@) + kB’ Led®

and the total group delay of the output shaped pulse becomes?

2 2
Ar= F0O) g o {iﬂ%@ + 2k0B2L}Am : (4)
dn* dm
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The spectral resolution N is related to the the parameter Ax and is defined as’
N=Ax/wy , ‘ (5)

where w, is the Gaussian beam waist at the spectral mask. It is important to note
that as the beam waist w,, approaches zero the spectral resolution approaches
infinity, and the spectral filter function S(w) approaches exactly the same shape
as the spectral mask M(x).

Unit-Step Spectral Filtering

Tounderstand the space-frequency-time relationship in spectral pulse shaping,
we focus on the case of a pulse with a large frequency chirp shaped by a sharp
edge placed at the spectral plane; that is, shaped by a unit-step spectral mask

M(x)=

{0 x < x ©

1 x>x

The spectral filter function described by Eq. (1) can be solved as’

S(w) = %{1 + erf{ﬁ [w - % xlj/[%m , (7)

where Aw is the input laser bandwidth, N is the spectral resolution, and
Aw/Ax=1/(BL) for the scheme shown in Fig. 53.31. The spectral filter function
described by Eq. (7) is a smooth curve related to the error function. For an input
pulse with a uniform spectrum across the sharp edge, the function )S(m) |2
describes the shaped power spectrum near the sharp edge. The rising edge of the
power spectrum spans a spectral width Aw/N. For the same spectral mask and the
same input pulse, the shaped pulse described by Eq. (2) can be solved as

2
Equ (1) = %exp{i[mot - Tz—zt—ﬂ{l + erf|:€i(;\ﬁ[t - %xlj/‘tr:” . ()

where erf is the complex error function and , is the central frequency of the
input laser. The time-space relation AT/Ax = [d2¢(w)/dw2]/(dx/dw) can be
obtairied by combining Eqs. (3) and (4). The phase o is defined as

2 2 2
aztan{i(ﬂj /d q)(m)}:tan_l[ 4N J 0<a< (9)

w2 \do do? AmAT

o3

Later we will show that the parameter ot is an indication of the intensity (energy)
rippling of the shaped pulse. For an input transform-limited pulse, that is,
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$in(@)=0, the phase o canbe simplified as o= tan~! (L/zp), where Lis the grating
separation and zp =k,w,2/2 is the Rayleigh range of the Gaussian beam. The two
time constants Ty, and T, in Eq. (8) are defined as

Tmin =

T = —imin_ (11

The time constant T, can be treated approximately as the rise time of the shaped
pulse, which is defined as the time required for the laser intensity to rise from
10% to 90% of its final value. (When o is small, the time constant 7, is equal to
0.95 rise time, and when o, approaches 7/2, the time constant T, is equal to 96%
of the rise time.) The time constant Ty,;, is the minimum rise time of the shaped
pulse that can be obtained from the current pulse-shaping system. It is obvious
from Eq. (11) that when the parameter o approaches /2, the rise time T,
approaches its minimum value 1,,;,. This time constant T,;;, 1s also the shortest
half pulse width (at e’ amplitude point) of a Gaussian pulse that can be obtained
by using a Gaussian spectral mask.! From Eq. (10) we know that the minimum
rise ime Ty, is proportional to the square root of the group delay per spectral
width. Therefore, for a given group delay, the minimum rise time Ty, of the
shaped pulse is determined by the input laser bandwidth Aw.

Figure 53.32 shows the unit-step-response curves of the laser intensity
IFou, (z)‘2 with different values of tan o. When the spectral resolution N is large,
the phase o approaches 1/2 (tan o — o) and the complex error function in
Eq. (8) can be expressed by Fresnel integrals.!> The temporal rippling of the
shaped pulse in this case behaves exactly like Fresnel diffraction by a semi-
infinite opaque screen. When the spectral resolution N is small, the phase o
approaches zero, and the rippling disappears at the price of slower rise time.
From Egs. (9) and (11) we know that to reduce the temporal rippling (reduce )
we need to make a compromise with the rise time 1,. When we choose o = n/4
for Eq. (8), we find that the temporal rippling can be greatly reduced while the
rise time T, does not increase significantly. This intensity response is shown
by the thick solid curve in Fig. 53.32. We thereforc apply tan o = 1 to Eq. (9)
and choose the optimal spectral resolution Nyginum for the unit-step filtering
system as

|
Noptimum =3 AmAT . (12)

The easiest way to control the spectral resolution N = Ax/w,, is to adjust the size
of the Gaussian beam waist w, on the spectral mask. Through the proper choice
of the beam size on the spectral mask one can avoid the temporal rippling on the
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Fig. 53.32

The temporal-response curves of linearly chirped pulses shaped by a unit-step spectral
mask. Limiting spectral resolution (thick solid line, tan ot = 1) can reduce the intensity
rippling but still retain a good rise time.

shaped pulse without significant degradation of the rise time. Figure 53.32 also
shows an important feature that at t = ( the laser intensity rises to one quarter of
its steady-state value and is independent of the parameter o.. This was to be
expected since half of the wavefront is obstructed by the spectral mask, the
amplitude is halved, and the intensity drops to one quarter.

To obtain square pulses, one can immediately extend the previous unit-step
spectral-filtering results to a square spectral window

M(x)= (13)

l Xl <x< ,\'2
0 else

By applying Eq. (8) at x = x| and subtracting the unit-step response at x = x,, the
normalized laser intensity becomes

2
.(14)

e(f{e_izﬁ[t—%xl]/I,}—erf{eﬂ% 2(t—%x2]/‘t,}

1
[Fauf =5

Equation (14) shows that the time scales for both leading and trailing edges of
the shaped pulse are equal to T,. As previously stated, one can adjust the spectral
resolution N and the input laser bandwidth Aw to obtain a square pulse with the
desired rise time T, but without temporal rippling.
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Schemes for Narrow-Bandwidth Pulses

Simple imaging systems caneffectively providethe required grating separation
for narrow-band pulses and at the same time control the laser-beam diffraction.
Figure 53.33 schematically shows our first pulse-stretching-and-shaping system
for narrow-band pulses, which consists of a pair of transmission gratings, a lens
system including one down-collimator and one up-collimator, a spectral mask,
and a retro-reflecting mirror. Four lenses with focal lengths f1, f5, f3. and f; form
the down-collimator and the up-collimator. Distances £, to {¢ describe the
relative location of the optical elements. The spectral angular dispersion of the
laser beam I” (= d6/dA) is generated after passing through the first grating. The
down-collimator magnifies the spectral angular dispersion from I" to MT", where
the magnification M is defined as

ME_._fl_:_f_4

. (15)
b E

The up-collimator magnifies the spatial separation of different optical frequencies
and returns the spectral angular dispersion from MT back to I'. The spectral
angular dispersion is then cancelled by the second grating, which has the same
groove spacing as the first grating but an opposite incidence angle. Two
representative frequency components, denoted as A, and A,, show the spectral

Beam
splitter fi f

Grating 1
Spectral
¢ f3 £s mask
£ i
=f, +f =f3+1fy

Effective grating separation: L=M2{3+ M(f| +f+ f3+f4) + £} + 45
E6421

Fig. 53.33
One down-collimator and one up-collimator effectively provide the required large

effective grating separation. The down-collimator magnifies the spectral angular dispersion
from I' to MT". The up-collimator magnifies the spatial separation of different optical
frequencies and returns the spectral angular dispersion from MT back to I'. The effective
grating separation is L = M203 + M(fi + /> +f3 + f3) + £1 + €5, with M = ~f/f> = ~f4/f3.
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angulardispersion and the beam-size variation. Since the distance traveled by the
h; component is longer than the distance traveled by the X, component, the
output pulse will have a linear chirp.

The imaging system between the two gratings can be described by the well-
known technique of ABCD matrices.'® The ABCD matrices are developed from
geometrical optics where an optical ray traveling a distance L is described by-

2 T

and passing though a thin lens of focal length fis described by

B‘]:[—l]/f ﬂ[ﬂ |

The variables x; and x, are the input and output transverse displacements from
the optical axis, and x;" and x," are the slopes. In this manner we can obtain the
spectral angular dispersion and the beam variation at the same time and can
further apply the Huygen's integral to obtain the physical-optics results.!” The
ABCD matrix for the first optical system is obtained by writing the matrix for
each component and distance and then multiplying. The result is

A B 1 L
= . (16)
< oyl 1)

where
L=M U3+ M(fi+fo+ i+ fa)+€,+L5 a7

is the effective grating separation. Parameters ¢, £5, and {5 represent the
distances from the first grating to the down-collimator, from the down-collimator
tothe up-collimator, and from the up-collimator to the second grating, respectively.
From Eq. (17) we know that the effective grating separation will be large if the
magnification M is large.

Our second pulse-stretching-and-shaping éystem, shown schematically in
Fig. 33.34, consists of the same optical components as the first system but with
a somewhat more complicated arrangement, where ¢; = f, > =f] + o + A,
€4 =f5 + fs. The laser beam leaving the first grating carries a spectral angular
dispersion I'. The first lens, which is placed at a distance ¢, = f; away from the
first grating, cancels the spectral angular dispersion of the laser beam and makes
all frequency components parallel to each other. Once these parallel frequency
components pass the second lens (f>) the spectral angular dispersion of the laser
beam becomes MT" and is independent of the second lens position. We place the
second lens at a distance ¢, =f; + f, + Aaway from the first lens. The small lens
displacement A is used to control the beam diffraction and put the Gaussian beam
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waist on the spectral mask M(x). With this design the Fourier plane, which is
formed by the beam waists of all frequency components, can be moved
independently without affecting the spectral angular dispersion. The laser beam,
after propagating a distancc ¢y away from the second lens, enters into a telescope
formed by two lenses with focal lengths f; and f;. This telescope, similar to the
up-collimator in the first system, magnifies the spatial separation of different
frequency componentsand returns the spectral angular dispersion from MT back
to ™. The spectral angular dispersionis then cancelled by the second grating. The
improvement of the spectral resolution caused by the displacement of the second
lens can be understood by comparing the representative spectral components A
and A, inFigs. 53.33 and 53.34. Figure 53.34 shows a smaller Gaussian waiston
the spectral mask for each frequency component.

Beam LIAL\__ ; '
splitter fi g - N f; T4 [ Crating 2
r ! i
===l ] 1.
Grating 1 \
Spectral
%{_—L ts mask
5] ly
=fi+fH+A :f3+f4
E6422

Fig. 53.34

The second spectral pulse-shaping scheme for narrow-band pulses: £ = fi and
£2=f1+f>+ A. The second lens (f2) is moved back a distance A to put the beam waist on
the spectral mask. The spectral angular dispersion of the laser beam leaving the second
lens is magnified to MT" and is independent of the second lens position.

The ABCD matrix for the second optical system is

[A B} R )
C DII

The effective grating separation becomes

L=M2 03+ M(fi+ f3+ f3)+ {5 . (19)
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From ¢, =f} =-Mf, we know that Egs. (17)and (19) are similar. The second opti-
cal system can also provide large effective grating separation if the magnitude of
the parameter M is large. The ABCD matrix in Eq. (18) can be decomposed as

A
J1 _|:l L:|
0 1 A1
_4 i
I |

This is equivalent to a laser beam passing a lens with a focal length f;%/A and
propagating a distance L.

We now apply the Gaussian beam analysis to our spectral pulse-shaping
system as if the gratings were really separated a distance L.!” For a collimated
inputbeam, the second system can achieve significantly greater spectral resolution
than the first. The axial position of the Gaussian beam waist of each frequency
component in the second system is determined by the parameter A. To set the
Gaussian waist on the spectral mask for a collimated input laser beam, the
parameter A should be

2
2fi

2 2
P

A=

(20

where z = L + £¢ is the effective grating separation plus the distance from the
second grating to the spectral mask, and z = k,w,?/2 is the Rayleigh range of
the Gaussian beam near the spectral mask. Equation (20) is obtained by matching
the wavefront radius of curvature 2+ :,2; / z (see Ref. 16) to the overall focal
length of the system f; /A |Eq. (18)]. The relation between the input-beam size
w and the spot size on the spectral mask w:, can be obtained from a Gaussian
beam analysis

Wi = wo 1+ (1)

The spectral resolution of the system is limited by the laser-beam diffraction.
For an input Gaussian beam with a beam waist wy at the first grating (collimated
beam), the far-field diffraction half-angle is 8,=A/nw.'® When the laser beam
passes through the first grating, a spectral dispersion angle 8; = TAA is added to
the laser beam. To obtain the best spectral resolution we relay the Gaussian beam
waist to the spectral mask where the beam waist w, = AL/mtw| =0 ,L [the limiting
case = >> zp for Eq. (21)]. In this case the spectral resolution N = TAAL/w,
approaches its maximum

(22)
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Toincrease the speciral resolution, one needs to increase the spectral dispersion
angle 0y or decrease the diffraction angle 8. Increasing the grating angular
dispersion I and the laser bandwidth AAincreases 8. Increase of the input-beam
size w| reduces 04 The input beam size w) is limited by the diameter of the
first grating.

The system shown in Fig. 53.34 employs a novel way to obtain large group
delay and high spectral resolution for narrow-band pulses. Figure 53.35 shows
a muli-grating, folded-beam scheme in which a large group delay can be
obtained with commonly available grating sizes. Two gratings in 67.5° Littrow
mode are used as an example. The optical path traveled by the A; component
(solid line) is longer than that of the A, component (dotted line) by an amount
16 D,5in®, where D, isthe clear aperture of the second grating. For gratings with
clear aperture D, =20 cm, the optical path difference between A and 4, is about
3 m, whichis equivalent toa 10-ns group delay. This grating arrangement can be
used to replace the second grating in Fig. 53.34 to produce four-fold increase in
the group delay. The spectral resolution can also be increased by a factor of 4 by
replacing the first grating in Fig. 53.34 with the same grating arrangement as
shown in Fig. 53.35, but with an opposite incidence angle.

The pulse-shaping systems described previously can provide large group
delay and high spectral resolution for narrow-band pulses, though the pulse-
shaping ability of the system s still limited by the laser bandwidth. From the unit-

Fig. 53.35
A multi-grating, folded-beam scheme provides a large group delay with avatlable
grating sizes.
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step-response analysis we know that the fidelity of the mapping from the spectral
mask to the temporal pulse shape is determined by the minimum response time
Tmin = 2(AT/A®)'"2. High spectral resolution allows the rise time 1, to approach
the minimum response time T,,,;,. However, the laser bandwidth A®w must be large
enough, for a given group delay AT, to decrease T,;;, to the desired amount.
Experiment

The purpose of this experiment was first to show the rise time and the
flexibility of the spectral pulse-shaping technique and, secondly, to demonstrate
the feasibility of the scheme for narrow-bandwidth pulses. The experimental
setup follows the two-grating pulse-shaping scheme shown in Fig. 53.31. For
shaping narrow-band pulses, the lens system shown in Fig. 53.34 was used to
provide a large effective grating separation.

Figure 53.36 shows the details of the experimental setup for narrow-band
pulses. A cw-pumped, mode-locked, Nd:YLF oscillator generates a 76-MHz
train of ~77-ps pulses at a wavelength of 1053 nm. These pulses are coupled into
a 2-km, single-mode optical fiber to generate the required bandwidth. Because
of self-phase modulation and group-velocity dispersion occurring in the fiber,
these pulses leaving the fiber can have a pulse width up to 240 ps and abandwidth
up to 30 A, This bandwidth is wide enough for us to accurately study the
minimum rise time of the shaped pulse versus the input laser bandwidth as
described in Eq. (10). A 50% beam splitter transmits the input laser pulses and
picks up the shaped pulses, which are sent back from the two-grating pulse-
shaping system. The input laser beam, before entering the two-grating system,
is collimated to different input beam sizes for different experimental conditions.
The returned 2-mm laser beam, picked off by the beam splitter, is focused by a
200-mm focal-length lens into a 200-um pinhole before entering into the streak
camera. The spatial filtering reduces the effects of optical aberrations and ghost
reflections that cause temporal modulation because of the interference effects
from the space-to-time mapping. The time resolution of the streak camera used
to measure the shaped pulse is ~14 ps.

The two-grating system shown in Fig. 53.36 is specifically for narrow-
bandwidth pulses. Behind each grating two mirrors are used to double the
angular dispersion and the group delay. The equivalent grating position of
this folded-beam design is located midway between the two mirrors. Two
transmission gratings are operated at 67.5° Littrow configuration. Both gratings
have a 6-in. clear aperture and were holographically made using a new
interferometric scheme. '8! The focal lengths of the lenses are f) = f, = 600 mm
and f> = f; = 80 mm. For our convenience we have used positive focal lengths
/> and f3. Two turning mirrors are mounted on an optical rail and are used to
adjust the optical path length between the f, lens and the f5 lens (i.e., ¢3). The
effective grating separation L described by Eq. (19) can be easily varied by
shifting these two turning mirrors.

Whenaligning the f| lens, a retro-reflecting mirror is temporarily placed at the
back focus of the f] lens. This mirror reflects the laser beam back to the beam
splitter and the streak camera. The distance between the first grating and the f;
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Fig.53.36
Experimental setup for narrow-band pulses. BS: beam splitter; G| and G7: transmission
gratings.

lens is determined when no transverse-frequency chirp can be seen using the
streak camera. The distance between the f5 lens and the f; lens is accurately set
using shearing interferometry. The second grating angle is carefully adjusted
such that no transverse-frequency chirp can be seen using the streak camera. The
fine adjustment of the /5 lens position moves the Fourier plane to the spectral
mask. We use anadjustable aperture (iris) in front of the system’s retro-reflecting
mirroras abinary spectral window to obtain square pulses. When shaping broad-
bandwidth pulses, both the lenscs inside the grating pair and the mirrors behind
the gratings are removed, since the required grating separation is just several
meters. The two-grating system is then like the one shown in Fig. 53.31.

Simple experiments and calculations demonstrate the performance of the
spectral pulse-shaping system. Table 53.1 shows the mecasured and calculated
rise times of the stretched and shaped pulses under different frequency-chirp
conditions: AMAT =20 A/ns, S A/ns, 1 A/ns,0.61 A/ns, and 0.13 A/ns. In order
to obtain this wide range of frequency chirp it is necessary to modify the
two-grating setup in Fig. 53.36 to provide the required grating separation. For
AMAT = 20 A/ns, the lenses between the gratings and the mirrors behind each
grating in Fig. 53.36 are removed. For AMAT=5.0 A/ns, the two mirrors behind
each grating are installed to double the angular dispersion and shorten the
required grating separation. For AWAT=1.0 A/nsand 0.61 A/ns, the lens system
is placed inside the grating pair as shown in Fig. 53.36, but the two mirrors behind
each grating arc removed. For AMAT=0.13 A/ns, the experimental setup is the
same as in Fig. 53.36. The effective grating separations for the narrow-band
cases, AWAT=1.0 A/ns,0.61 A/ns, and 0.13 A/ns, are calculated from Eg. (19).
The width of the spectral window x,—xy is adjusted so that a shaped pulse width
of 1-ns (FWHM) is obtained. In each case, the spectral resolution is adjusted to
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the optimal value [Eq. (12)] by controlling the beam waist w,,. The minimum rise
time Tpp;, and the rise time T, at o = 71/4 are calculated from Eqs. (10) and (11),
respectively. Table 53.0 shows that the measured rise times are well located
between the calculated minimum risc times T,,;, and the estimated rise times T,.

Table 53.I: Measured and calculated rise times in different experimental conditions.

AMAT Measured Tin T Two-grating L Xy X w
/ e _ 27 71 0
(A/ns) nse ime (psl) (o = m/4) system (m) (mm) (mm)
(ps) (ps)
No imaging )
20 3447 34 40 No folding 4.2 38 2
No imaging
5.0 787 68 81 Folded beam 436 17 1.5
With imaging
1.0 175411 153 182 No folding 67.5 35 5
With imaging
0.61 201111 198 236 No folding Il 35 6
With imaging .
0.13 501430 424 505 Folded beam 132 20 7

E6533

Figure 53.37 shows experimental (solid lines) and calculated (dotted lines)
pulse shapes of the stretched and shaped pulses for cases (a) 20 Alns, (b)5 A/ns,
(¢) 1 A/ns, and (d) 0.13 A/ns. The theoretical curves are obtained from
numerically solving Eqgs. (1) and (2) and are further checked against Eq. (8).
The parameters L, x; — x|, andw,, used in this calculation, are listed in Table 53.L
In all cases, the rising (or trailing) edges of both theoretical curves and
experimental results are very well matched.

The intensity (energy) noisc near the peak of each experimental curve does
not randomly vary during the course of many measurements. It was found tobe
fixed and ditferent for each experimental setup. The noise is produced from
several sources. The defects on the second grating affect the diffraction efficiency
for each frequency component of the laser beam and imprint the noise on the
output-shaped pulse. This noise can be identified by moving the grating such that
the noise pattern changes as the grating moves. Also, etalon effects produced
from transmission gratings and other optics cause beat patterns on top of the
linearly chirped pulse.* Wedged optics should be used in shaping of linearly
chirped pulses. In addition, lens aberrations can change the characteristics of the
laser-beam waist on the Fourier plane and affect the shaped pulse. Thisnoise can
be reduced by spatially filtering the shaped laser beam. Each of these sources of
noise can be eliminated with higher quality optical elements.
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——- Experimental — —Calculated

Relative intensity

Relative intensity

Time (ns)

Fig. 53.37

Experimental (solid lines) and calculated (dotted lines) results of the stretched and shaped
pulses under different frequency-chirp conditions: (a) 20 A/ns, (b) 5 A/ns, (c) 1 A/ns,and
(d)0.13 A/ns. The measured rise times are (a) 34 ps, (b) 78 ps. (c) 175 ps, and (d) 501 ps.

To show the flexibility of the spectral pulse-shaping technique we present the
two shaped pulses shown in Fig. 53.38. The experimental setup is that shown in
Fig. 53.36 without modification. The experimental parameters are £.=27 m and
w, = | mm. The frequency chirpis 0.6 A/ns. These two pulses are arbitrarily
shaped using a simple binary mask in the spectral plane. The flexibility of this
technique is currently limited by the availability of masks with variable-gray
lcvels. However, from this simple demonstration we can infer that the spectral
pulse-shaping technique is capable of producing a wide range of pulse shapes.
System flexibility is important for later studies, using the OMEGA Upgrade, of
how target performance is affected by laser pulse shapes.

Conclusion

This article has reported on all optical techniques for shaping and stretching
nanosecond linearly chirped pulses. The fidelity of the mapping fromthe spectral
mask to the temporal pulse shape for a linearly chirped pulse has been shown to
be dependent on the laser bandwidth, the frequency chirp, and the spectral
resolution. Proper design of these parameters leads to fast rise times and stable,
smooth pulse shapes. A pulse-stretching scheme for narrow-band pulses was
also presented and tested in this study. This spectral pulse-shaping technique
provides the required stability, flexibility, and fast rise times necessary for laser-
fusion research. Future investigation will include the injection of shaped pulses
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into a regenerative amplifier, the generation of linearly chirped pulses from
electro-optical modulators, the use of a zero-dispersion pulse-shaping scheme,
and the deployment of a liquid-crystal, spectral-light modulator for flexible
mask generation.

0.6 A/ns 0.6 A/ns

—_ —
(=R S
T

Relative intensity

e i
(SR O N

]
0.0 : ' . . : . .

-1.5 -1.0-0500 05 1.0 1.5-15-10-0500 05 1.0 1.5
E6452 Time (ns) Time (ns)

Fig. 53.38
Simple examples of shaped pulses showing the spectral pulse-shaping technique capable
of producing awiderange of pulse shapes. The frequency chirpis 0.6 A/ns forboth cases.

ACKNOWLEDGMENT

The authors would like to thank J. Armstrong for providing the transmission gratings and
C. Kcllogg for his assistance. This work was supported by the U.S. Department of Energy Office
of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460, the
University of Rochester, and the New York State Energy Research and Development Authority. The
support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

REFERENCES
1. S. Skupsky, T. Kessler, S. Letzring, and Y.-H. Chuang, submitted to the
Journal of Applied Physics.

2. E. B. Treacy, IEEE J. Quantum Electron. 5, 454 (1969).

et

J. Desbois, F. Gires, and P. Tournois, IEEE J. Quantum Electron. 9, 213
(1973).

1. Agostinelli ef al., Appl. Opt. 18, 2500 (1979).

J. P. Heritage, A.M. Weiner, and R. N. Thurston, Opt. Lett. 10, 609 (1985).
A.M. Weiner, J. P. Heritage, and R. N. Thurston, Opt. Lett. 11, 153 (1986).
R. N. Thurston et al.. IEEE J. Quantum Electron. 22, 682 (1986).

0. E. Martinez, J. P. Gordon, and R. L. Fork, J. Opt. Soc. Am. A 1, 1003
(1984).

® = 0 ok

b

O. E. Martinez, IEEE J. Quantum Electron. 23, 59 (1987).

54



16.

17.

18.

ADYANCED TECHNOLOGY DEVELOPMENTS

O. E. Martinez, IEEE J. Quantum Electron. 24, 2530 (1988).

. A.M. Weiner et al., IEEE J. Quantum Electron. 28, 908 (1992).

LLE Review 39, 114 (1989).

. S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring, and

J. M. Soures, J. Appl. Phys. 66, 3456 (1989).
R. S. Craxton, IEEE J. Quantum Electron. 17, 1771 (1981).

Handbook of Mathematical Functions with Formulas, Graphs, and
Mathematical Tables, edited by M. Abramowitz and 1. A. Stegun (Dover,
NY, 1970), p. 301; e;f[(ﬁ 12)(1 - i)z] = (1~ 1) C(z) +iS(2)], where C(2)
and 5(z) are Fresnel integrals,

A. E.Siegman, Lasers (University Science, Mill Valley. CA, 1986), Chaps.
15-17,20, and 21.

Y.-H. Chuang, T.]. Kcssler, S. Skupsky, and D. L. Brown, submitted to the
IEEE Journal of Quantum Electronics.

J. J. Armstrong, Masters thesis, University of Rochester (1992).

LLE Review 50, 61 (1992).

35



