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l .B Damping of Ion-Acoustic Waves in the Presence 
of Electron-Ion Collisions 

The study of ion-acoustic waves in plasmas has been the subject of considerable 
interest for the past 30 Their damping rate plays an important role in 
establishing the threshold for the onset of stimulated Brillouin scattering, ion- 
temperature-gradient instability, current-driven ion-acoustic instability, and 
other drift-wave microinstabilities. In a collisionless plasma the waves are 
predominantly damped by electron Landau damping for ZT, >> Ti, and by ion 
Landau damping for ZT, - Ti (where Z is the ionic charge and T is the 

understood, and the eigenfrequencies w have been calculated for arbitrary values 
of khii (where k is the wave number and hi; is the i-i mean free path), assuming 
isothermal electrons.' Kulsrud and shen2 were among the first to calculate the 

temperature). The contribution of ion-ion (i-i) collisions to the damping is well 

effect of introducing weak e-i collisions. They solved the linearized electron 
Fokker-Planck (FP) equation by expanding the distribution function about the 
collisionless result, and showed that for khei >> 1 (where Lei is the e-i mean free 
path) electron collisions give rise to afractional reduction in the Landau damping 
rate of order (rnilZme)lkhei. This curious "undamping" effect has been attributed 
to collisional disruption of the wave-particle resonance. It has since been 
confirmed by many authors using various models for the collision  erato tor.^-^ 
It has even been suggested that such an undamping effect, including possible 
instability, could be demonstrated experimentally .5 

I 

Here we present the first calculation of ion-acoustic wave damping based on I 
an analytic solution of the electron FP and cold-ion fluid equations, for arbitrary 
e-icollisionality (omitting e-e collisions). This has beenachieved by developing 
a reduced form of the FP equation with an ( o ,  k)-dependent e-i collision 
frequency. We show that the total damping rate can be accurately obtained by 
adding acollisional damping rate (arising from thermaldiffusion) toacollisionally 
reducedLandau damping rate (arising from wave-particle interaction). However, 
despite the collisional disruption of Landau damping, collisional damping itself 
prevails so that there is no net undamping of the ion-acoustic wave. In fact, as 
e-i collisions are introduced, the damping rate y rises monotonically above the 
collisionless Landau limit yL, reaches a peak at khei -(~rnt~rn~)" '  (where the I 
thermal-diffusion rate = sound-transit rate), and then decreases to zero as 
khei 4 0, as predicted by fluid theory. The undamping effect predicted by 
previous authors is found to be an artifact of the method used in the derivation 
of the dispersion relation, which in most cases involvedexpanding the distribution 
function about the collisionless limit. Huang, Chen, and ~ a s e ~ a w a ~  realized the 
problem associated with this approach and adopted the approximate method of 
splitting the electron-distribution function into collisional and collisionless 
parts. However, by failing to correctly obtain the contribution from the highly 
collisional low-velocity part, they also predicted areduction in the damping rate 
below yL.  urn,^ whoconsidered this problem in the context of strong turbulence, 
did indeed find that e-i collisions enhance the damping. However, his equations 
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were not energy and momentum conserving, so that his results were only valid 
in the weakly collisional limit (i.e., khei >> I). Recently, ~e11' investigated the 
effect of e-i collisions on sound waves over the range 0 < khei < 1 (i.e., for strong 
to intermediate collision strength) and found an enhancement in the damping 
above fluid-theory predictions for khri >0.0 1 .  He attributed this enhancement to 
a reduction in the thermal conductivity below the classical ~~itzer-  arm^ (SH) 
value. In this article we also demonstrate a reduction in the thermal conductivity, 
and by extending the results to the collisionless limit (khPi>> I )  we show lhat the 
effective thermal conductivity approaches the collisionless value calculated by 
Hammett and perkins." 

We start by assuming a homogeneous plasma where the electrons collide 
elastically with cold-fluid ions only. Therefore, we neglect e-i energy exchange 
(since m,/mi << 1): as well as i-i collisions. The effect of e-e collisions, which 
is expected to become important for low-Z plasmas, will be considered in a 
subsequent article. Adopting a perturbation of the electron-distribution function 
of the form 

where y = 7tJv and PI (p) is the lth Legendre mode, the linearized electron 
FP equation (defined in the rest frame of the ions) becomeslo 

ikv  iku, dF, - 
-iof,+-f,  - - V - - 0 ,  

3 3 ~ Z I  

and 

for 1 > 2. 

The ion velocity ui and electric field E are first order in the perturbation and 

is an equilibrium Maxwellian, where N, is the background electron number 
density and of = (T, /me)"2  is the electron thermal velocity. The collision 
operators are given by vl(z,) = v(z~)l(l+ 1 )  / 2, where 
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is the velocity-dependent e-i angular scattering collision frequency, e is the 
electron charge, and InL is the Coulomb logarithm. 

Substituting Eqs. ( 5 )  and (4) into (3) we obtain the following reduced form of 
the,fl equation, which includes all contributions from,f2,.f3, ..., 

4k%v2 3F,- I * .  
I O U ;  + 7 Ui -- - -v, fl 

15vz a~ 

This reduction has been accomplished by introducing an effective collision 
frequency vl* (z i ,  k, o )  = v, (/])[I - i o  1 vl  (v)] Hl (v, k, w), where the effect of 
higher-order Legendre modes has been embodied in the continued fraction 
H1(z1. k , o )  = I + q+, / ( I  + 1 ...), with coefficients 

0, = 4k2h2 /[(412 - 1)(12 - 1)(1 - iwl  v,)(l-  i01 v l I  and h = v l  V. 11 
(This method of incorporating higher-order Legendre modes has also been 
successfully applied to the study of thermal filamentation.)] For the present 
analysis of low-frequency waves, setting o = 0 in v* (which leads to a purely 
real v*) has been found to havc a negligible effect on the results. The continued 
fraction converges for all finite kk, though a large number of terms are required 
as kh increases. 

The linearized cold-ion continuity and momentum equations are 

3 where R,, = (4nm, I3) l  din?- v/i is the i-e momentum exchange rate, n, is the 
perturbed ion number density, and N, is ~ t s  background value. Inserting Eqs. (2) 
and (3a) into (6) and (7) and assuming quasi-neutrality (i.e., Zn, = 4 x 1  d ~ i z ~ ~ , f ~  ) 

we obtain the dispersion relation 

where c, = ( ~ ~ , l r n ; ) " ~  is the isothermal sound speed, 



Fig. 52.9 
Plots of damping rate of ion-acoustic waves 
ylkc, as a function of kh,,, where c,, is the iso- 
thermal sound speed, k is the perturbation wave 
number. and A,; is the electron-ion mean free 
path. The solid curve refers to the current FP 
results: dashed curves refer to models of 
(a) Durn, (b) Kulsrud and Shen, (c)  Bell. 
(d) collisionally reduced Landau damping, and 
(e) fluid equations. The arrow on the right-hand 
side corresponds to the Landau damping 
rate M/kc., Circles are obtained by adding 
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V = 0 I U, , g = i(i,, l o , )  l(kh,) is a collisionality parameter, up  = w l  k is  the 
phase velocity, and h ,  = k(z?,) is the e-i scattering mean free path. 

Equation (8) has been solved for w = w, -iy, and the normalized 
ion-acoustic damping rate ylkc, is plotted in Fig. 52.9 (solid curve) as a 
func t ion  of khf i ,  f o r  A = 2 2  [whe re  A i s  t he  a tomic  mass  and  
1,; = 3 q 2  1 4(2n)]12 N , ~  In A = 3(7c 1 2)'12 A, 1. Starting from the collisionless 

Landau limit y~ 1 kc ,  = (7c2me 1 8mi)112 (identified by the arrow on the right- 
hand side of the figure), we note that introducing weak collisions has the effect 
of enhancing the darnping rate (by about 0.05% for kk,,= 105). This conclusion 
is in agreement with the results based on  urn's^ model (shown by the dashed 
curve a of Fig. 52.9). However, since he neglected compressional heating [third 
term on the left-hand side of Eq. ( 2 ) ]  and thc i-e momentumexchange rate [term 
R;, in Eq. (7)j, his dispersion relation becorncs w = kc ,  /G, which is valid 
only for kk,; >> 1. 

Kulsrud and ~hen's 'cold-ion damping rates are displayed as dashed curve b 
in Fig. 52.9. Their results. which imply a strong reduction in damping, followed 
by eventual wave growth (y < O), are typical of results based on small llkh,, 
expansions aboutthecollisionless limit. Their physical explanation of undamping 
is that collisions disrupt the wave-particle resonance responsible for Landau 
damping. We find, however, that although collisions inhibit Landau damping, 
collisional damping itself prevails. 

curves ( c )  and (d). Convergence required up 
to 400 tenns in 111 for thc largest value of kk,,. 
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Let us first consider the damping arising solely fromcollisions. Wedo this by 
solving the FP equation in the diffusive limit, which involves truncating the 
Legendre expansion [Eq. ( I ) ]  at 1 = I (or simply using H I  = I ) ,  and neglecting 
the-/ofi term in Eq. (3). Such an approach has been previously adopted b y ~ e 1 1 ~  
and gives rise to damping rates shown by the dashed curve c in Fig. 52.9. This 
type of damping results predominantly from electrons that diffuse across a 
distancc k-I in a time o-I. The velocity of these electrons can be estimated 
by setting v5 -3(q( in the denominator of Eq. (9) and is found to be 

Toisolate the collisionless Landau-damping mechanism, which is dominated 1 
by electrons with velocities in phase with the wake (i.e., v, - up), one would set I 

v =  0. Toinclude collisional disruption of the wave-particle interaction, we keep I 

v, for all 1 > 1 yet set v, = 0. (The latter requirement ensures that there is no 
damping from thermal diffusion.) The corresponding damping rates, as shown 
in curved in Fig. 52.9, fall below the collisionless Landau limit. 

We find that the total damping rate can be obtained by adding the previously 
described "collisional damping" and "collisionally reduced, Landau-damping" 
rates. This is shown (as circles) in Fig. 52.9 over the range I < khei < lo5, where 
we find agreement with the full FP result to better than three significant figures. 
The reason for the successful superposition of both damping processes is 
that they originatc from distinct regions in electron velocity space. This is 
illustrated by plotting contours in Figs. 52.10(a)-52.10(c) of the imaginary 
part of,f(v,,vL) (which is responsible for y) as a function of v, and 

at khCi = lo5.  Figure 52.10(a) shows the result for collisional damping only. 
The dashed curve identifies electrons traveling with a velocity v = v, = 0.07v,, 
which are the ones that can diffuse a distance -k-I in a time o-'. Since these 
dominate the collisional damping process, Im(f) has its maximum near v = v,, 
with a peak in the direction of the heat flow. Figure 52.10(b) depicts the 
distribution for the collisionally reduced, Landau-damping mechanism, with 
v ,  = 0. The electron distribution is now concentrated along the dashed line 
v, = up, where the electrons are in phase with the wave. However, unlike the 
classical collisionless case, where Im(f)is independent of vl, we find that Imv) 
is small near the origin. This is caused by strong collisional disruption of the 
wave-particlc resonance, when the collision frequency ~ ( v )  = llv3 becomes 
large. By comparing with the collisionless result (not shown), we also find a 
general broadening of the distribution about v, = up. When both damping 
processes are operative, as shown in Fig. 52.10(c), one can still clearly identify 
the distinctive features of each. 

Let us now consider the collisional regime kA,, < 1. Dashed curve e in Fig. I 



Fig. 52.10 
Normalized contour plots of the perturbed distribution function Imv) (in intervals of 0.2) as a function of u,and 
u i ,  for (a) collisional damping, (b) collisionally reduced Landau damping, and (c) full damping (for kh,, = lo5). 

electron viscosity.12 As expected, when kkei + 0, fluid and kinetic results are in 
agreement. In the fluid limit, the maximum yis  found to occur when the ratio of 
the thermal-diffusion rate to the sound-transit rate is of order unity, i.e., 

112 
2 k 2 ~ s H  13n,kc, - k3Lei(rni l ~ m , )  - 1, where KSH i s  the S H  thermal 

11 2 conductivity. When khPi(mi l b n , )  > 1, electron kinetic effects start to 
dominate and fluid theory breaks down. Associated with this breakdown is a 
reduction in the cffcctive thermal conductivity K E -ql ikTFP [where 

4 q = ( 2 ~ 7 2 ,  I 3 )  J i l u z~~  ji , and TFp = ( 4 ~ ~ 2 ,  I N,)J du(z7 13 - v2v,') f, ] relative 
to KSH, as shown by the solid curve in Fig. 52.1 l(a). This heat flow inhibition, 
first pointed out by ~ e 1 1 ~  [dashed curve in Fig. 52.1 I (a)], is a consequence of 
the decoupling between the relatively collisionless heat-carrying electrons and 
the bulk thermal-electron population. In the kdei>> 1 limit our result agrees with 
the heat-flow coefficient obtained by Hammett and perkins9 [dashed curve b in 
Fig. 52.1 1(a)] for a collisionless plasma. It should be noted that the elfective 
conductivity is actually complex overa widerange of kAei, as shown by the phase 
plot of K in Fig. 52.1 I(b). 

In summary, we have developed a simplified form of the FP equation that is 
valid for arbitrary e-i collisionality, through the introduction of a generalized 
collision frequency v*(v,k,o). We have demonstrated that the effective damping 
of a sound wave can be trcated as a linear combination of a purely collisional 
damping and a collisionally reduced Landau damping. In contrast to results in 
several published works, the introduction of e-i collisions increases the damping 
above the collisionless Landau value. 
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l'ig. 52.1 1 

Plots of (a)  JK/KSHJ and (b) arg(x) as a function of khJi,  where^ andKsH are the effective and Spitzer-Him thermal 
conductivities, respectively. The solid curve refers to the current FP results; dashed curves refer to rnudels of 
(a) Bell and (b) Hammett and Perkins. 
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