
Section 2 
ADVANCED TECHNOLOGY 
DEVELOPMENTS 

2.A Anticipated Improvement in Laser-Beam 
Uniformity Using Distributed Phase Plates with 
Quasi-Random Patterns 

Distributed phase plates (DPP'S)~,~ have been used at LLE3 to improve 
laser-irradiation uniformity on target. We will show that uniformity 
can be further improved by using DPP's where the spatial correlations 
in the pattern of phase elements have been reduced, relative to the 
correlations that would occur fortuitously in random patterns. 
Diffraction theory4 shows that the size and wavelength of the 
nonuniformity are determined by spatial correlations in the phase 
distribution of the beam. Long-wavelength nonuniformities in the 
intensity distribution, which are relatively difficult to overcome in the 
target by thermal smoothing and in the laser by, e.g., spectral 
dispersion (SSD),S result from short-length correlations in the phase 
distribution of the beam. We have constructed DPP patterns with 
smaller short-range correlations than would occur randomly. 
Calculations show that if variations in the intrinsic phase error of a 
beam over short distances in the aperture plane are sufficiently small, 
then a "reduced-correlation" DPP will produce a net phase distribution 
with correlations over these separations that are also less than would 
occur randomly. As a result, the long-wavelength nonuniformities in 
single-beam intensity patterns can be reduced with these masks. We 
will show how the degree of improvement depends on the intrinsic 
phase error of the beam. We will also show the effect of this 
improvement on the uniformity of spherical illumination by multibeam 
systems. 
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A random two-level DPP is a flat, transparent plate divided into a 
large number of identical area elements, except that half of them, I 

1 
chosen at random, add a half-wave delay to the transmitted light.' At 

I 
present, the random DPP's on the OMEGA laser system, illustrated in 
Fig. 40.9, use elements shaped as regular hexagons.3 Without a DPP, 
the target is placed within the converging focused beam at the point 
on the axis where the beam illuminates a full hemisphere. This gives 
an intensity distribution on target with large, long-scale modulations 
caused by phase nonuniformities in the beam.6 With a DPP in the 
beam as shown in Fig. 40.9, the random phase distribution effectively ! 
divides the beam into beamlets that focus onto the target within an area 
determined by the diffraction limit of the individual mask element. The 
element size is chosen so that the diffraction-limited focal spot of an 
individual bearnlet matches the target diameter. As evident in Fig. 
40.10, the interference among the beamlets produces modulation that is 
much finer and much more easily smoothed in the target and in the 
laser itself, e.g., by induced spatial incoherence (ISQ7 or by SSD.5 1 

I 

k- D = 18 cm .--4 

*Phase elements are transparent 

Fig. 40.9 
DPP's in current use on the OMEGA laser system are regular arrays of 
hexagonal area elements, half of which, chosen at random, impart a half-wave 
phase delay to the passing light. 
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The functional form of the intensity distribution resulting from using 
a DPP can be expressed as the smooth, ideally uniform intensity 
distribution of the individual DPP element, multiplied by a modulating 
function of the form of a Fourier series with coefficients equal to 
values of the correlation function of the profile beam's net phase 
distribution 4(Z) after passing through the DPP. The oscillations of 
the modulation function account for the beam nonuniformity, so the 
uniformity can be improved if the correlation function can be reduced. 
If the intrinsic phase error of the beam is sufficiently constant over a 
given distance in the near-field plane, then correlations in the net phase 
over this distance can be reduced by altering the correlation properties 
of the DPP. The critical limitation is the phase error in the beam. If it 
is large, compared with about a quarter wave over a given scale 
length, then the correlation properties of the DPP over that scale 
length will be overwhelmed by the intrinsic phase distribution of the 
beam. 

The relationship between the nonuniformity of the focused 
illumination and the correlation properties of the net phase distribution 
of the beam can be obtained from the Fraunhofer equation for the 
diffraction of a signal field U(<) of total energy E per unit time and 
wavelength h irradiating an aperture of area A, 

where W(x') is the amplitude distribution in the aperture plane, 
normalized so that 

and where @(x') is the sum of the intrinsic phase distribution of the 
beam plus the phase added by the DPP.4 The vector x' is a point in the 
aperture plane, < is the wave vector of the diffracted signal, and R is 
the distance from the aperture plane to the image plane. The amplitude 
distribution W(x') is zero everywhere outside the illuminated portion of 
the aperture. 

Dividing the aperture into N identical elements of area a = AIN, Eq. 
( 1  a) becomes 

where it is assumed that the amplitude weight and the intrinsic phase 
error of the beam vary slo-wly enough to be considered constant over 
each element. The vector ( is the position within an element, relative 
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to 5, the position (e.g., centroid) of the j h  element. The intensity 
calculated from this expression is of the form 

where 

The form is that of the diffraction-limited intensity distribution of the 
individual element, I,(q ) , modulated by the function 

where 

N 

which is of the form of a Fourier series with coefficients given by the 
correlation function C ( A i )  of the phase distribution 4(Z). The 
summation in Eq. (3c) is taken over all vectors in the set S = (Ai .  1, 
the set of all distinct inter-element displacement vectors, AjSjk =xi - 
Zk. From Eq. (3d), it is clear that reducing spatial correlations in the 
net phase distribution will reduce the modulation of the focused 
intensity distribution. Even though Eqs. (3a)-(3d) are general enough 
to include a nonuniform amplitude distribution in the incident beam, a 
uniform distribution will be assumed in all computed examples to 
follow. To a good degree of accuracy, this is consistent with what has 
been achieved.6 

The form of the intensity distribution and the modulation function is 
clearer in the one-dimensional case. For a DPP of length L with N 
elements, the intensity distribution takes the form 

where the smooth profile 

is modulated by the function 

G(p)  = 1 + L [g, cos 2nB + hn sin 2nO] , (4c) 
i I 
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where the diffraction angle p is given by 

For the case of a plane wave incident on a DPP, the intrinsic phase 
error of the beam is zero, so +(%) = the intrinsic phase alone, 
which is 0 or T ,  and one obtains h, = 0 and 

N-n 

If the phases of the DPP elements 14,) are chosen at random, then this 
quantity generally follows the root-N statistics of accumulated 
random steps,8 

but smaller values can be obtained if the DPP element phases are 
chosen appropriately. 

Construction of a reduced-correlation pattern proceeds by settlng the 
phase of each element, one at a time, to the value that minimizes a 
predefined measure of correlation among all the previously defined 
elements. The construction begins from a small (e.g., 2 X 2) seed 
array. The correlation measure to be minimized is the square of the 
correlation function of all the defined elements, summed over the 
domain of correlation reduction, which can be any subset of [AZJk], 
the set of interelement displacements. One such measure is given by 

n = l  

2 G n =  ]c(ai)l2 . 
AXES, 

The summation in this expression is taken over ! 
where 

the subset of all distinct displacement vectors that fall within the 
specified range of length. Equation (7b) is evaluated only in terms of 
the defined pattern elements. The parameter no defines the domain, or 
"range," of correlation reduction expressed in units of the period of the 
DPP pattern's underlying lattice. The quantity G, is a direction 
average of the autocorrelation function over a unit range of 
separations. For this criterion, then, the domain of correlation 
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reduction is the set of all separations, up to no "elements" or array 
spacings. In the case of the one-dimensional DPP, we have G, = g,, 
and this criterion reduces to that of minimizing the quantity 

If the choice of phase for an element is indeterminate, then the setting 
is made that tends to equalize the number of elements among the 
possible choices. The patterns we obtain are completely random in 
appearance, but they are not random because their correlation 
properties are not those of random patterns. 

Iso-Intensity Contour Comparison 

Pre-Aberrated Test Beam Phase-Converted Beam 

Fig. 40.10 
The phase redistribution by a DPP converts a beam that can produce, at best, a 
coarsely modulated illumination pattern into a beam whose focused illumination 
pattern has the form of a high-intensity, short-scale structure superimposed upon 
a smooth diffraction-limited distribution of a single element. 

This construction method is easily generalized to any regular array 
of a single equilateral or stretched shape that can completely tile a 
surface, such as, in the case of OMEGA,3 hexagons. Also, more than 
two phase levels can be considered,g and any domain of correlation 
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reduction can be chosen. Modulations of any wavelength and 
orientation can be reduced, as long as the corresponding set of 
correlation displacements can be identified. 

Elements need not be chosen in any particular order, other than that 
each new element should be contiguous to the previously set elements. 
This causes the choice of phase for the new element to be based on 
correlations with as many previously set elements as possible. At any 
stage in the construction, the set of defined elements should completely 
cover the area enclosed by a reasonably smooth, simple closed 
boundary. Since the correlations over the domain of correlation 
reduction are kept low throughout the construction of the pattern, as 
the area grows, the pattern has the desirable property that any piece of 
it also has reduced-correlation properties. Appropriate terminology for 
this property is "local nonredundancy" because the repetitiveness of the 
pattern found in any neighborhood in the pattern is less pronounced 
than the fortuitous repetition typical of a random pattern. Thus, one 
can expect improved uniformity, even if only a part of the DPP is 
illuminated or the illumination of the aperture is not perfectly uniform. 
In choosing possible DPP patterns, the preservation of reduced spatial 
correlations for a realistic variety of aperture illuminations can be an 
important consideration. 

Lower autocorrelation values overall are obtained if the pattern is 
constructed only within the portion of the aperture to be illuminated 
because then the phase settings of the elements are not biased by their 
correlations with irrelevant, unilluminated elements. Iterating the 
pattern construction does give a slight additional reduction in 
correlations, but since all the phase elements have been set in the first 
iteration, the figure of merit becomes the sum over the entire pattern. 
Consequently, additional reduction in the figure of merit can come at 
the cost of degrading the local nonredundancy. The benefits and 
drawbacks of iteration and adjustments in the domain of the correlation 
reduction are best considered in the context of a specific application. If 
bench tests of reduced-correlation DPP's are sufficiently encouraging, 
further optimization will be undertaken. 

To date, there has been no reported application of nonrandom 
patterns to DPP technology, so far as we are aware, but it has been 
anticipated for many years that arrays with controlled correlation 
properties would be useful in optical signal processing and pattern 
recognition.lO For example, "pseudo-noise arrays"l1 have been 
developedl2,I3 as the imaging elements in x-ray and gamma-ray 
optics.14 Construction of arrays can proceed according to number- 
theoretical methodsl0.11 as well as by choice, one element at a time, 
according to some criterion.15 In this work, we have employed 
element-by-element construction because it offers much greater 
flexibility in array shape and size and, as was discussed above, a 
tolerance for variations in which a portion of the DPP is illuminated. 
The known pseudo-noise arrays are rectangular patterns of restricted 
dimensions. They must be formed into periodic mosaics, not only to 
form masks of a desired size and arrays of a desired total dimension, 
but also because their characteristic correlation functions are defined in 
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terms of cyclic sums that apply specifically to periodic arrays, rather 
than to a single array. Some pseudo-noise arrays are characterized by 
their correlations with special decoding arrays, rather than in terms of 
autocorrelations,'2.'3 and these arrays obviollsly cannot be used in 
DPP's. Progress in relaxing dimension restrictions has been made,l3 
but the resulting arrays contain many more elements of one value than 
the other, which leads to undesirable coherent-interference effects in 
the irradiation distribution. In spite of these difficulties, the possibility 
that the existing theory of pseudo-noise arrays might lead to arrays that 
are advantageous as DPP patterns deserves attention. 

Examples of intensity distributions shown in this article are obtained 
by numerically evaluating Eqs. (1) and (3) in terms of net phase 
distributions.l6 In all cases, square DPP grids of various dimensions 
are assumed, and it will be made clear in each example whether the 
net phase includes the DPP contribution alone, or whether an assumed 
intrinsic phase error is included. In Fig. 40.11, the first example 
shows, by comparison, the effect of reducing correlations up to 
separations of 30 times the grid spacing in a DPP of dimension 
75 X 75. The aperture is the inscribed circular area of the square 
array. The intensity profile along one axis of the intensity distribution 
is shown. The smooth curve in each frame is the ideal unmodulated 
profile given by Eqs. (3a) and (3b) for the case G(3) = 1. To allow 
the long-wavelength modulations to be seen more clearly, a numerical 
smoothing over about 1% of the profile width has been applied in the 
corresponding lower frames. With short-range correlations in the DPP 
reduced, the long-scale modulations of the profile are noticeably 
smaller. 

The quantity Gn given by Eq. (7b) is a useful measure of the 
autocorrelation spectrum that can be plotted as a function of n to show 
the distribution of modulation amplitude as a function of spatial 
frequency. Roughly speaking, Gn includes spatial frequencies from 
2(n - 1) to 2n modulation periods within the central lobe of the 
profile width. Comparing plots of Gn versus n usually gives a better 
visualization of modulation reduction than comparisons of irradiation 
profiles. 

In Fig. 40.12, Gn is plotted for the phase distributions of three 
different square (40 X 40) reduced-correlation DPP's and a random 
DPP. The reductions in autocorrelation relative to the random DPP are 
clearly seen for each of the three different ranges. Here, as in every 
other instance considered, with or without background phase error, 
correlations do not increase for separations over which correlations 
were not reduced. This is very important not only because it makes 
improved uniformity possible, but it is also not necessarily the 
expected result. Since the choice of a single-element phase affects the 
autocorrelation function for all separations up to the furthest-removed 
boundary element, reducing correlations over one range of separations 
affects correlations at other separations; we are aware of no reason 
why correlations over displacements not included in the choice 
criterion are not enhanced. Fortunately, correlation reduction does not 
appear to introduce correlations at any separation that are stronger than 
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Random 75 X 75 RCM 75 X 75/30 X 30 

Smoothed 

Fig. 40.1 1 
A pair of profiles of simulated intensity distributions given by 75 x 75 DPP's illustrates the effect of 
reducing correlations at separations of up to 30 elements. The ideal unmodulated intensity profile is 
superimposed for comparison. By reducing longer-wavelength modulations, correlation reduction 
causes the modulation to follow the ideal profile more closely. The two profiles are repeated below 
with a smoothing over about 1% of the profile width to allow easier comparison of the longer- 
wavelength modulations. 
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Fig. 40.12 
The autocorrelation spectrum is plotted for 
4 different 40 x 40 patterns. Lower 
correlations are obtained up to the 
correlation-reduction range and correlations 
outside this range are not increased above 
the level for a random pattern. 

Separation (elements) 

those that typically occur in random DPP's, which suggests that 
reduced-correlation DPP's can always be expected to perform better 
than random ones. 

Correlation reduction in partially illuminated DPP's is demonstrated 
in Fig. 40.13 by comparing the autocorrelation spectra of five DPP's, 
each of dimension 20 X 20 and filling the same square aperture. The 
four patterns represented by curves (a)-(d) were all constructed with a 
correlation-reduction range of 10. Curve (a) represents a DPP array 
constructed only within the aperture. Curves (b)-(d) represent DPP's 
that are the center 20 X 20 sections of larger arrays of dimension 
30 x 30, 40 X 40, and 50 x 50, respectively. All are to be compared 
with the random DPP represented by curve (e). Sizeable fluctuations in 
the correlations are caused by the relatively small number of elements 
in the illuminated pattern. The curve for the random case is an average 
spectrum derived statistically from the square root of the number of 
element pairs that fall within each separation bin. Consequently, it 
appears smoother than the other curves. Curves (a)-(d) all show 
correlations reduced below random levels, and, as was explained 
above, the correlation reduction is distinctly better in the pattern 
constructed only within the aperture. 

An important question to consider is the degree of improvement 
obtained when the net phase distribution of the beam emerging from 
the DPP includes a typical level of phase error from the beam itself. 
The intrinsic phase distribution of the beam in the aperture plane is the 
critical limitation on the improvement in uniformity that can be 
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Fig. 40.13 
Autocorrelation sums for five different 
DPP's are plotted. The range of correlation 
reduction in each case is 10, and the 
illuminated area is the entire 20 x 20 
array. Curve (a) is derived f r ~ m  the pattern 
constructed only within the illuminated 
area. Curves (b)-(d) represent illuminated 
areas that are the center portions of larger 
patterns (30 x 30, 40 x 40, and 50 x 50, 
respectively), and curve (e) is the crude 
statistical result for a random pattern. 
While the greatest reduction of correlations 
occurs when the pattern is constructed only 
within the illuminated area, reduction is 
also obtained when only a small part of the 
aperture is illuminated. 

Separation (elements) 

obtained using reduced-correlation DPP's. For the purposes of this 
discussion, we will take the measured phase distribution of one beam 
of the OMEGA laser as typical.6 This beam was chosen in advance of 
the phase measurement for its relatively good near-field amplitude 
uniformity, which is not necessarily a predictor of good phase 
uniformity. Profiles of this phase distribution along two orthogonal 
axes are plotted in Fig. 40.14. The effect of this typical intrinsic phase 
on focused intensity distributions is shown by the examples in Fig. 
40.15. In these simulations, DPP's of dimension 75 x 75 were 
assumed, and a correlation-reduction range of ten grid spacings was 
used in the correlation-reduction case. Profiles along two orthogonal 
axes are shown. As in the bottom frames of Fig. 40.11, the profiles 
here are smoothed over about 1 % of the beam radius. Even with the 
typical phase error in the beam, the focused-intensity profiles are 
noticeably improved with a reduced-correlation DPP. 

As the intrinsic phase error of a beam is increased, the spatial- 
autocorrelation spectrum of net phase distribution begins to lose the 
nonrandom character of the DPP phase distribution. This is illustrated 
in Fig. 40.16 using a DPP pattern of dimension 100 x 100 and a 
correlation-reduction range of 30. At distances over which the intrinsic 
phase error varies by about a quarter wave, the half-wave contribution 
of the DPP to the net phase is obscured. At shorter separations where 
the phase error changes by a small fraction of a wave, the nonrandom 
correlation is left largely intact. Consequently, as the phase error is 
increased, degradation of the correlation reduction occurs first at the 
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Fig. 40.14 
The measured intrinsic phase error for a typical OMEGA beam is plotted along 
two axes of the aperture plane. 

longer separations. Correlation reduction at the shortest separations, 
those corresponding to the long-scale illumination nonuniformities, is 
least affected by the phase error of the beam. As a result, substantial I I 
improvement at these longer wavelengths is still obtained with the full 
level of typical phase error. This gives hope that improvement in long- 
wavelength uniformity might be possible in future experiments. Figure 
40.17 includes a magnified detail of the short-range autocorrelation of 
the net phase. Again, it is important to note that the contribution of the 
intrinsic phase error does not increase the correlations of the net phase 
above random levels. 

The performance of ICF targets depends on the magnitude and 
spatial-wavelength content of the irradiation nonuniformity on a 
spherical surface.17 The nonuniformity of the spherical irradiation has 
been calculated for the 24-beam distribution used on the OMEGA laser 
system in terms of a single-beam irradiance distribution, plus a random 
rotation, at the appropriate positions on a sphere representing the 
target surface. The resulting spherical-illumination pattern is 
decomposed into spherical harmonics to examine the spatial- 
wavelength content of the nonuniformity on target.'6 Two spherical- 
mode decompositions of the illumination nonuniformity obtained using 
reduced-correlation DPP's, with and without the typical phase error, 
are shown as bar graphs of the modal amplitude in Fig. 40.18. DPP's 
of 75 x 75 elements with a correlation-reduction range of 30 grid 



Fig. 40.15 
Orthogonal profiles of a simulated intensity distribution for 75 x 75 DPP's, 
including the effect of the "typicaln phase error shown in Fig. 40.14. Correlations 
have been reduced up to a range of 10. A lower level of modulation, particularly 
at longer wavelengths, is seen using the reduced-correlation DPP's. 

spacings were assumed. The improvement resulting from correlation 
reduction is seen by comparing the bar height with the solid curve, 
which represents an average of three simulations done with random 
DPP's. Improvement is obtained throughout the mode spectrum for the 
case of no phase error, while significant and repeatable improvement 
is seen only for modes up to P = 7 for the case including phase error. 
The deviation of the "random" curve from the amplitudes of higher 
modes, say P > 20, is indicative of the level of chance variations due 
to the use of differently seeded DPP's, different orientations of the 
beams, and different relative orientations of the DPP phase profile and 
the intrinsic phase distribution of the beam, all of which were varied in 
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Fig. 40.16 
The effect of phase error is seen in this 
comparison of autocorrelation functions of 
the net phase with a 100 x 100 DPP for 
various multiples of the "typical" phase- 
error distribution. Correlations in the DPP 
are reduced up to a range of 30 elements. 
As the phase error increases, correlations 
are randomized for all but the shortest 
separations. 

. : no phase error 

the simulations. The solid segments in the bar graphs are the mode 
amplitudes that would be obtained for perfect, unmodulated beams. 

To  more clearly see the potential decrease in long-scale 
nonuniformity by applying reduced-correlation DPP's to a 24-beam 
system, the root-total-square nonuniformity of the first five modes is 

t 
plotted in Fig. 40.19 in histograms of the simulations done to date. 
Again, DPP's of dimension 75 X 75 and correlation-reduction range 
30 were assumed. To facilitate comparison, separate histograms are 
shown for perfect beams [G (ij ) = 11, for reduced-correlation DPP's, 
and for random DPP's. Differences among simulations of the same 
type are explained above. The range of improvement using correlation 
reduction is comparable to the effect of a random 4%-rms beam-to- 
beam energy imbalance that was introduced 'into a few of the 
simulations indicated in order to allow comparison of correlation 
effects with a relatively well-understood source of illumination 
nonuniformity. The histograms suggest a possible distribution of 
outcomes, which gives a sense of how "lucky" or "unlucky" one might 
be with a given DPP and beam. In practice, the distribution will be 
somewhat narrower because the intrinsic phase distribution will vary 
from beam to beam, which will allow the natural random variability of 
results to average out more than in the simulations where the net phase 
profiles vary only by a random rotation. On the OMEGA system, the 
aperture, focal length, and target size require DPP arrays roughly a 
factor of 2 larger than the 75 x 75 square arrays assumed in the 
simulation, and the results could differ slightly. With an array of 
larger dimensions, a given modulation mode [e.g., a single term in 



Fig. 40.17 
This figure is a magnified detail of Fig. 0.0 
40.16 showing that correlations in the net 10 
phase are effectively randomized by the Separation (elements) 
phase error of the beam, except at the very 
shortest separations, over which differences 
in phase error are only a small fraction of 
a wave. 

Eq. (3c) or a given n term in Eq. (4c)l is produced by element pairs 
closer to each other, which results in smaller differences in intrinsic 
beam phase between element pairs and thus less disruption of the 
reduced phase correlations. On the other hand, the relative amplitude 
of this modulation mode would be reduced by the large-number 
statistics of the increased number of identically displaced element 
pairs. 

Correlation reduction represents a potentially useful complement to 
SSD. Even though correlation reduction would have a relatively small 
impact on the total nonuniformity spectrum, compared with the major 
degree of improvement from SSD,S additional reduction in 
nonuniformity would occur in the lowest-order modes of 
nonuniformity where SSD is least effective. In SSD, the reduction of 
nonuniformity results from averaging away the interference effects 
with time-varying color differences among different DPP elements. 
Since these color differences are smallest over the shortest separations, 
SSD requires the longest averaging times for smoothing the longest- 
scale nonuniformity. The reduction of phase correlations over these 
small separations would reduce long-scale nonuniformity 
instantaneously. Given the stringent .uniformity requirements and 
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Fig. 40.18 
To show the improvement in a simulated 24-beam illumination pattern resulting from correlation 
reduction, the spectrum of spherical-harmonic modes of the illumination can be compared to the solid 
curve, which represents an average of three simulations done with random DPP's. DPP's of 75 x 75 
elements were used with a correlation-reduction range of 30 elements, and cases both with and without 
phase error are shown. Improvement is obtained throughout the spectrum for the case of no phase 
error, while significant improvement is seen only for modes up to about P = 7 for the case including 
phase error. The degree of deviation of the "random" curve from the mode amplitudes in the upper 
bar graph for the higher modes, say d > 20, is not significant. Solid bars show the mode amplitudes 
obtained using perfect, unrnodulated beams. 



rms Nonuniformity (%) 
in Modes (P= 1 to P = 5) 

TC2586 

Fig. 40.19 
The consistency of improvement in the lowest modes of the simulated uniformity using reduced- 
correlation DPP's is seen in this set of histograms. Each rectangle represents one simulation. 
Simulations differ in their arbitrary initializations, the neglect of phase error (indicated by a star), or 
the addition of a 4% beam imbalance (shading). The simulations assume 24-beam illumination using 
75 X 75 DPP's and a correlation-reduction range of 30 elements. Correlation reduction typically 
reduces these modes significantly closer to the level expected for perfect, unmodulated beams. 

averaging-time limitations of high-compression experiments,l7 even a 
modest improvement of this lund could be crucial. 

Reduced-correlation DPP's could be useful in holography, the 
original intended application of DPP's.' The design of lasers with low 
phase error would not be as constrained by the need for high power as 
in ICF, and more control over illumination uniformity could be 
exercised. 

The possibility that random patterns are not optimum for DPP's is an 
intriguing question of principle. For improving the illumination 
uniformity of a focused laser beam, it is now clear that more effective 
patterns exist and that reduced-correlation patterns might lead to useful 
reductions in long-wavelength illumination nonuniformities. The 
degree of improvement in the spherical-illumination uniformity can 
range from nil to a factor-of-2 reduction in low-order modes, 
depending on the intrinsic phase error of the beam. For a typical level 
of phase error in a high-quality, high-intensity laser, such a degree of 
improvement might be possible. Reduced-correlation DPP's will cost 
no more to implement than random DPP's, and from all indications, 
they are virtually risk-free. At worst, they are effectively equivalent to 
a random mask when overwhelmed by phase error in the beam. 
Experiments now in progress will better determine the utility of these 
new patterns. 
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