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l.B Improvements in the Coefficient for Inverse 
Bremsstrahlung Laser Absorption 

Introduction 
The classical coefficient for inverse bremsstrahlung (ib) laser 
absorption is proportional to a logarithmic factor, I d i b ,  characteristic 
of Coulomb collisions. The argument Aib generally is not calculated 
exactly but rather is estimated from physical considerations.' For low- 
density plasmas (< ~@Ocm-~), lnAib is sufficiently large (> 10) that 
the error in estimating Aib should produce less than a - 10% variation 
in the logarithm, which is acceptable for most calculations. However, 
at the high plasma densities characteristic of short-wavelength laser 
irradiation (e.g., -9 x 102' cm-3 for 0.35-pm light), I d i b  is <5, 
and uncertainties in I d i b  can produce a 20% to 50% modification in 
the absorption coefficient. A more exact treatment of this term is 
presented here for the quantum-mechanical and classical limits of 
l d i b ,  corresponding to low-Z and high-Z plasmas respectively. 

For low-Z plasmas, a modified Born approximation is used to treat 
the electron-photon and electron-ion (e-i) interactions. The new 
features of the calculation are: (1) the time-dependent response of the 
plasma is modeled by including the plasma dielectric function as part 
of the Born-approximation treatment of the e-i interaction, and (2) an 
explicit treatment of ion-ion correlations replaces the usual assumption 
that the electrons scatter in an average electrostatic potential 
determined by the average positions of neighboring ions (e.g., a 
Debye-Hiickel potential). This approach recovers the frequency 
dependence of I d i b  obtained by Dawson and Oberman,2 but it does 
not contain their indeterminate quantity k,,, which results from close 
e-i collisions. Close collisions are well described by the Born 
approximation in terms of the electron deBroglie wavelength. 

The Born-approximation calculation is valid only for low-Z 
materials. For Z greater than - 10, any quantum mechanical treatment 
must include nonlinearities due to strong distortion of the electron 
wave function by the central ion, and in general a partial wave 
calculation is used. However, for the region of density and 
temperature of interest for laser absorption, the minimum-impact 
parameter for e-i collisions at high Z is no longer characterized by the 
deBroglie wavelength but by the classical-impact parameter for 90" 
scattering; thus, a quantum mechanical treatment is not required. The 
Coulomb logarithm could, in fact, be calculated using the classical 
nonlinear electron trajectory; that is the approach taken here for 
moderate-Z and high-Z plasmas. First, the logarithmic term for e-i 
scattering, I d e i ,  is calculated for an average potential; then, a 
correction term (obtained from the Born approximation) is added to 
obtain the Coulomb logarithm for inverse bremsstrahlung, I d i b .  The 
Coulomb logarithm for e-i scattering ( ldei )  in a Debye-Hiickel 
potential has been previously calculated over the quantum-mechanical 
and classical regions with the approximation Aei >> 1, appropriate 
for moderate-Z ions (Z < 25). We extend those calculations to the 
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high-Z region by including the effects of strong ion-ion correlations 
described by a nonlinear Debye-Hiickel model, which merges smoothly 
with the previous large-A results. The electron trajectory in the 
resulting electrostatic potential is calculated numerically. 

Physical Parameters and Definitions 
Inverse bremsstrahlung is the process of light absorption induced by 

electron-ion collisions. The Coulomb logarithm generally is written in 
, terms of the classical-impact parameters characterizing e-i scattering: 

where b,, is the maximum impact parameter, bf in  is the impact 
parameter for 90" scattering, and C is a number containing the 
remainder of the term, which is generally of the order of 1. For laser 
absorption, a correct calculation of lnAei should include (1) the 
response of plasma electrons to laser light in the presence of electron- 
ion scattering; (2) plasma shielding of interacting charged particles; (3) 
ion-ion correlations; and (4) nonlinear orbit dynamics or quantum- 
mechanical wave effects for close collisions. Various approximations 
have been used to determine the parameters in Eq. (1); no single 
approximation has determined all parameters self-consistently over the 
entire range of interest. (Of course, 1nA would be well defined in a 
complete quantum mechanical calculation.) 

The classical plasma calculation2 for laser absorption has determined 
b,, in terms of the plasma Debye length AD and the laser frequency 
a. Physically, these parameters play the following role. In a plasma, 
each ion is shielded by neighboring electrons and ions; for a low-Z to 
moderate-Z, high-temperature plasma the characteristic screening 
length is the Debye length 

where n, is the electron density, Te the electron temperature, the 
ion temperature, and Z the ionic charge. Typically, Te can be two to 
three times larger than Ti, as the e-i equilibration time can be much 
longer than the electron-heating time by inverse bremsstrahlung. The 
results below use Te = T, for simplification, but the modification of 
the shielding distance for unequal temperatures is straightforward. 
Often, only the electron contribution to shielding is used [i.e., Z = 0 
in Eq. (2)], which is based on the approximation of a uniform, ion 
background. But more realistic models, which include ion-ion 
correlations, show that the ion contribution to shielding can be 
dominant, as discussed below. For impact parameters much larger than 
the shielding distance, e-i scattering (and hence inverse 
bremsstrahlung) is negligible. Besides shielding, an additional factor 
enters into the determination of b,,: the electron collision time should 
not be much longer than the period of the electromagnetic wave; 
otherwise, the interaction would be almost adiabatic and very little 
energy would be transferred to the electrons. The interaction time for 
an electron with an impact parameter b is roughly blv,, where 
v, = (Te/m)1/2. Combining these two factors, the maximum impact 
parameter is approximated by 
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b ,  = min (AD, v,/w) , (3a) 

which is characteristic of the detailed classical r e s ~ l t . ~  Often only the 
high-frequency limit (low density) of the plasma calculation is quoted,' 
i.e., b ,  = via .  This is not valid near the critical density where a 
majority of the laser light is absorbed. In this region, AD more closely 
characterizes the maximum impact parameter; it is approximately a 
factor (Z+ 1)li2 smaller than viw. 

The choice of AD as the shielding length is only valid when it is 
much larger than the average-ion radius R,, defined as (4m1,/3)-~~~. 
For high-Z plasmas, AD can become smaller than R,, and strong ion- 
ion correlations must be considered for evaluating the plasma 
shielding. In this case, often the larger of R, and AD is used.3p4 This 
condition will be denoted here by an asterisk, i.e., 

b*, = rnin [max(AD,R0), v,/u] . (3b) 

The minimum impact parameter bin in Eq. (1) is left indeterminate 
in the classical-plasma calculation.2 It is often approximated by the 
impact parameter bw for 90" scattering of an electron in a Coulomb 
potential, 

bgO = ze2/rnu2 , (4) 

where v is the electron velocity. If bw is smaller than approximately 
the deBroglie wavelength, then quantum-mechanical effects must be 
considered. Typically, the quantum-mechanical "minimum-impact 
parametern is defined as5 

The parameter bin becomes 

and is evaluated here at the effective velocity given by the energy 
relation 

The region where bin = A, will be denoted here as quantum 
mechanical, and the remaining region, will be called classical. 

It is convenient to define a standard Coulomb logarithm, I d ,  to 
compare with the new results discussed below. We use 

with Eqs. (3) and (6) defining the impact parameters, and with C from 
Eq. (1) set equal to zero. We denote the classical and quantum- 
mechanical limits of A, as A, and Aq respectively. The classical limit 
of Eq.(8) is 
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which has been evaluated near the critical density n, with AD < vJw 
and with the approximation Z = Z + 1. For high density, A, is 
modified by Eq. (3b), in which the average-ion radius is used as the 
shielding distance 

In the quantum mechanical limit, Eq. (8) becomes 

where kD = l/AD. 

Boundaries characterizing the different regions are sketched in Fig. 
30.6, for Z versus T, at a plasma electron density of 9 x 1021 ~ m - ~ .  
Temperatures around 1 keV are typical of laser-irradiated plasmas. 
The boundary between the quantum-mechanical and classical regions is 
determined by the condition b90 = Aq. Except for the lowest-Z 
materials, 1nA is in the classical region and can be determined by 
classical-orbit dynamics. Even for CH (2-3) at T < 1 keV, 1nA is 
nearly classical. For moderate2 and high-Z materials, Fig. 30.6 shows 
that approximations based on a linearized Debye-Hiickel model may 
not be adequate, as AD < R,. At high Z, approximations based on 
A >> 1 are questionable. 

classical rn 

Fig. 30.6 
Different regions and parameters characterizing hi-ln(b-lb-). In the shaded region, the deBroglie 
wavelength, Eq. (5) determines b-; in the remainder b90, Eq. (4), is the appropriate minimum 
impact parameter. For Z greater than -25, the Debye length AD, Eq. (2) becomes comparable to the 
average-ion radius Ro and strong ion correlations become important in determining b-; approxirna- 
tions based on A >> 1 may become inaccurate. 
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Although the quantum-mechanical region (low Z )  is relatively small, 
it is of considerable importance because low-Z ablators are required 
for direct-drive laser fusion. In this region, an accurate expression for 
1nA can be obtained relatively simply by using the Born 
approximation. This approximation is applicable6 when the kinetic 
energy of the interacting electrons is much larger than the potential 
energy at approximately a deBroglie wavelength from the ion, i.e., 
112 mu2 > Ze21(hlmv), or, using Eqs. (5) and (7): 

corresponding to a low-Z, high-temperature plasma. (This condition is 
equivalent to b90 > X4.) As discussed later in Results, the Born 
approximation determines all parameters in the interaction: the 
classical result for b,,, is recovered in the Born approximation when 
the Coulomb potential is modified by the plasma dielectric function; 
b- is obtained in terms of the deBroglie wavelength; and C - - 1. 
Results similar to these were obtained by Cauble and Rozmus7, who 
used a modified Coulomb potential that phenomenologically accounted 
for quantum-wave effects in close electron-ion collisions. 

The Born-approximation model is applicable to laser absorption for 
CH (Z - 3), but is invalid for Si02 (Z = 10) and for higher-Z 
materials at keV temperatures characteristic of laser-plasma 
interactions. We extend the calculation of lnA into the higher-Z region 
by relating the inverse-bremsstrahlung Coulomb logarithm lnAib to the 
logarithm for electron-ion scattering, I d e i ,  in a shielded electrostatic 
potential. The Born approximation shows this relation to be 

1 1  
lllliib(B0rn) = I d e i  (Born) + - + - 0 (112) 

2 z 
near the critical density. The term 112 is the result of averaging I d i b  
over all ion positions, compared to simply using an average 
electrostatic potential (Debye-Hiickel) in the calculation of I d e i ,  as 
discussed by Hubbard and Lampe.8 Equation (12) is extrapolated into 
the high-Z region, beyond the validity of the Born approximation, 
according to 

lnAib = + [lnAib(Born) - lnAei (Born)] , (13) 

which is similar to Eq. (7) in Ref. 9. This extrapolation is probably 
the largest source of uncertainty for high Z. The term 112 makes a 
25% contribution to I d i b  for Z = 50. Using Eq. (13), I d i b  can be 
determined by calculating e-i scattering in a spherically symmetric 
potential. An expression for I d e i  that spans the quantum-mechanical 
and classical limits has been obtained by Williams and DeWitt,g for 
moderate 2. However, their results depend on the approximate solution 
by LibofPo for electrons scattering in a linearized Debye-shielded 
potential with A >> 1, and is not appropriate for high-Z plasmas. 

For high-Z materials with A less than - 10, the potential around an 
ion can no longer be described by the linearized Debye-Hiickel model, 
and stronger ion-ion correlations must be considered. Such correlations 
were examined by Cauble and Rozmus,7 but with a model that 
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produces only the quantum-mechanical minimum-impact parameter. 
This is valid only at low Z, where the strong ion correlations occur at 
very low temperatures; these conditions are not characteristic of the 
laser absorption region. In this article, strong ion-correlation effects 
are examined at the higher temperatures achieved in coronal high-Z 
plasmas. A nonlinear Debye-Hiickel (NLDH) modelllJ2 is used to 
prevent the close approach of neighboring ions, which is the main 
effect of strong correlations. The Coulomb logarithm is evaluated by 
using the classical electron trajectory in the NLDH self-consistent 
electrostatic potential. This model is convenient for considering 
electrons and ions at different temperatures, and it merges smoothly 
with the low-Z (large-A) results of Liboff for a linearized Debye- 
shielded potential. 

The starting point for the calculation is Boltzmann's equation for the 
change in the electron distribution function f due to inverse 
bremsstrahlung : 

X [W(v-Av * v) f(v-Av) - W(v*v+Av) f (v)] . (14) 

The electric field E and the two-body interaction W can take on 
different meanings according to the particular model of the laser- 
plasma interaction. Three models are considered: 

(a) The first model, by Dawson and Obermanz, treated all e-i 
scattering as a self-consistent electrostatic potential, which was 
included in E together with the laser electric field. Close two- 
body interactions were considered negligible, and the term W 
was set equal to zero. This approach is able to calculate the 
collective plasma effects but not the close e-i encounters, 
which are reflected by an indeterminate quantity k,,, in the 
effective Coulomb logarithm. 

(b) A second approach, based on the Born approximation, places 
both the laser electric field and e-i collisions into the term W, 
in terms of an inverse-bremsstrahlung transition rate, and E is 
set equal to zero. Close e-i collisions are now treated 
accurately (within the range of validity of the Born 
approximation), and the collective plasma effects of (a) are 
recovered by using the plasma dielectric function to modify the 
vacuum Coulomb potential around an ion. There are no 
indeterminate parameters in this model,l3 but its validity is 
limited to very low ionic charge. 

(c) The third model assumes that electron oscillation in the laser 
electric field does not modify e-i scattering and can be 
separated from it: the laser electric field is included in E, and 
e-i scattering (in an electrostatic potential) is in the term W. 
This model is used for high-Z plasmas. 
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Results 
1. Low z 

Two features characterize the Coulomb logarithm for laser 
absorption in low-Z materials: (1) the plasma shielding distance AD is 
sufficiently large that the wlv, contribution to b ,  can introduce an w 
dependence to A [Eq. (3a)l; and (2) the impact parameter for 90" 
electron scattering is sufficiently small that quantum-wave effects can 
contribute to bfin [Eq. (6)]. The first effect has been calculated by 
Dawson and Oberrnan.2 Both effects are simultaneously addressed by 
the Born approximation result. (A schematic of the processes 
considered in the Born approximation is shown in Fig. 30.7.) Using 
the Born approximation, with a Coulomb potential modified by the 
plasma dielectric function, we obtain 

1 
In Aib (Born) = lnAq + ln[(Z+ l)%/a] - y + - In (413) 

2 

-- Z+ ' ~Q'Q(z+~)  E , [G~I~(Z+ I)] , (15) 2 z 

where lnAq is the standard quantum-mechanical Coulomb logarithm 
defined in Eq. (9), y is Euler's constant (y = 0.577), El is the 
exponential integral, and G = wlw (where w is the local plasma 
frequency; or, in terms of the criticd density, ~f = ncln). To compare 
the Born-approximation result with Dawson and Oberman,2J4 we 
examine the two limits: (1) absorption near the critical density [G - 1 
in Eq. (15)], and (2) absorption at very low density (Z >> 1). It is the 
latter limit that is most often quoted,' but it is the former that is most 
relevant to laser-fusion experiments. 

Fig.30.7 
Schematic of the processes contributing to inverse bremsstrahlung in the Born approximation. 
Momentum transfer by the photon is neglected. 
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In the high-frequency limit (G >> 1) appropriate for low-density 
absorption, both exponential integrals in Eq. (15) approach zero, 
leaving 

(The same result has been obtained for bremsstrahlung emission15 in 
the Born approximation with h w  << T, for a pure Coulomb potential.) 
To compare with the Dawson-Oberman result lnADo the indeterminate 
quantity k,, (= llbi,) in Ref. 2 is replaced by the suggested 
quantum mechanical expression, k,, = (rn7')lI2 1 h. The difference 
from Eq. (16) is found to be I d i b  - lnADO = 0.75, representing a 
15% correction for conditions attained in short-wavelength laser 
irradiation of CH, characterized by 1nA = 5. 

For the region around the critical density (G - I ) ,  Eq. (15) reduces 
to 

I 

where we have also assumed 2'12 I G >> 1. This should be compared 
with the w << w, case of Dawson in Ref. 14, I d D ,  evaluated at 
w = w (When the effects of ion shielding are included, the results P' 
for large and small w are no longer equal at w = up as they were in 
Ref. 1, which used only electron shielding. The w << cop result is the 
one that best approximates the correct solution for w = w .) Again, 
the suggested replacement kma = (rn7')lI2 1 h was used, wid the same 
result for the difference in solutions: lnAib - lnAD = 0.75. In the 
region that dominates laser absorption, the o dependence of I d i b  is 
found to be negligible. 

Equation (17) is similar to the result obtained by Cauble and 
Rozmus7, who did not use the Born approximation but rather a 
modified Coulomb potential that approximates quantum effects at small 
distances. Their resulting Coulomb logarithm differs from the one here 
by only -0.1 for Z = 3. Cauble and Rozmus note that there is a 
substantial difference between their results (with linear, Debye-Hiickel 
ion correlations) and the Dawson-Oberman results from Ref. 2, which 
indeed did not include the ion contribution to shielding. However, if 
comparison had been made with Ref. 14 instead, where Dawson has 
removed the assumption of a random ion distribution and imposed 
Debye-Hiickel correlations, then very little difference would have been 
found (using the w << w result for the region around the critical 
density). The remaining difference could be removed by modifying the 
choice of k,,, which does not depend on ion correlations. 

The relationship between lnAib and the classical high- and low- 
frequency limits is shown in Fig. 30.8, over the density range from 
0.1 n, to n,, for a 1-keV plasma with n, = 9 x 1 0 ~ ~  ~ m - ~ .  Although 
lnADo(y << u p )  was derived for n > n,, it is evaluated here at the 
subcntical density indicated. Over this density range, where laser 
absorption predominantly occurs, lnAib is well approximated by the 
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Fig. 30.8 
The density dependence of lnAib (Born) for 
Z = 3, T = 1 keV in terms of the critical 
density n, (9 x 1021 cm-3). Compared are 
Eq. (8) for Ids ,  the Dawson and Oberman 
(DO) result2 for w > > u p ,  and Dawson's 
(D) result15 derived for w << up but 
evaluated at the w > up density indicated. 
Over the region shown, lnAib is best 
approximated by the w << up result. Only 
at densities below -0.1 n, does lnAib 
reach the w >> up result. 

u << up result. Only at densities well below 0.1 nc does lnAib 
approach the high-frequency limit. Use of the high-frequency limit 
around nc results in a - 20% error for low Z. 

2. High Z 
For high Z, where A is less than - 10, we use Eq. (13) to calculate 

lnAib from e-i scattering in an average, self-consistent, electrostatic 
potential. In this region, corresponding roughly to Z > 25, Fig. 30.6 
shows that it would be questionable to use AD as the shielding 
distance, or to use approximations dependent on A >> 1. Here we 
evaluate lnAei by numerically calculating the electron trajectory in the 
nonlinear Debye-Hiickel potential to determine the relationship 
between the impact parameter b and the scattering angle 8. The 
relation between the scattering cross section a and the Coulomb 
logarithm for e-i scattering is given by 

The dimensionless quantity 5 is defined as 

in terms of a, = (Ze 212 mu 2)2, the cross section for 180" scattering 
in a pure Coulomb potential. The first velocity moment of the 
distribution function is required for inverse bremsstrahlung. (Other e-i 
processes such as electron diffusion would require higher-order 
moments.) Using a dcos8 = b db, the double integral in Eq. (18) is 
calculated numerically, and finally, lnAib is evaluated from I d e i  using 
Eq. (13). 
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The electrostatic potential V(r) is calculated from Poisson's equation, 
without linearization: 

V2V = -4 r e  (Zni - n,) ; (20) 

n, = Z <  ni > exp(eV/ Te) ; (21) 

ni = <ni> exp(-eZV/q) ; (22) 

with the boundary conditions V(w) = 0 and V(r * 0) = Zelr. The 
Fermi-Dirac form of the electron distribution function was also used 
because n, can become large (and degenerate) near the nucleus; 
however, the degeneracy effect on 1nA was found to be insignificant 
for the conditions considered here. If Eqs. (20) through (22) are 
linearized in terms of V, the usual Debye-Huckel shielding length is 
obtained. However, linearization is not valid within the average ion- 
sphere radius R,, where V becomes large. Near the central ion, Eq. 
(22) forces the ion density of neighboring ions to rapidly approach 
zero, and only electrons remain for shielding. 

The classical trajectory for an electron scattering in an arbitrary 
potential V(r) is given by16 

where 8 is the scattering angle, @ is the impact parameter, and u is the 
inverse radius between the electron and the ion. The upper limit to the 
integral is given by the zero of the square-root factor and corresponds 
to the distance of closest approach. 

This NLDH model for the ions is valid for values of the ion-ion 
coupling parameter r (= Z 2  e 2  /ROT) less than - 1. For Z = 50, 
T = 0.5 keV and n, = 9 x lG1, we have r = 6, which suggests that 
NLDH may be only marginally applicable. To test the sensitivity of 
lnAib to the model, an alternate potential was tried: the potential was 
determined assuming a uniform electron density, which does not 
permit neighboring ions inside R,. (The NLDH model does permit a 
small amount of neighboring ions to penetrate R,.) For Z - 50, there 
was less than about a 2% difference between the models for the 
calculation of I d e i ,  and both gave values about a factor of 2 higher 
than the linearized Debye-Huckel model result. (For low Z, the NLDH 
model reproduces the linearized results of Liboff to within a few 
percent, while the uniform electron model is - 50% lower and would 
not be applicable in this region.) This suggests the applicability of 
using the NLDH model to calculate I d e i  over the entire classical 
region, at the conditions considered here. 

To test the numerical procedure, comparison was made with the 
free-free Gaunt factor calculated by Lamoureux et a1.17 They 
performed a quantum-mechanical partial-wave calculation of 
bremsstrahlung emission, produced by 1-keV electrons in a Ce 
(Z = 55) plasma at an ion density of 8.6 x l G 1  ~ m - ~ .  The Gaunt 
factor G is related to the Coulomb logarithm by G = ( ~ ~ ' ~ 1 3 )  1nA. 
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Fig. 30.9 
h i i b ,  using nonlinear Debye-Hiickel 
(NLDH) ion correlations, compared with 
the approximate of Liboff,lo lnAs of 
Eq. (9a), which uses AD as the shielding 
length, and with Ids*, which uses the 
maximum of the ion-sphere radius Ro and 
A, as the shielding length. At higher Z (or 
lower temperature), both lnAs and Liboffs 
result would become negative. The results 
are for ne = 9 x 1021 cm-3 and Te = 1 
keV. Equation (24) is a good approxima- 
tion to the NLDH results. 

Fig. 30.10 
Same as Fig. 30.9, but with Te = 0.5 
keV . 

Lamoureux et al. observe that G is relatively insensitive to the shapes 
of potentials with roughly the same range, as above. Their effective 
1nA in the soft-photon limit is 1.2. The classical model used here is in 
close agreement, predicting 1.3 for the NLDH potential. 

The NLDH results for lnAib, as a function of 2, are presented in 
Fig. 30.9 for T = 1 keV and in Fig. 30.10 for T = 0.5 keV (both are 
at the critical density 9 X 1021 ~ m - ~  for 0.35-pm light). Also shown 
in the figures are (1) I d e i ,  from Liboffs calculations, corresponding 
to the moments in Eq. (18); (2) I d , ,  defined in Eq. (9a), which uses 

4 - - 
n .- 

C In A: - - - - - _ _  
a 3 -  - - 

2 - . -- NLDH - ---_ 
Liboff . ' - - ln As 

1 - --- - - - - - 
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the Debye length AD as the shielding distance; and (3) Id ,* ,  which 
uses the average-ion radius as the shielding distance whenever it is 
larger than AD [Eq. (9b)l. We make the following observations: The 
deviation between l d ,  and I d , *  becomes apparent for Z greater than 
- 10, corresponding to the region of Ro > AD in Fig. 30.6. Both 1 d  
(Liboff) and I d ,  have the wrong functional form in this region, which 
would become negative at higher Z or lower T. Nevertheless, over the 
region shown, l d ,  is able to approximate the NLDH results to within 
- 10%. 

The often-quoted high-frequency limit of Dawson and Oberrnan is 
not shown in the figures. Effectively, it uses only electron shielding 
for b,, and is related to I d ,  by 

For Z = 50, it would be in error by about 50% compared to 
ld(NLDH) . 

The NLDH solution decreases very slowly with Z, and does not fall 
much below 2. One result of the NLDH calculation is to support the 
use of max(Ro, AD) as the effective shielding distance. The I d s *  
curve, which has this constraint, very closely follows the functional 
form of ld(NLDH) into the high-Z, low-temperature region. An 
approximation to ld(NLDH), to within a few percent, is 

In A, (NLDH) = In Af - 1.25 (24) 

for the conditions of temperature and density considered here, 
including the quantum-mechanical region. The nonlogarithmic term 
1.25 contains all the details of the calculation. It corresponds to a 
- 50% effect at high Z. 

For high Z, I d i b  is obtained by adding -0.5 to I d e i  [Eqs. (12) 
and (13)l. This attempt to reduce the effect of different ion 
configurations to an average electrostatic potential represents a 25% 
variation for Z - 50. It is probably the greatest source of uncertainty 
in the calculation, and further investigation is needed. 

Summary 
The "Coulomb logarithmn for laser absorption has been calculated 

for conditions achieved in short-wavelength laser irradiation: 
n, - and T - 1 keV. At these conditions I d i b  is < 5, 
and uncertainties in previously used models can produce variations in 
this term of 20% to 50%. 

For low-Z materials, 1 4 b  was calculated quantum mechanically 
using a modified Born approximation. Collective plasma effects were 
included by multiplying the e-i interaction term by the plasma 
dielectric function. Unlike the classical calculation,2 the "minimum 
impact parametern was well determined and, of course, related to the 
deBroglie wavelength. The effective "maximum impact parametern was 
the same as the classical result. The w dependence of was found 
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to be negligible near the critical density n, (Fig. 30.8), where 
absorption predominantly occurs. Use of the oftenquoted high- 
frequency limit of lnAib in this region can lead to a -20% error. Near 
n,, l$b is found to be closely related to I d e i ,  the Coulomb 
logarithm for electrons scattering in a shielded electrostatic potential 
around an ion; Eq. (13) was used to extrapolate that relationship 
beyond the range of validity of the Born approximation into the high-Z 
region. 

For Z greater than - 10, the minimum impact parameter is no 
longer quantum mechanical (Fig. 30.6) and is determined by the 
distance of closest approach for the classical electron trajectory around 
an ion. From the trajectory, an effective e-i Coulomb logarithm lnAei 
was calculated using Eq. (la), and Eq. (13) was then used to 
determine lnAib. To bridge the classical and quantum-mechanical 
regions, the results of Williams and DeWittg were used. For moderate- 
Z plasmas, where the approximation Aei >> 1 is applicable, a 
previously calculated expression10 was used for I d e i .  

However, at high Z, the calculation of I d e i  does not permit 
approximations based on A >> 1 or the use of AD as the shielding 
length (Fig. 30.6). We have extended the calculation into the high-Z 
region by using the NLDH model. The dominant high-Z effect is that 
neighboring ions are strongly repelled at distances smaller than the 
average-ion radius R,. The NLDH model was found to reproduce 
results for lnAei at high Z (as calculated from the uniform electron 
model), and to also merge smoothly to moderate-Z results (calculated 
by LibofPo). Use of Eq. (13) to relate the average of I d i b  over all ion 
configurations to the result obtained from an average, spherical, 
electrostatic potential is probably the greatest source of uncertainty in 
the calculation, and the resulting error requires further investigation. 

Results for lnAib are shown in Fig. 30.9 at n, = 9 x for 
T = 1 keV, and in Fig. 30.10 for T = 0.5 keV. A good fit to the 
numerical results for all Z is given by Eq. (22). The calculation 
supports the use of replacing AD by R, as the effective shielding 
distance, Eq. (3b), whenever AD < R,. The nonlogarithmic term 1.25 
in Eq. (24) represents a 50% correction at high Z. 
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