
Section 2 
PROGRESS IN LASER FUSION 

2.A Parametric Instabilities Driven by Two Pumps 
in Laser-Fusion Plasmas 

Parametric instabilities of importance to laser-plasma interactions in laser- 
fusion experiments are usually analyzed assuming only one laser beam 
(pump) drives each instability. In actual experiments, however, multiple 
laser beams may overlap in a localized region of the fusion target 
corona, where parametric instabillties may be driven by more than one 
pump. In the simplest case, shown in Fig. 26.1, three-wave instabilities 
driven by one pump become five-wave instabilities driven by two 
pumps; the angle between the pumps is 28,, the angle between the 
fixed positions of two illuminating beams. Five-wave parametric instabil- 
ities are the main subject of this article. 

To summarize the results presented here, a homogeneous plasma 
model is first used to calculate growth rates and thresholds for five-wave 
Raman scattering and for two-plasmon decay. An inhomogeneous 
plasma slab with a linear density gradient is then considered. Heuristic 
arguments indicate that two pumps driving two-plasmon decay act 
independently, resulting in two inhomogeneous three-wave instabilities, 
instead of one five-wave process. Growth rates and thresholds for 
inhomogeneous five-wave Raman sidescattering are then calculated. 
Finally, a simple model is used to predict a spectral range of enhanced 
five-wave Raman sidescatter. A peak close to the one predicted is found 
in Raman spectra observed in six-beam, 351-nm OMEGA experiments. 

Homogeneous Plasma Results 
The growth rates and thresholds for five-wave parametric instabilities 

in a homogeneous plasma can be calculated by simple generalization 
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Fig. 26.1 
Wave vector diagram for typical five-wave 
parametric instability. Two pumps k7 and 
k2 are at a fixed angle 20s The three 
daughter waves are kl, kSl, and hs2. 

of the familiar calculations of three-wave instabilities.1 The dispersion 
relation for five-wave Raman scattering producing two scattered electro- 
magnetic waves, is, for example, 

Here w, and k, are the frequency and wave vector of the longitudinal or 
plasma wave; W, is the plasma frequency; v, = (Te/me)1'2 is the 
electron thermal velocity; w, = w, - w,, where w, is the frequency of 
both pumps; k,, and ks2 are the wave vectors of the scattered electro- 
magnetic waves; and I v, I = I v, 1 = I v, 1 ,  where v, = ( -  i e E,/m,w,), 
is the electron quiver velocity, taken to be the same for both pumps. To 
obtain Eq. (I), the beating of pump 1 or 2 with scattered wave 2 or 1, 
respectively, has been neglected. This approximation is good when, 
because of Bohm-Gross dispersion, the waves produced by these beat 
interactions do not satisfy the three-wave matching conditions; for typical 
experimental parameters2 the frequency mismatch is large compared 
to the five-wave growth rate at perfect matching, and the approximation 
is well satisfied. No special coherence or phase relation between the two 
pumps is required to obtain Eq. (I), although each pump itself is 
assumed coherent. The five-wave vectors in Fig. 26.1 are assumed 
coplanar, with all electromagnetic wave polarizations perpendicular to 
their plane. This maximizes the growth rate of the instability. (If k, 
makes an angle a with respect to the plane defined by kl and k,, the 
growth rate is typically proportional to cosa.) 
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Solutions of Eq. (1) in various limits illustrate how five-wave parametric 
instability growth rates and thresholds differ from their three-wave 
counterparts. Consider Eq. (I), when one pump is perfectly matched to 
the plasma wave and corresponding electromagnetic wave. Write 
up = up + 60, and allow damping rates v,, us,, us, (for collisional or 
Landau damping) and a frequency mismatch A between the second 
pump and second scattered wave, o, = w, + (o i  + q2 c2)lh + A , 
and take 6w, v,, v,,,,, A << w,. Solutions of Eq. (1) are expressed in 
terms of the longitudinal wave vector at perfect matching, which, 
neglecting Bohm-Gross dispersion, is 

where 8 is the angle between the perfectly matched pump and k,. 

Three-wave Raman results at perfect matching are recovered from 
Eq. (1) when v, = 0. The undamped growth rate becomes 

while the threshold against damping becomes 

When v, z 0, the growth rate is maximized when both pumps are 
perfectly matched to their respective scattered waves, A = 0. This is 
easily verified by treating Eq. (1) perturbatively, expanding 6w in integral 
powers of A. The maximum growth rate is then 

when y, = y,. The ratio of five-wave to three-wave maximum Raman 
growth rates, assuming all pumps in both cases have the same 
intensity, is thus 

which is greater than 1 when 8, < n14. In this estimate 8 = 8, is 
required for perfect matching to two pumps at a fixed angle of 28,. In 
the one-pump case, 8 is unconstrained and Raman growth is maxim~zed 
at backscattering. The five-wave Raman threshold against damping, at 
perfect matching, is found to be 
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for us = usl = us2. This is a factor of 2 less than the three-wave 
threshold in Eq. (4). When the mismatch A is large compared to the 
growth rate, the matched pump acts essentially independently of the 
mismatched pump. 

For two-plasmon decay, the ratio of five- to three-wave maximum 
growth rates is just @, independent of angle. This result corresponds 
to the familiar independence of angle of the maximum growth rate for 
three-wave two-plasmon decay.3 Thus, one of the plasma wave vectors 
in the five-wave two-plasmon decay bisects the pump wave vectors, 
lying at the intersection of the hyperbolas of maximum growth for the 
three-wave decays driven by each pump. 

All the homogeneous five-wave processes considered here occur in 
the presence of a density ripple created by the beating of the two pump 
waves. This ripple has been neglected in the preceding results. 
Calculations including the ripple show that fractional changes in growth 
rates are of order (v,/v,)~, small enough to justify this approximation. 

Results in a Plasma with a Linear Density Gradient 
Consider now five-wave parametric instabilities driven by two pumps 

in a slab plasma with a linearly inhomogeneous density profile 
n(x) = no (1 + xlL). The plasma is homogeneous in the y and z 
directions. For two-plasmon decay, the two-pump process appears to 

I 
be suppressed under typical experimental conditions, and multiple 
pumps act independently, each driving three-wave decay. In the theory 
of inhomogeneous three-wave two-plasmon decay,4,5 the growth rate is 

1 
I 

maximized on the hyperbola of maximum growth for the homogeneous 
instability. Moving off the hyperbola, the inhomogeneous growth rate I 
falls off rapidly. Referring to Fig. 26.2, the maximum growth rate for the 
five-wave instability should occur when one of the three plasma 
daughter waves (k,) is at the intersection of the hyperbolas of 
maximum growth for the two pumps. Furthermore, when the parameter 

I 
i 

(where T is the electron temperature in keV, I is the pump intensity in 
1014 W/cm2, and h is the pump wavelength in microns) as for OMEGA 
experiments with 351-nm light, the one-pump growth rate is sharply 
peaked near the vertex of each hyperbola. When angles between laser- 
beam directions are significant, as in 6-beam or 24-beam spherical 
configurations, the intersection of the hyperbolas is far enough from the 
vertices that the growth rate is much smaller than the maximum or, 
typically, actually negative or damped. Thus, in Fig. 26.2, the growth 
rate for the three-wave process including k2, k;, and k, is much larger 
than, or even has the opposite sign of, the growth rate for the three- 
wave process including k,, $,, and k,. Since inhomogeneous two- 
pump thresholds and growth rates typically differ from one-pump results 
by factors of 2 and a respectively, as for the Raman results obtained 
next, the two-pump two-plasmon decay should be suppressed. 

Modifications of five-wave Raman scattering in inhomogeneous 
plasmas under realistic experimental conditions are far more significant 
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and interesting than for two-plasmon decay. Consider Raman side- 
scattering with two pumps; this process6,' is absolutely unstable in the 
radial direction, and thus dominant at densities below quarter critical. 
Since the pumps have equal wavelengths, sidescatter constrains them 
to lie symmetrically about the density gradient, as shown in Fig. 26.3. In 
general, the longitudinal wave vector k, has an arbitrary transverse 
component kty. This process can be analyzed exactly as the three- 
wave process IS in Ref. 7, where the method of analysis is explained in 
detail. 

Fig. 26.2 
Five-wave two-plasmon decay in 
inhomogeneous plasma. Three-wave 
growth rates are sharply peaked on the 
hyberbolas of maximum growth. For 
0 = 1.41 ( T ~ , , / / ~ ~  72) >> 1,  growth is 
further peaked near the vertices of the 
hyperbolas. Thus, the five-wave process, 
including decay wave kA, is weakly 
growing or damped when the three-wave 
process, including decay wave kB, is 
unstable. 

Fig. 26.3 
Two-pump inhomogeneous Raman side- 
scattering. Pumps must lie at the inter- 
section of the line of sidescatter along AB, 
and the circle I k l  I = I kp I = I k, 1 ,  
along AB. 
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In the homogeneous limit this analysis yields a dispersion relation of 
the form FH = 0, where FH is a fourth-order polynomial in k:, . Thus, 
(aFH/akey) = 0 at key = 0, and the roots of FH = 0 occur in pairs that 
are reflections of each other through the origin of the complex kpy 
plane, and are complex for I keyJ c< 1. Consequently, the instability IS 

absolute in the y direction when key = 0.8 In the inhomogeneous case, 
it is evident from symmetry that the dispersion function D must have a 
double zero at key = 0 (aDlak,, = 0 at key = O), and the necessary 
condition for absolute instability in the y direction is satisfied. Further- 
more, perfect matching to both pumps requires key = 0. For these 
reasons, the strongest Raman sidescattering is'found when key = 0. 

In this limit, growth rates and thresholds are computed as in Ref. 7. 
The dispersion relation is obtained from the Bohr-Sommerfeld eigen- 
mode condition, applied after transforming in the x direction. It is solved 
by perturbing about the homogeneous limit, expanding in the small 
parameter (koL)-'. As in the homogeneous case, the growth rate with 
two pumps is greater than that with one pump (with the same intensity 
as each of the two pumps) by a factor of & ; the instability threshold 
for vo2 is lower by a factor of 2 with two pumps than with one. These 
results are found by making a comparison with one pump whose angle 
of incidence in vacuum is O,, and taking key = 0 at the matching 
density. However, since the one-pump sidescatter process is uncon- 
strained, growth rates and thresholds comparable to the two-pump 
process can be found by varying the angle of incidence, as shown by 
Eq. (7) and Fig. 5 of Ref. 7. 

An important property of the Raman sidescattering instability consid- 
ered here is that, since it can satisfy perfect matching at only one 
density, it is spatially localized about that density. Since each density 
corresponds to a unique scattered wavelength in vacuum, this local- 
ization implies a peak in scattered wavelength. The width can be 
estimated by taking the first pump to be perfectly matched to the first 
scattered wave at each radius, and by computing the mismatch for the 
second pump. Using the homogeneous theory discussed previously as 
a guide, the two pumps should act independently when the mismatch 
becomes larger than the sidescattering growth rate y - (v,lc)wpo. 
Taking A = 27, the spectral width Ah, can be estimated for typical 
parameters; (volt) - 0, - 40°, as (Ah,/ A,,) 5 0.02 where A,, 
is the scattered wavelength at perfect matching. This estimate suggests 
that two-pump Raman sidescattering will produce a spectral peak 
corresponding to the region of matching to both pumps. 

Comparison to Experiment 
Since the spectrum of two-pump Raman sidescattering is so narrow 

in a slab model, the details of matching and spherical target-illumination 
geometry determine, in practice, the spectral peaks produced. The 
plasma frequency up,, at which matching to both pumps occurs, is 
found to be 

OPM C O S ~  e, 
( - ) =  (7) 

wo 

where 0, is the vacuum angle between each pump and the density 
gradient. Figure 26.4 is a schematic diagram of a spherical target 
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illuminated by two tangentially focused beams. Each beam is a cone 
converging on the sphere. For simplicity, only rays in the plane defined 
by the beam axes are considered. Only symmetric pairs of rays, one 
from each beam, contribute to two-pump Raman sidescattering. When 
each ray in a pair makes an angle a with its beam axis, the rays 
intersect at a geometric radius 

D f sina 
I, = 

sin@, - a) ' 

where D is the target diameter, and f is the focal ratio of the lens. 
Refraction is neglected in obtaining Eq. (8), since, typically, 
(nln,) - 10-I at r = r, where n, is the critical density. Note that 
8, = (8 - a) in Fig. 26.4. 

Fig. 26.4 
Geometry of spherical target illuminated by 
two tangentially focused beams. Beam 
axes at angle 213~ are shown as dashed 
lines. Two incident rays, shown with arrows, 
intersect at radius r ~ .  

When the density at the geometric radius r,, given by Eq. (8), 
coincides with the density required by Eq. (7) to satisfy matching, 
enhanced Raman scattering is predicted. Moving away from the region 
where these densities coincide, the scattering should be suppressed 
because, as discussed above, the instability is sharply peaked about the 
matching point. The wavelength of enhanced emission IS most easily 
found using a graphics technique, as shown in Fig. 26.5. In this figure 
two different kinds of curves of the scattered wavelength in vacuum, A,, 
versus radius normalized to target diameter, (rlD), are plotted. The first 
kind, curves A and A' ,  are plots of the actual density profile. The 
density has been expressed as the scattered wavelength A,(r) that 
would be produced by Raman scattering at that density n(r) according 
to 
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Fig. 26.5 
Determination of spectral region of 
enhanced two-pump Raman sidescattering. 
Curves A and A' are obtained from SAGE 
simulations of target density profiles for 
parameters described in text. Curve B is 
obtained from Eqs. (8) anq (9), with 
Og = 4 1 . 3 O  and cr varying from 0 to 
(YMAX = 7.13'. 

The second kind of curve, B, is a plot of A,(r) corresponding, via Eq. 
(9), to the density required for matching at each radius n,. Curve B is 
obtained by considering all possible rays in the plane of the axes of two 
illuminating beams of half angular width a,,. Thus, as a is varied from 
0 to a,,, in Eq. (8), all possible radii of intersection of pairs of rays in 
the beams are obtained. The corresponding density for each a is 
obtained from Eq. (7), with (n,/n,)" = (o,,/o,) and 0, = (8, - a). 
The intersection of curves A (or A') and B corresponds to the radius 
where the actual density and the density required for perfect matching 
are equal. Raman scattering should then be peaked at the correspon- 
ding wavelength A,,. As parameters such as 8, and a,,, vary, A,, will 
shift, and may even cease to exist if the curves no longer intersect; the 
latter possibility is interpreted as the suppression of five-wave Raman 
scattering. 

Analysis of experimentally observed Raman spectra requires realistic 
density profiles. Such profiles have been obtained from SAGE 
simulations.9 Since these simulations follow the target implosion in time, 
a time-evolving density profile n(r,t) is obtained. If the variation of n(r,t) 
over the width of the pulse is plotted, curves such as A and A' in Fig. 
26.5 are obtained. A corresponding spectral range of enhanced 
scattering, between A,, and X,, in Fig. 26.5, is then predicted. 

Spectra from OMEGA experiments with six 351-nm beams have been 
examined for the presence of two-pump Raman sidescattering, using 
the present model. Spectra were studied from shots with 82-pm- 
diameter, solid CH spherical targets, illuminated by beams tangentially 
focused eight target radii beyond the target center, with a pulse width 
of 600 ps and an average intensity of 1.8 x loi5 W/cm2. In OMEGA 



PROGRESS IN LASER FUSION 

six-beam geometry the possible half angles between two adjacent 
beams are 8, = 41.3' and 48.7'. Using the density profiles from 
SAGE simulations done with the same parameters as those of the 
experiments and a thermal flux limiter of 0.04, the curves in Fig. 26.5 
are produced when 8, = 41.3' and with a,,, = 7.13'. For 
8, = 48.7', similar curves do not intersect. Thus, a range of 
enhanced scattering is predicted between about 519 and 527 nm. 

For comparison, two time-integrated Raman emission spectra from 
two different shots are overlaid in Fig. 26.6. Although the spectra differ 
greatly at most wavelengths, a peak between about 510 and 522 nm is 
seen to persist. In contrast, no such peak is evident in spectra from 
single beam experiments, such as those on GDL.10 While the exact 
position and range of the peak differ somewhat from the values 
pred~cted by the two-pump Raman model, they are within the 
uncertainties of the experiment. The primary experimental uncertainty is 
in the pointing of the beams.11 The axes of the beams in Fig. 26.4 can 
shift by as much as 20 pm within this uncertainty - which, for an 
80-pm-diameter target, could (as seen from Fig. 26.5) account for 10-nm 
differences in the spectra. Considering, as well, the many 
approximations of the model, such as neglect of rays not in the plane 
of the beam axes, and the use of SAGE density profiles, the persistence 
of the peak provides preliminary evidence for the presence of two-pump 
Raman scattering. 

Fig. 26.6 
Raman spectra from six-beam, 35 1 -nm 
OMEGA experiments. Spectra from two 
shots made under the same conditions are 
superimposed. Solid CH spherical targets 
of diameter 82 hm, illuminated by beams 
tangentially focused at eight target radii, 
were used. Average intensity was 1.8 x 
10'5 W/cm2 and pulse width was 600 ps. 
The cross-hatched region is the approxi- 
mate peak common to both spectra. 

Discussion 
The geometrical details of the theory clearly become more 

complicated when Raman sidescattering is driven by more than two 
pumps. Qualitatively, however, it is clear that additional peaks should be 
present in the resulting spectra. The results for two pumps suggest that 
for N pumps maximum growth rates could increase by a factor of JN 
and thresholds could decrease by a factor of N, compared to one 
pump with the same intensity as each of the N. Furthermore, the results 
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obtained here suggest that, in addition to the maxima associated with 
single-pump processes, the angular pattern of Raman scattering in 
multibeam experiments will have additional well-defined maxima, 
symmetric about the points where multiple beams symmetrically overlap. 
The heuristic discussion of inhomogeneous, two-pump, two-plasmon 
decay suggests that such additional maxima will not be found in the 
emission pattern associated with that process. 

The results of this article imply that the interpretation of Raman spectra 
measured in multiple-beam direct-drive laser-fusion experiments requires 
a detailed understanding of Raman scattering driven by multiple pumps. 
Evidence indicating the occurrence of two-pump Raman scattering in 
blue, six-beam OMEGA experiments has been presented. Clearly, more 
experimental data from experiments with more beams, along with more 
detailed theory of multiple-pump instabilities in spherical geometry, will 
be required to test this interpretation. 
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