
Section 2 
PROGRESS IN LASER FUSION 

2.A Simplified Theory of Electron Heat Transport 

The kinetic theory of electron heat flow is an important topic in the study 
of laser-fusion p1asmas.l-l3 As the laser drives a heat front into the 
plasma, temperature and density profiles become so steep that charac- 
teristic scale lengths become comparable to the collisional mean free 
paths of the electrons that dominate thermal conduction. Under these 
circumstances, the classical formulation of thermal conduction,14 based 
on the random walk of electrons with mean free paths small compared 
to typical scale lengths, breaks down. The heat flow at any given radial 
position becomes dependent on the surrounding temperature and den- 
sity profiles, and can be significantly inhibited or enhanced compared 
to its classical value. Such changes in the heat flow can significantly 
alter the hydrodynamic evolution of the plasma. These changes can also 
alter the smoothing of nonuniform laser energy deposition, which occurs 
as the nonuniformities are transported in from the critical to the ablation 
surface. Finally, the kinetic theory of nonclassical transport yields a non- 
Maxwellian electron distribution that can alter significantly the growth 
rates of magnetic instabilities,l5 which may, in turn, additionally affect 
thermal transport. 

One approach to the transport problem has been to develop numeri- 
cal codes that solve the full Fokker-Planck equation (including such 
features as hydrodynamic motion, energy sources from Inverse brems- 
strahlung or resonant absorption, and energy losses from ablation). 
Because of restrictions on the time step in such codes, it has not been 
possible to use these codes to follow the hydrodynamics over realistic 
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time scales. Thus, other approaches, some predominantly analytic, 
make various simplifications in the Fokker-Planck e q ~ a t i o n ; ~ - l ~  with 
these models nonclassical heat fluxes are much more quickly obtained, 
and so may be more useful in a hydrodynamic code. One simplification, 
in particular, is to consider approximations appropriate to the behavior 
of "hot" electrons, which have velocities greater than about twice the 
average, or thermal, v e l o ~ i t y . ~ , ~ ~ ~ ~ , ~ ~  [We define the thermal velocity as 
(2T/m)lh.] Such a model is motivated by the dominant role the hot 
electrons play in determining the heat transport. Here, we present some 
new studies and applications of such a model. 

After describing our model, we consider, first of all, some of the 
questions of the self-consistency of our approximations. The model is 
then extended to three dimensions in order to study the smoothing of 
nonuniform energy deposition by electron transport. Finally, we develop 
our model heuristically to find an expression for the electron heat flux as 
a spatial convolution over nonlocal sources.16 

Kinetic Model 
The one-dimensional (1 -D) Fokker-Planck equation for the electron dis- 

tribution function f(x, v, p, t), 

is the basis for our work. Here x is the inhomogeneous dimension, 
p 3 $ - ,and  

ml 
at c 

is the collision integral.17 We analyze this equation as in the classical 
theory, expanding f in Legendre polynomials-here just the first two: 

In this form f, represents the electron number and energy desnities, 
wh~le fl represents the electron current and heat flux. Numerical work 
has s h o ~ n l , ~  that this classical approach leads to accurate heat fluxes 
even for the steepest gradients encountered. We also take the steady- 
state limit, since the electron collision times are short compared to hydro- 
dynamic time scales, and our source terms are independent of time. The 
electric field is determined by quasineutrality, which in I -D  steady state 
requires that the total current be zero, so that no charge accumulates at 
the boundaries of the plasma. Some further approximations are based 
on dividing the distribution into a small fraction of hot electrons and a 
bulk, or background, of cold electrons, which we take to obey the 
Spitzer-Harm solution. We then solve Eq. (1) for the nonclassical behavior 
of the hot electrons in the cold background. We also make the "high-Z 
approximation, neglecting electron-electron collisions in comparison with 
electron-ion collisions, wherever possible, and further neglect electron-ion 
energy exchange. 

With the preceding approximations, Eqs. (1) and (2) yield 
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and 

Here, h0v4 is the mean free path for 90° scattering of an electron of 
velocity v by the combined angular scattering effects of ions and other 
electrons. The electron-electron collision term becomes 

where T(x) is the temperature of the bulk of the electrons. The first term 
in Eq. (5) is a drag operator, representing loss of energy from the hot 
electrons to the cold background; the second term diffuses the energy 
of the hot electrons in the relatively cold but finite background tempera- 
ture. Equation (3) thus determines fo through the balance of spatial 
diffusion and energy drag and diffusion from electron-electron collisions. 
Equation (4) describes the resultant flux, balancing the gradients of fo 
with electron scattering off ions. 

We further simplify our model by neglecting the electric field in Eq. 
(3), an assumption we verify a posteriori. The electric field is also 
neglected in Eq. (4) for the hot electrons but must be retained for the 
cold electrons. 

Finally, we always make some approximation to the energy diffusion 
term in the electron-electron collision operator. This is a reasonable 
procedure when the tail of the distribution is "overfull," or overpopulated, 
regarding the Maxwellian distribution at the local temperature and 
density. The physical effect of the full electron-electron collision operator 
is then to drag the overpopulated tail down to the Maxwellian level, 
which is just what the drag operator alone tends to do. In fact, Fokker- 
Planck code results indicate that the electron distribution is overfull 
throughout most of the region where the heat flux is significant. 

Self-consistency of the Model 
For simplicity, our first treatment of the energy diffusion term is to 

neglect it. We have then solved Eq. (3), neglecting the electric field, in 
the presence of a hot electron source, 6(x) 6(v-v,) (nhlvh), which corre- 
sponds to a source flux of electrons at x = 0, of energy (mv,212), and 
whose strength is characterized by the density n,. We refer to this as 
the monokinetic solution, which is clearly of general importance. 

To check our neglect of electric field effects, we consider the ratio 

of the term neglected to that retained In our calculation. The electric field 
is computed from Eq. (4) by setting the net current caused by the hot 
particles and Spitzer-Harm cold particles equal to zero. It is then found 
that R is insensitive to the exact value taken for v,, the velocity dividing 
hot electrons from cold, provided v,2 >> v: and (V, /V~)~ >> 1, where v~ 
is the thermal velocity. R is proportional to (nhvhlnvT), which represents 
the ratio of the normal~zations of the hot-electron inward current to the 
cold-electron return current. 
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A typical plot of R is shown in Fig. 21.1 1 for vh = 3vT The value 
given for (nhvh/nvT) is based on a numerical model of a penetrating 
heat front.18 The electric field is typically found to be of negligible 
importance, compared with collisional effects, as in the figure. Only at 
much higher velocities do we find that R exceeds one. We do not, 
however, expect the transport to be sensitive to the behavior of the very 
small number of such particles [e.g., (nh/n) - for (vh/vT) - 71. 

Fig. 21.11 
Self-consistency of neglect of electric field 
in computation of hot-electron distribution. 
Ratio R of electric field term neglected to 
terms retained ~n Eqs. (3) and (4) is plotted. 
Case shown is for monokinetic solution with 
hot-electron source velocity v, = 3 v ,  
Z = 4, and (n,v,/nv,) = 3 . 3 ~  1 0 - 3  

A second issue of self-consistency is the value of (fl/fo). If (fl/fo) > 1, 
f can become negative, while for (fl/fo) > 3, the distribution would 
imply that more than all of the particles are moving in one d i r e c t i ~ n . ~ , ~  
For the monokinet~c solution, (f,/f,) is found to be proportional to 
xv4/(v;-v8). Thus, (fl/fo) becomes large at large x and v, where there 
are the fewest particles, since particles are dragged to lower energies 
as x increases. [There are no particles at v = v,, where (fl/fo) is 
singular.] Numerical computation confirms this behavior. 

Smoothing from Electron Transport 
To study smoothing, we generalize Eqs. (2)-(4) to three dimensions. 

Neglecting the electric fields, (a2/ax2) is replaced by V2 in Eq. (3), while 
(a/ax) is replaced by . V in Eq. (4), with pfl replaced by f, in Eq. (2). 
In the equation for f, we neglect magnetic fields, which can arise in 
three dimensions, as well as the electric field and the energy diffusion 
term. We also take the density to be constant, which is plausible for the 
foot, or preheat, region of a heat front. As a model for nonuniform 
energy deposition, we consider a source S(') localized at x = 0, with 
plane wave behavior in the transverse directions, and a Maxwellian 
distribution in v,S(l) = A6(x) eIkyYeikz2 exp(-v2/vE) with 
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In practice, S(I) is a small perturbation on the zero order source and 
yields a corresponding perturbation in f,, f,(l). Both f, and fJ1) are 
easily reduced to quadrature. 

With f,(l) we study the radial smoothing of the energy density, 

and of the energy deposition rate ~ ( l )  which is determined by the drag 
operator in the equation for f,, 

where z is the ion charge. (We have extended the integrals to v = 0, 
since their behavior is dominated by the high-energy contributions.) An 
analytic estimatelo of E(') indicates that a H(h(x) - x)exp(- k,x), 
where X(x) is the velocity-averaged, energy-loss mean free path and H 
is the Heaviside step function. These two factors represent the intrinsic 
smoothing of the transverse variation and the loss of energy to the cold 
background. When k,X is less than one, the smoothing factor e - k l x  
has little effect, while for k,h greater than one it is dominant. This 
behavior is approximately verified by the numerical evaluations of 
and I Q  (l)l shown in Fig. 21.12. The specific case considered is the 
same as the one in Ref. 7, i.e., the material is gold and the hot-electron 
temperature is 10 keV. The dimensionless unit of length in Fig. 21.12 
corresponds to 0.041 pm at solid density (19.5 g/cm3). From the 
figures we see the e - k l x  behavior of emerge as k, increases. The 
ratio of slopes for the straight line figures approximately corresponds to 
e-  klx behavior. Furthermore, as x increases the curves asymptotically 
approach this behavior, since h(x) increases with x as the distribution 
fJ1) becomes weighted toward higher energies. The figures of / Q(') ( 
display the same qualitative behavior as the di) figures, amplified by 
the fact that they result from higher velocity moments of the d~stribution. 

Formulation of Delocalized Heat Flow 
Returning to Eq. (3), we develop a heuristic model for nonlocal 

thermal conduction in steep temperature gradients. For this purpose the 
energy diffusion term must be retained in some form to account for the 
effect of a given temperature profile T(x). We include it by taking 

in the diffusion term. This formulation guarantees that in the limit of high 
collisionality the Spitzer-Harm limit, f, = fM, is recovered. We also 
neglect all explicit electron energy sources and sinks. We neglect the 
electric field in Eq. (3), but retain it in Eq. (4), so that we can extend the 
resulting distribution to all velocities. The resulting expression for the 
heat flux q is easily obtained from Eqs. (3)-(5). This heat flux is in the 
simple form of a convolution of sources propagated from all points 
along the heat front. 

The appropriate physical properties of the nonlocal heat-flux formula 
are easily verified. In the limit of high collisionality (or, equivalently, weak 
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Fig. 21.12 
Radial smoothing of nonuniform energy 
deposition. The perturbed hot-electron 
energy density Ei', and the perturbed hot- 
electron energy deposition rate di'~ are 
plotted for a 6-function source at x = 0. The 
unit of length is the geometric mean of the 
mean free paths and kLis the magnitude 
of the transverse k-vector of the perturba- 
tion. The k, = 0 case is identical to the 
zero-order heat transport case. At kL = 10, 
the wavelength of the perturbation com- 
pletely controls the heat penetration. 

gradients in n and T), the classical result is recovered. In the limit of an 
infinitely steep temperature gradient, a "flux-limited" heat flux is 
computed, 

1.4 

where qFs = nT(T/m)'/2 is the free-streaming heat flux. This result is 
always less than qFs and can be reduced further by including the effect 
of electron-electron collisions in Eq. (4), which leads to an additional 
factor of (Z +0.24)(2+4.2)-l; for example, q -. (0.3)qFs for z =  5. 

Summary 
We have developed a simplified electron thermal transport theory and 

have found this model to be self-consistent in some important respects. 
A simple generalization of the model to study smoothing indicates that 
transverse nonuniformities in energy density and heat flux decay as 
exp(- k,x)H(X(x) - x). Different smoothing behavior may depend on the 
inclusion of magnetic field effects on the hot particles,lg or effects of the 
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electric field on the intermediate velocity particles, which have not been 
included here. 

A heuristic generalization of our model gives the heat flux as a 
nonlocal convolution of given density and temperature prof~les. Unl~ke 
a similar published result,'' our formula is independent of any arbitrary 
or phenomenological parameters. 

Continuing work on our modelz0 includes comparison of our heat flux 
results to those of a full Fokker-Planck code. We are also increasing the 
efficiency of numerical evaluation of our formula for the heat flux; this will 
allow computation of temperature and density profiles from the time- 
dependent hydrodynamic equations. 
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