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Charged-particle radiography, most commonly with protons, and shadowgraphy are widely used in laser-plasma experiments to 
infer electric and magnetic fields and electron density, respectively. For many experiments of interest, intensity modulations due 
to absorption and scattering of the charged particles or photons can be neglected; therefore, intensity modulations are caused by 
deflections in the plasma. Deflection at the detector can then be expressed in terms of a path-integrated transverse Lorentz force 
for charged-particle radiography and a path-integrated transverse refractive index gradient for shadowgraphy. We will adopt 
the generic term deflectometry to describe both charged-particle radiography and shadowgraphy in the regime where intensity 
modulations are due principally to deflection.

A number of papers in plasma physics have used direct inversion of deflectometry data to obtain a path-integrated Lorentz 
force or refractive index gradient. These direct inversion algorithms find a minimum deflection solution where trajectories do 
not cross. Therefore, if trajectories did cross, the direct inversion may not reproduce the actual profiles. Direct inversion, how-
ever, does provide one possible solution to what is then a degenerate problem, subject to known constraints, which can be useful 
information. Most of these direct-inversion codes are publicly available.1–5 These papers concentrate on proton radiography, with 
only one explicitly considering shadowgraphy,1 and none considering the possibility of radiography with a relativistic particle, 
which is possible in laser-plasma experiments using electrons from a laser-plasma accelerator.

From a mathematical point of view, the direct-inversion problem was first formulated in a paper by Monge published in 1781,6 

and then in a modern mathematical manner by Kantorovich in 1942,7 leading to the name Monge–Kantorovich problem or, more 
descriptively, the optimal transport problem. Monge and Kantorovich both considered finding the minimum cost for leveling a 
land area as an application of the theory. Kantorovich added “location of consumption stations with respect to production sta-
tions” as a second application of the theory. Since then, numerous applications have been found, of which direct inversion of 
deflectometry data by minimizing total deflection is perhaps the most recent.

The majority of the publicly available direct-inversion codes3–5 solve the Monge–Ampère equation first derived by Monge and 
then stated in a more-general form by Ampère in 1819, although the numerical algorithm used in these codes was only published 
in 2011.8 The Poisson equations considered by some authors,1,2 and frequently mentioned in texts discussing shadowgraphy, can 
be considered special cases of the Monge–Ampère equation, valid in the limit of very small deflections.

If we consider the problem in terms of the data, then direct inversion comes down to determining the movement of counts in 
detector bins that map the source intensity I0 (the signal on the detector in the absence of an object) to the measured intensity I, 
or vice versa. From this point of view, and from the perspective of a plasma physicist, it occurred to us that an algorithm based 
on an electrostatic plasma model should always be able to obtain a solution. The source or measured intensity can be treated as 
an initial electron distribution and the other intensity as a fixed ion distribution. Electrostatic forces will then cause the electron 
distribution to evolve to the ion distribution. The displacement of the electrons from their initial to their equilibrium positions 
will give the deflections at the detector. Oscillations about the desired equilibrium positions can be damped by applying drag to 
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the electrons. Electrostatic plus kinetic energy will decay steadily and go to zero in equilibrium since drag removes energy from 
the system, providing a simple convergence criterion.

The first scheme that occurred to us was an electrostatic particle-in-cell (PIC) code with the addition of electron drag; because 
this is a common type of code in plasma physics, efficient, robust algorithms exist, and it could make use of existing codes. We 
then considered a fluid code as a potentially faster, less memory-intensive alternative. A Lagrangian scheme, where the numeri-
cal grid moves with the fluid, provides the most direct method of determining the deflections. A Eulerian scheme, where the 
numerical grid is fixed, would require tracking the center of mass of the initial fluid elements in every cell, and so could require 
more calculations than a PIC code. Therefore, we also implemented a Lagrangian fluid scheme. We started with 1-D codes as a 
quick method to test the algorithms before writing 2-D codes. 

To make a fair comparison of the electrostatic algorithm to the Sulman, Williams, and Russell algorithm for solving the 
Monge–Ampère equation,3–5,8 we returned to the original MATLAB script of PROBLEM, which is not provided on GitHub, and 
added an inbuilt convergence criterion and an adaptive time step. We also compared our codes to the power-diagram algorithm,1 

which uses weighted Voronoi, or power diagrams of the intensities to determine the deflections at the detector.

Our codes output what we refer to as a dimensionless line-integrated transverse force. For charged-particle radiography,
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which is valid for a relativistic particle. For shadowgraphy, 
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where L is the object-to-detector distance, M is magnification, w is the detector pixel width in the object plane, q is the charge, 
p is momentum, v is velocity, z is the probing axis, and   n ′  e =  ne/nc, where ne is electron density and nc is critical density for the 
shadowgraphy probe.

Our codes are written in MATLAB and are publicly available.9 Python versions of the 2-D PIC code and the Monge–Ampère 
code are under development.10

To test the codes, we used synthetic radiographs that we had generated previously by proton tracing in specified radial forces 
in cylindrical and spherical geometry for a range of profiles and amplitudes,11 which are publicly available as hdf5 files in prad-
format.12 The force is expressed as a dimensionless parameter μ
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for charged-particle radiography and shadowgraphy, respectively. Results for cylindrical Gaussian potentials with μmax = 0.5 
(defocusing) and –0.25 (focusing), values where trajectories do not cross, are shown in Fig. 1. All of our codes accurately repro-
duced the measured intensity and the line-integrated transverse force to within the noise level of the original intensity. We carried 
out an extensive range of tests intended to push the limits of the codes.

Only the PIC code obtained a solution for every case. The 2-D Lagrangian code failed for large-intensity modulations, but was 
faster than the 2-D PIC code without massively parallel processing, which would be possible with a PIC code. The Monge–Ampère 
code was considerably faster than the electrostatic codes in 2-D without massively parallel processing, but failed for intensities 
with extensive regions of zero signal, high contrast ratios, or large deflections across the boundaries, and could not obtain the 
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same degree of convergence to the measured intensity as the electrostatic codes. The power-diagram code was by far the slowest 
and failed for large peaks in the intensity. In 1-D, however, the Lagrangian code was the fastest and always obtained a solution.

Our final recommendations are to use the Monge–Ampère code to take a quick first look at data, and to use the PIC code if 
the Monge–Ampère code fails or a more-accurate inversion is desired. In the rare case of 1-D problems, the Lagrangian code is 
the best option.

This material is based upon work supported by the Department of Energy, under Award Number DE-SC0020431, by the Depart-
ment of Energy National Nuclear Security Administration under Award Number DE-NA0003856, the University of Rochester, 
and the New York State Energy Research and Development Authority.
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Figure 1
Results for a cylindrical Gaussian potential [(a),(c)] intensity profiles and [(b),(d)] line-integrated transverse force normalized so that the maximum of the 
original is 1 for μmax = 0.5 and –0.25, respectively.
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