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Proton radiography is frequently used on OMEGA and OMEGA EP to infer electric and magnetic fields. If proton energy loss 
and scattering are negligible, proton deflection at the detector will be determined by the path-integrated transverse Lorentz force 
experienced by the protons. The most common technique used to infer fields from intensity modulations on the detector has been 
proton tracing in given fields, either assumed or obtained from simulations. Recently, a number of authors have used direct inversion 
to infer the fields,1–6 and many of these direct inversion routines are publicly available on GitHub.1–5 Direct inversion provides a 
solution independent of biases; particle tracing in specified forces is subject to user biases, and tracing in forces determined from 
simulations is limited by knowledge of the experimental conditions to be simulated and the physics included in the simulations. 
Publicly available direct inversion routines were applied to proton radiography data from cylindrical implosion experiments on 
OMEGA. As a first step, a series of test problems is generated using proton tracing to evaluate the routines.7 These test problems 
are publicly available8 as hdf5 files in pradformat.9 The test results are summarized here.

Direct inversion determines deflections at the detector that map the source intensity (I0) to the measured intensity (I). There is 
no unique solution to this problem, as demonstrated by the trivial case of simply swapping two particles on the detector. There is 
a unique solution, however, that minimizes total deflection and does not allow particles to be moved over one another. If proton 
trajectories to the detector do not cross, direct inversion will give the solution. If proton trajectories do cross, direct inversion 
will give one out of an infinite family of solutions, which is still useful information. In mathematics, direct inversion is known 
as the optimal transport problem, first described in a paper by Monge published in 1781 (Ref. 10), which derives what is now 
known as the Monge–Ampère equation. All but one of the publicly available direct inversion routines solve the Monge–Ampère 
equation.1–4 The other routine5 uses iterative methods to construct power diagrams (weighted Voronoi diagrams) of the source 
and measured intensities with equal flux in each cell, determining the deflections from the movement of cell centroids. Direct 
inversion can be applied to radiography with any charged particle, and to shadowgraphy where photons are deflected by gradi-
ents in refractive index.5 In order to relate the deflections obtained at the detector to the forces in the object, one must assume 
a small angle deflection in the object (%1 rad or 57.3°) so that the deflections are proportional to the line-integrated force along 
the original trajectory. In practice, this is not a major restriction since the proton radiography and shadowgraphy setups used on 
OMEGA and OMEGA EP subtend a small angle at the target. If there are regions where large angle deflections occur, informa-
tion on the forces in these regions will be lost.

Test radiographs or, equivalently, shadowgraphs, were generated by particle tracing through purely radial force profiles 
in cylinders and spheres for a range of force amplitudes with uniform source intensities. In cylinders a Gaussian potential 
[Fr ? r exp (–r2/R2)], a linear profile (Fr ? r for r # R)], and a top-hat profile (Fr = constant for r # R) were used. The linear 
profile was chosen to represent the electric field in an isothermal, cylindrical expansion,11 ignoring the rapidly decaying field 
in the electron sheath beyond the ion front. The top-hat profile was chosen to represent the axial magnetic field in a cylindrical 
implosion, which is discontinuous at the inner surface of the shell. For spheres, a Gaussian potential was used. Force is expressed 
as a dimensionless parameter

 n =    2LF _ 
Mpv   ,
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where L is object-to-detector distance, M is magnification, F is Lorentz force, p is particle momentum, and v is particle velocity, or

 n =    L _ 
M

      
d ( n  e  / n  c  ) /dr

 ___________ 
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________
 1– n  e  / n  c    
    

for shadowgraphy, where ne is electron density and nc is the critical density of the probe. All distances are expressed in terms of 
the object size R. Trajectories cross in all cases for the linear and top-hat profiles and for both cylindrical and spherical Gaussian 
potentials when nmax $ 1.08 or nmax # –0.484, negative values indicating a focusing force.

Five direct inversion routines were found on GitHub.1–5 Two of the routines, both Monge–Ampère solvers, did not run.1,2 
The other two Monge–Ampère solvers were found to be essentially identical, which is not surprising considering they are 
implementations of the same algorithm by the same author.3,4 Therefore, one Monge-Ampère routine and one power-diagram 
routine5 was available to evaluate. The Monge–Ampère routine could not solve the cylindrical problems because it uses fixed 
deflection potential boundary conditions, which would also cause issues with any problem that has modulations near the boundary. 
The correct boundary conditions to obtain a minimum deflection from the Monge–Ampère equation are to set the deflections 
across the boundaries to zero.2 The Monge-Ampère routine accurately inverted the spherical Gaussian tests when trajectories did 
not cross and did so roughly 1000# faster than the power-diagram routine, but failed when trajectories crossed. The failure was 
obvious from the poor reproduction of the measured intensity. The failure appears to be caused by the adaptive time step, which 
rapidly falls to the specified minimum value for tests where deflected trajectories cross. The power-diagram routine successfully 
inverted all but two of the test problems. The power diagram failed for the top-hat profile with nmax = 2 and a smaller bin width 
(0.015R) than the final value we settled on (0.025R); however, for the coarser bin width an adequate solution was obtained. The 
power-diagram routine failed for a spherical Gaussian with nmax = –0.5 and the issue was not resolved by coarser binning, the 
bin width of 0.052R already being too coarse to resolve the sharp peak. The power-diagram routine moves the sites closest to the 
corners into the corners in order to interpolate the deflections to all points on the original grid, which, for this strongly focusing 
test, leads to significant distortion of the entire region. Examples of the line-integrated forces obtained by the power-diagram 
routine for the cylindrical tests are given in Fig. 1. In all cases the measured intensity was accurately reproduced. The inversion 
underestimates the original line-integrated forces when trajectories cross because it gives a minimum deflection solution. It should 
be remembered that when trajectories cross, there exists an infinite family of solutions for the line-integrated force. As a result 
of these tests, only the power-diagram routine was used to analyze the proton radiographs of cylindrical implosions.12
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Figure 1
Line-integrated forces from the power-diagram routine for cylindrical test problems from (a) the linear profile, (b) the top-hat profile, and [(c),(d)] the Gaussian 
potential, normalized so that the maximum of the original is 1.
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