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In laser-driven inertial confinement fusion (ICF), a millimeter-scale cryogenic capsule of deuterium–tritium fuel with a thin outer 
ablator is imploded by either direct laser illumination (direct drive) or focusing the lasers onto the interior walls of a hohlraum 
to generate an x-ray bath (indirect drive).1 In both cases, the many high-intensity laser beams overlapping in underdense plasma 
can drive various laser–plasma instabilities (LPI’s) that can severely inhibit implosion performance.2,3

Analytic results for instability behavior are typically limited to the case of a single plane-wave laser driving instability in the linear 
regime. ICF experiments, however, involve multiple overlapping laser beams, each using a phase plate that generates a complex 
speckle pattern in the plasma,4 and accurate predictions of instability behavior require a description that accounts for their combined 
interaction.5 Analytic theories for instability behavior in a single speckled beam have been developed using the independent-hot-spot 
model, where a statistical description of the speckle intensity is combined with the single-speckle instability behavior to predict 
the global instability behavior.6,7 Multibeam interactions have historically been described using the common-wave model, where 
wave-vector matching considerations are used to show that overlapping laser beams can couple to a shared daughter wave propagat-
ing along the drive-beam axis of symmetry.8–13 However, recent experiments and simulations of multibeam LPI’s have shown that 
the common-wave description often fails to predict instability behavior. In particular, laser beams that do not satisfy the geometric 
requirements imposed by the common-wave matching conditions can still contribute to instability growth.14–16

Here we develop a multibeam hot-spot model that provides a more-predictive description of LPI behavior than the widely 
used common-wave approach. The model is extended to include absolute instability in an inhomogeneous plasma and applied 
to the two-plasmon–decay (TPD) instability. The excellent agreement with multibeam LPSE simulations demonstrates its utility 
and shows that there is an important qualitative difference between 2-D and 3-D single-speckle instability thresholds that is not 
present in the plane-wave case and results in lower instability thresholds in 2-D. This approach leads to a new understanding of 
multibeam instability behavior that can be used to make better quantitative predictions for improving the design of experiments 
and future laser facilities.

Given a collection of N speckles, the absolute instability threshold occurs when the peak speckle intensity is equal to the single-
speckle threshold, IM = Ithr,speckle. Introducing the average laser intensity I0 and ensemble averaging over speckle realizations, 
this can be written as
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where we have defined the expected average intensity at threshold .I I0thr /  Accordingly, evaluation of the expected threshold 
in the independent-hot-spot model is reduced to the evaluation of I IM 0  and Ithr,speckle. The expected peak speckle intensity 
can be written in terms of the probability that every speckle intensity is less than u:17
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Reference 18 derives speckle distributions that are valid for high-intensity speckles but behave badly at low intensities. Accordingly, 
we use exponential distributions at low intensities to generate probability distributions that behave well at all intensities: 
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where the ni are parameters and the Ai and usi are chosen to make the distributions and their first derivatives continuous. Here n2 = 
n3 = 4 was chosen on the basis of comparison to simulations, which gives A2 = 1.185, us2 = 0.944, A3 = 1.848, and us3 = 2.210.

Incorporating Eqs. (3) and (4) into Eq. (2), using the binomial theorem, and integrating gives
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where C(s,x) is the incomplete gamma function. 

To determine N, we restrict our discussion to instabilities that are spatially localized by plasma inhomogeneity such that 
N is the number of speckles in a cross section of the laser field (i.e., the interaction region is not significantly longer than the 
speckle length). Accordingly, N is approximately the laser power divided by the mean power in a speckle, N = PL/GPsH. The 
laser power is the average intensity times the cross-sectional area .P I b0L v=_ i  To determine the mean power in a speckle, we 
first average over the probability density of speckle intensities to obtain the mean speckle intensity ,I I uP u ud0 =

3

0
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where erfc(x) is the complementary error function. For speckles with a Gaussian transverse profile I r Ie log r w2 2
2

s= -_ bi l; E and 
full width at half maximum (FWHM) ws, integration over r gives the mean power in a speckle, logP I I I w 2
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_ i  Finally, the expected number of speckles in 2-D and 3-D, respectively, is
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The single-speckle threshold (Ithr,speckle) generally depends on the speckle size, plasma conditions, and the instability under 
consideration. An analytic approximation can be obtained by constructing a spatially localized solution out of the linear eigen-
modes for a plane-wave drive laser,19 but it is not sufficiently accurate for quantitative applications. Here we take a semi-analytic 
approach where the speckle statistics are given by Eqs. (5) and (6), while Ithr,speckle is taken from single-speckle LPSE simulations.

Figure 1 compares Eq. (1) to various speckled-beam LPSE calculations. The thresholds are normalized to the threshold for a 
single plane-wave drive beam, Ithr,TPD (Ref. 19). Figure 1(a) shows 2-D calculations using a single beam with a varying f number 
at Ln = 200 nm, Te = 2 keV, and Ln = 400 nm, Te = 4 keV, which are similar to the conditions in direct-drive ICF experiments on 
the OMEGA20 and National Ignition Facility15 lasers, respectively. The thresholds are higher in the longer-scale-length calcula-
tions because, for a given speckle width, the single-speckle threshold increases with increasing temperature and scale length. The 
non-monotonic nature of the thresholds is a result of the competition between the increasing thresholds with decreasing speckle 
size and the increased number of speckles with decreasing f number.

Figures 1(b) and 1(c) show 3-D instability thresholds for Ln = 200 nm, Te = 2 keV and Ln = 400 nm, Te = 4 keV, respectively, for 
three different beam configurations: (1) a single beam with varying f number; (2) six f/6.7 beams uniformly distributed on a cone 
relative to the x axis with polar angle i and azimuthal angle for the mth beam {m = 2rm/6; and (3) eight f/6.7 beams organized 
into two four-beam cones with polar angles i and i/2 and azimuthal angles {m = 2rm/4 and {m = 2rm/4 + r/4, respectively. For 
the multibeam cases, the horizontal axis corresponds to an effective f number given by the cone angle, f# = 1/(2tani) and the beam 
polarizations were aligned. All three beam configurations give the same threshold to within statistical variations and are in good 
agreement with the semi-analytic model. This shows that the instability behavior is predominantly determined by the smallest 
(and highest intensity) speckles and justifies the treatment of the cones of beams as a single beam with a small effective f number.

Figure 1
Absolute TPD instability thresholds for speckled beams (normalized to the plane-wave threshold). (a) Two-dimensional LPSE calculations at Ln = 200 nm, Te = 
2 keV (blue circles), and Ln = 400 nm, Te = 4 keV (red squares). [(b),(c)] Three-dimensional LPSE calculations show Ln = 200 nm, Te = 2 keV and Ln = 400 nm, 
Te = 4 keV, respectively, for one beam (blue circles), six beams (red squares), and eight beams (green triangles). The dashed curves show the corresponding 
semi-analytic results. The error bars correspond to the standard deviation from an ensemble of 20 (5) speckle realizations in 2-D (3-D).

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under 
Award Number DE-NA0003856, ARPA-E BETHE grant number DE-FOA-0002212, the University of Rochester, and the New 
York State Energy Research and Development Authority.
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