Thermal Decoupling of Deuterium and Tritium During the Inertial Confinement Fusion Shock-Convergence Phase

N. V. Kabadi,¹ R. Simpson,¹ S. Atzeni,² J. Eriksson, P. J. Adrian,¹ A. Bose,¹ J. A. Frenje,¹ M. Gatu Johnson,¹ B. Lahmann,¹ C. K. Li,¹ C. E. Parker,¹ F. H. Séguin,¹ G. D. Sutcliffe,¹ C. J. Forrest,³ S. Fess,³ V. Yu. Glebov,³ R. T. Janezic,³

O. M. Mannion,³ H. G. Rinderknecht,³ M. J. Rosenberg,³ C. Stoeckl,³ G. Kagan,⁴ M. Hoppe,⁵ R. Luo,⁵ M. Schoff,⁵

C. Shuldberg,⁵ H. W. Sio,⁶ J. Sanchez,⁶ L. Berzak Hopkins,⁶ D. Schlossberg,⁶ K. Hahn,⁶ C. Yeamans,⁶ and R. D. Petrasso¹

¹Plasma Science and Fusion Center, Massachusetts Institute of Technology
 ²Dipartimento SBAI, Universit'a degli Studi di Roma "La Sapienza," Italy
 ³Laboratory for Laser Energetics, University of Rochester
 ⁴Centre for Inertial Fusion Studies, The Blackett Laboratory, Imperial College, UK
 ⁵General Atomics
 ⁶Lawrence Livermore National Laboratory

A series of experiments using DT gas-filled, shock-driven implosions was carried out at the Omega Laser facility. The capsules were nominally 2.3- μ m-thick glass shells with an 860- μ m outer diameter that were driven by a 0.6-ns square laser pulse delivering 15 kJ. Both the initial fill densities (0.2 to 4 mg/cm³) and fill ratios (40% to 97% D) were varied. These experiments generated conditions relevant to the shock-convergence phase of hot-spot ignition experiments such as those conducted at the National Ignition Facility (NIF), without being complicated by a subsequent compression phase. With a high ablation rate and minimal residual shell mass, implosions of this type are insensitive to hydrodynamic instabilities. Data from shock-driven, indirect-drive exploding pushers (IDEP's) conducted on the NIF are also used. In these experiments, the spectral DTn and DDn ion temperatures (T_{sDTn} and T_{sDDn}) are inferred from the width of the produced neutron spectra as measured by neutron time-of-light diagnostics. To infer the level of thermal decoupling, the apparent species temperatures (T_T and T_D) can be inferred directly from the measured spectral temperatures based on the species masses (m_D and m_T) without accounting for emission weighting due to temperature profiles:

$$T_{\rm D} = T_{\rm sDDn},\tag{1}$$

$$T_{\rm T} = T_{\rm sDTn} + \frac{m_{\rm D}}{m_{\rm T}} (T_{\rm sDTn} - T_{\rm sDDn}).$$
⁽²⁾

The differential equation governing the evolution of the ratio of two-ion temperatures due to ion-ion equilibration is given by

$$\frac{d}{dt}\frac{T_2}{T_1} = -\frac{1}{\tau_{12}} \left(\frac{T_2}{T_1}\right)^2 + \left(\frac{1}{\tau_{12}} - \frac{1}{\tau_{21}}\right) \frac{T_2}{T_1} + \frac{1}{\tau_{21}},\tag{3}$$

where τ_{21} is the characteristic time at which species 2 equilibrates with species 1, which can be calculated from observables. The solution to this equation, when ignoring the weak dependence on species fraction, can be written as

$$\frac{T_2}{T_1} = \tanh\left[\frac{t}{\tau_{\rm ii}} + \operatorname{atanh}(R_0)\right],\tag{4}$$

LLE Review, Volume 168

where the integration constant R_0 is the temperature ratio as t goes to 0 and the total equilibration time is given by the harmonic mean of the τ_{12} and τ_{21} :

$$\tau_{\rm ii} = 2 \left[\frac{1}{\tau_{12}} + \frac{1}{\tau_{21}} \right]^{-1}.$$
(5)

This dynamic model can be applied to the average observables from an implosion. For the average time scale, τ_N is calculated from the measured DT neutron emission time τ_{DTn} :

$$\tau_N = \frac{\tau_{\rm DTn}}{\tau_{\rm ii}}.\tag{6}$$

Figure 1 shows the apparent ratio of $T_{\rm T}$ to $T_{\rm D}$ plotted versus τ_N for three different D:T fill ratios. The observed trend is consistent for all fill fractions and well described by the equation

$$\frac{T_{\rm T}}{T_{\rm D}} = \tanh\left[\tau_N + \operatorname{atanh}(1.52 \pm 0.04)\right],\tag{7}$$

indicating a trend that begins at ≈ 1.5 and decays to 1 (or thermal equilibrium) at a rate determined by τ_N . Since the initial temperature ratio will be dominated by shock coupling based on ion-species properties, we conclude that the shock coupling scales linearly with mass (D and T have identical charge), $T_i \propto m_i$. Coupling directly proportional to mass is consistent with the rebounding shock stagnating the incoming flow and converting the flow energy of a species into thermal energy. It is also consistent with predictions for the mass dependence of shock coupling^{1,2} and recent astrophysical observations of collisionless shock heating.³

Figure 1

Apparent temperature ratio versus the normalized equilibration time scale for DT gas-filled implosions. Red diamonds are 97:3, gray circles 50:50, and blue squares 40:60 D:T atomic fill ratio. The open gray circles are from NIF IDEP's. All points are consistent with the equation $T_T/T_D [\tau_N + \operatorname{atanh}(1.52\pm0.04)]$, shown by the solid black curve with dashed 95% confidence interval. The reduced χ^2 statistic for this fit is 0.96. The yellow-shaded region represents the conditions most relevant to the shock-convergence phase in NIF ICF implosions.

This material is based upon work supported by the Department of Energy, National Nuclear Security Administration under Awards No. DE-NA0003868 and No. DE-NA0003938.

- Ya. B. Zel'dovich and Yu. P. Raizer, in *Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena*, edited by W. D. Hayes and R. F. Probstein (Dover, Mineola, NY, 2002), Chap. VII, pp. 515–520.
- 2. B. D. Keenan et al., Phys. Plasmas 25, 032103 (2018).
- 3. M. Miceli et al., Nat. Astron. 3, 236 (2019).

LLE Review, Volume 168