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In this summary, we investigate the impact of the finite rise time of a temporal boundary inside a dispersive medium used for 
temporal reflection and refraction of optical pulses. We develop a matrix approach in the frequency domain for analyzing such 
temporal boundaries and use it to show that the frequency range over which reflection can occur is reduced as the rise time 
increases. We also show that total internal reflection can occur even for shallow boundaries. This feature suggests that temporal 
waveguides can be realized through cross-phase modulation, even when pump pulses have relatively long rise and fall times. In 
past studies, the moving temporal boundary was assumed to be infinitely sharp such that the refractive index changes instanta-
neously at the boundary location. In practice, any temporal boundary will have a finite rise time. One expects the results obtained 
for a sharp boundary to remain valid as long as the rise time is much shorter than other time scales of interest (such as the width 
of the pulse being reflected at the boundary). It is not known, however, how the results obtained for a sharp boundary need to be 
modified when the rise time of the temporal boundary is non-negligible.

We assume that a temporal boundary, moving at the speed VB, has been created inside the dispersive medium using a suitable 
technique (e.g., cross-phase modulation with a pump pulse) so that the refractive index of the medium differs by a small amount 
Dn on the two sides of the boundary. In most previous studies on temporal reflection, s(t) is taken to be a step function of the form 
h(t–TB), assuming an infinitely sharp boundary located at t = TB. In this work, we consider temporal boundaries with a finite rise 
time Tr; in particular, s(t) was considered to be a super-Gaussian of order , ,m e t T T m2B 0- -] g7 A  where Tr + T0/m.

For a sharp boundary with Tr = 0, it is known that a pulse splits into two parts after it arrives at the boundary, which can be 
identified as the reflected and transmitted parts.1 Their spectra are shifted from the spectrum of the incident pulse in such a way 
that the reflected part never crosses the boundary. We extend this approach to temporal boundaries of arbitrary shapes by making 
a reasonable approximation. We divide the boundary region into N segments, each of finite duration such that s(t) can be treated 
as a constant inside the segment. In other words, we replace the actual shape of the boundary with a staircase. This can be done 
for a boundary of any shape if we make N large enough that s(t) does not vary much inside each segment. Consider one spectral 
component of the pulse before the first segment with the frequency ~ = ~0 + d0. It propagates as a plane wave A0   e   i (Kz- d  0  t)   .  As this 
plane wave traverses the boundary region, its frequency changes from one segment to the next, but K remains the same because 
of momentum conservation at any temporal boundary.1 At the same time, a reflected wave is produced with a shifted frequency. 
As a result, two plane waves exist in the nth segment, where s(t) = sn is a constant.

Our approach is similar to that used for calculating the reflectivity of a stack of multiple dielectric layers.2 We use the transfer 
and propagation matrices to cross all segments, starting from the far end of the last segment. The resulting matrix of the entire 
temporal boundary is the product of 2N + 1 matrices. In terms of the four elements of this matrix, the incident, reflected, and 
transmitted waves are related as
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The reflectivity and transmissivity of the temporal boundary are given by R =   | M  21  / M  11  |  2 and T =   |1/ M  11  | 2 , where the matrix 
elements can be computed using the group velocity, the group velocity dispersion, and the frequency shift across the boundary. 
One interesting feature of an infinitely sharp temporal boundary is that the analog of total internal reflection (TIR) can occur, 
i.e., it is possible to have the situation where the faster-propagating probe pulse never overtakes the slower-moving pump because 
the frequency of the probe pulse changes. We can normalize the parameter   ( ~  0  /c)   Dn to the minimum value for TIR to occur. 
Physically, this normalized parameter B represents the value of the index change relative to the value required for TIR to occur.

As seen in Fig. 1, TIR occurs for Df values below 0.3 THz. The reason it ceases to occur for larger values of Df is related to a 
larger speed mismatch between the wave relative to the moving boundary. As Df increases beyond 0.3 THz, change in the propa-
gation constant continues to increase, which decreases the reflectivity further. The rate of decrease depends on the boundary’s 
rise time, and it becomes more rapid as Tr increases (or m decreases). For a Gaussian-shaped boundary with m = 1, the reflectivity 
becomes nearly a step function of Df. In practical terms, for such boundaries, a narrowband signal is either totally reflected or 
fully transmitted, depending on its frequency. We considered two cases with B = 0.95 and B = 1.05, where B = 1 is required for 
TIR to occur. In the first case (B = 0.95), 96% of the pulse energy crosses the boundary. For B = 1.05, all the energy is reflected 
because the index change across the boundary is larger by 10% and exceeds the TIR threshold of B = 1. These results show that 
a relatively small change in the refractive index can produce large changes in the transmitted energy of a probe pulse when pump 
pulses are used to create a moving temporal boundary using the Kerr nonlinearity of an optical fiber.
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Figure 1
Dependence of the reflectivity spectrum on the rise time of a temporal 
boundary (T0 = 0.5 ps) is shown using three values of m. The dashed 
curve shows, for comparison, the case of a step-function boundary.
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