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Spectrally integrated x-ray diagnostics1–3 such as the ones fielded at the Omega Laser Facility and the National Ignition Facility 
make it possible to estimate radiation temperatures and spectral power without the need for crystal spectrometers. An array of 
x-ray diodes with different K-edge filters samples finite areas of the spectrum in question to determine the radiated power in that 
band. X-ray mirrors are also used as filters for high-energy photons for K-edge filters at lower-photon-energy bands. The filter 
components, x-ray diode, cable chain, attenuators, and digitizing oscilloscope form what is commonly referred to as a channel 
of the array. A typical array of diodes is capable of spanning the soft spectral range from 60 to 3000 eV.

Many methods4 have been employed in the past to recover the x-ray spectrum from the channel signal traces, some of which 
require assumptions or measurements for the spectral shape5,6 or considerations about the geometry7 of the source. These methods 
are accurate but can suffer from complications such as insufficient signal-to-noise ratios or lack of signal due to overattenuation, 
or if the method is used outside of its intended purpose. Several methods have been previously published utilizing B splines8 
for spectral deconvolution,9,10 along with proposed improvements on such methods utilizing intervals weighted with the relative 
intensity.11 Cubic-spline interpolation was also used to obtain unfolded x-ray flux using a priori knowledge and several itera-
tions to refine the interpolation.12 Cubic-spline interpolation provides an alternative analytical way of solving for the temporally 
and spectrally resolved x-ray flux with no free parameters, assumptions about the geometry, or material of the emitting plasma.

The cubic spline is well known, and several derivations and codes are available as resources.13–15 Much of the derivation fol-
lows the same notation found in Ref. 13 and a brief look at the derivation can be found in Ref. 12. The x-ray flux is interpolated 
across the entire spectral range with a series of piecewise cubic functions. The boundary of each cubic function lies between the 
K edges of each channel’s response function. The voltages of each diode is then related to the interpolated x-ray flux by
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a k represents the framework of the cubic function which depends on photon energy, E; y is the vector 
of unknown values of the cubic function at the knot points, which are the independent variables for which to solve, and Ri(E)Xi 
are the response functions and solid angle of the detector of the ith channel. The piecewise function is represented as a matrix 
to illustrate the linear system of equations that need to be solved in order to complete the reconstruction of the x-ray flux. The 
unknown values of the spline, y, do not depend on photon energy and therefore do not contribute to the integral. Each row of the 
matrix is integrated over photon energy, and the matrix is then inverted to find the values of y. Each row of the matrix refers to a 
channel of the x-ray diode array, and each column represents an interval of the spline. For n channels, there are n + 1 unknowns 
for which to solve; therefore, either the initial value y1 or the final value yn+1 must be arbitrarily specified for the system to be 
solvable. For the specific implementation shown in this summary, y1 is calculated by solving for the flat channel contributions 
similar to previous methods and then using linear interpolation to find the value of y1. Ultimately, the cubic spline solution is 
insensitive to the value chosen for y1 as shown in Fig. 1.
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Figure 1
The initial estimate of the first knot point value of the spline is the only 
part of the spline that is arbitrary. However, a linear spline calculation that 
can be solved with no free parameters can provide a good estimate of the 
initial value of the spline and thereby eliminate this free parameter. In the 
case where y1 = 10–9, even a slight overestimation of the spectral power 
can have a drastic impact and can even break the spline by giving non-
physical results. The case inspired by the linear spline solution, y1 = 10–10, 
is equivalent to a gross underestimation of the initial value, y1 = 10–13.Sp
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Two sources of possible error propagate from measurement uncertainty: (1) measurement and calibration of the response 
functions16 of each channel in the array; and (2) uncertainty and variation in the signal voltages digitized on the oscilloscope. 
Since the cubic spline is solved exactly from these quantities, an analytical expression for the uncertainty of the spline can be 
obtained. Each element of the matrix M M dR E E3y D i i1
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a _k i#  has an associated error from the response functions. 

Matrix inversion operations compound these error covariances enough to make even small covariances matter in the calcula-
tion. Finding an analytical solution in simple cases like a 2 # 2 matrix is easy, but it still differs from the results calculated via 
Monte Carlo when errors cause the matrix to be close to singular.17 Therefore, error propagation for matrix inversion must be 
done via Monte Carlo.

After the Monte Carlo error propagation, all of the error analysis can be done analytically. The error for all yi values can be 
calculated from the matrix inverse S: 

 ,S V
S V,

,

/

y j i j j
i j

S

j

V
2

2 2 1 2

,

i

i j j
v

v v
= +` f fj p p> H* 4/  (2)

where Si,j is an element of the matrix inverse, S ,i j
v  is the associated error of that matrix element calculated via Monte Carlo, and    

V j
v  is the random error associated with the measured voltage Vj of the jth channel. From here the rest of the cubic spline error 
can be calculated analytically. 

A simple blackbody model and a detailed atomic model demonstrate how accurately cubic-spline interpolation recovers the 
temporally and spectrally resolved x-ray flux. A sample radiation temperature curve was used to generate synthetic diode voltage 
traces by convolving the blackbody spectrum with the channel response functions. These synthetic voltage traces were then used 
as input to the cubic-spline interpolation, and the solutions are then compared to the inputs as in Fig. 2. The cubic spline is able 
to solve for the blackbody spectrum and the radiation temperature accurately.

A detailed atomic model of a CNOFNe plasma was also used as an input to the cubic-spline interpolation to test the capability 
of the method to resolve an x-ray flux that is dominated by line emission (see Fig. 3). The input x-ray spectrum is compared visu-
ally to the output of the cubic-spline interpolation, and the spectral power in three different sections of the spectrum is compared 
numerically. The worst part of the spectrum overestimates the spectral power by a factor of 2, whereas the other two parts of the 
spectrum recover the spectral power exactly. Overall, the systematic error in the spectral power from the entire unfold is 20% 
from the cubic spline’s inability to resolve the line structure, which corresponds to a 5% error in the radiation temperature. The 
systematic error is much smaller than the error that stems from the combination of the random error in the voltage trace and the 
error in measuring the response function in this case, so the conclusion is that the cubic-spline method can adequately recover 
line-dominated spectra.



Diagnostic science anD Detectors

LLE Review, Volume 162 69

This material is based upon work supported by the Department of Energy National Nuclear Security Administration under 
Award Number DE-NA0003856, the University of Rochester, and the New York State Energy Research and Development Authority.

 1. J. L. Bourgade et al., Rev. Sci. Instrum. 72, 1173 (2001).

 2. E. L. Dewald et al., Rev. Sci. Instrum. 75, 3759 (2004).

Figure 2
(a) The cubic spline is able to accurately reconstruct the blackbody spectrum at peak radiation flux. The shaded region around the spline solution represents 
a typical error associated with calibrated response functions. (b) The input radiation temperature curve used to generate the blackbody spectra and synthetic 
voltage traces plotted with the radiation temperature solution of the cubic spline at every nanosecond.

Figure 3
An atomic model of a CNOFNe plasma is convolved with the channel response functions. The resulting numbers are then used as signal inputs to the cubic-
spline unfold algorithm. (a) The recovered cubic-spline spectrum is compared graphically to the atomic model. (b) The spectrum is divided into three line 
groups, and the integrated intensity of each line group is compared between the atomic model and the cubic spline. The cubic spline is able to conserve spectral 
power to within a factor of 2 or better in cases where the emission is extremely line dominated.
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