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In laser-driven implosion experiments, a laser illuminates a 
spherical target either directly (direct-drive configuration) 
or after conversion into x rays (indirect-drive configuration). 
This absorbed laser energy leads to the ablation and extreme 
acceleration of the outer surface of the target through the 
“rocket effect.” This method is widely used to study plasma 
physics1 including high-energy-density physics2–4 and inertial 
confinement fusion (ICF).5 In all cases, maintaining spherical 
symmetry throughout the implosion is critical to obtaining 
a 1-D behavior that maximizes the internal energy of the 
imploded plasma at final compression. In ICF experiments, 
a capsule filled with deuterium (D) and tritium (T) is used to 
create a self-sustained fusion burn that will ignite the fuel and 
produce a net energy gain. At the end of the implosion, the 
kinetic energy of the imploding capsule is converted into inter-
nal energy, triggering the fusion reaction during stagnation. 
Several simulations and comparisons with experiments have 
shown that target low-mode nonuniformities lead to a severe 
reduction in the implosion performance because of increased 
residual kinetic energy during stagnation and uneven compres-
sion that result in reduced core pressure and truncated burn.6–9 
This degradation was shown to be particularly significant for 
modes  # 3, where  is the order of the modes of the spherical 
harmonic decomposition of the shell’s shape.8,10 Consequently, 
reducing low-mode nonuniformity has been identified as one of 
the most-critical steps in demonstrating ignition at the National 
Ignition Facility (NIF)11–13 or conditions that are hydrodynami-
cally equivalent to ignition when scaled from 26-kJ implosions 
on OMEGA to megajoule energies on the NIF.14–16

Over the last decade, many studies have shown significant 
low-mode asymmetries of the imploding shell. Modes  = 
1 have been typically identified from properties of the final 
assembly including asymmetry in its areal density,17 variation 
of its ion temperature along different lines of sight,18 hot-spot 
motion,19 and asymmetric x-ray emission of a Ti layer embed-
ded at the inner surface of the shell.20 Modes  $ 2 have been 
measured from the hot-spot shape,21,22 standard23 or Comp-
ton24 radiography, x-ray absorption spectroscopy,25 and self-
emission shadowgraphy.26

Several studies have focused on the causes of the asym-
metries and the development of methods to correct them. 
In indirect-drive ICF, the laser’s beam-energy balance was 
modified to exploit cross-beam energy transfer and improve 
the sphericity of the core emission.21,22 The improvement was 
limited, however, because the observable (i.e., the core shape) 
was restricted to modes  $ 2 and too indirect to give accurate 
access to the 3-D structure of the shell.10 In direct-drive ICF,27 
simulations have identified different potential effects that 
create nonuniformities including target offset, beam-power 
imbalance, beam pointing, and beam timing. Success has been 
limited, however, in reproducing the experimental observables 
obtained on OMEGA28 because of the difficulty in evaluating 
and modeling each effect.

This article reports the first experimental demonstration that 
the amplitude of modes  = 1, 2, and 3 of targets imploded in 
direct-drive configuration on OMEGA measured at a conver-
gence ratio of +3 can be controlled within !0.25% by adjusting 
the laser’s beam-energy balance, leading to a total radial error 
of 1%. Over three shots, the 3-D shape of the imploding target 
was tomographically recorded by measuring four lines of sight 
of the ablation front. The projected ablation-front contours were 
measured with framing cameras using the x-ray self-emission 
shadowgraphy technique.26,29 The projected ablation-front 
motions were obtained by comparing the positions of the con-
tours on the framing cameras with the corresponding contour 
positions measured on a nonimploding solid-CH-ball shot. The 
amplitudes of the modes were determined within !0.15% by 
decomposing the contours oriented perpendicular to the lines 
of sight and shifted by the measured motions over spherical 
harmonics. The variations of the normalized target mode 
amplitudes ( ,r



m
D  where m is the mode order) between shots 

were shown to change linearly (within !0.25%) with the varia-
tion of the normalized mode amplitudes of the laser’s beam-
energy balance e



mD` j with a low-mode coupling coefficient 
C r e


 

m mD D=_ i of C1 = −0.66!0.05, C2 = −0.38!0.05, and 
C3 = –0.18!0.03 for modes  = 1, 2, and 3, respectively. The 
decrease of C



 with increasing mode number was expected 
because of the phase plates used with each beam on OMEGA. 
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Lateral thermal transport and amplification by the Rayleigh–
Taylor instability were not expected to be important because of 
the long spatial wavelength (m = 2rR/ , where R is the averaged 
shell radius) of the low modes. The C



 values enabled one to 
evaluate within !0.05% of the amplitudes of the residual target 
modes that appear when the laser’s beam energies are balanced 
and to determine the laser mode amplitudes that mitigate them 
within !0.25%.

The experiments employed 60 ultraviolet (m0 = 351 nm) laser 
beams on the OMEGA Laser System.30 The beams illuminated 
the target and were smoothed by polarization smoothing,31 
smoothing by spectral dispersion,32 and distributed phase plates 
(fourth-order super-Gaussian with 95% of the energy con-
tained within the initial target diameter).33 A 2-ns-long square 
pulse irradiated 866!3-nm-diam capsules with an energy 
of 20.2!0.4 kJ, resulting in an intensity .4.3 # 1014 W/cm2. 
The shells were made of 19.2!0.2-nm-thick glow-discharge 
polymer (CH with a density of 1.03 mg/cm3 and each mode 
amplitude <50 nm) and filled with 17!1.5 atm of deuterium. An 
additional reference shot was made on an 856-nm-diam solid 
CH ball. For each shot, the target was placed at target chamber 
center with a maximum radial error of 1.5 nm measured with 
two high-speed video cameras (1000 images per second) that 
were used to automatically position the target before the shot.

The first shot used a standard laser beam-energy balance 
with a standard deviation of 2.5%. On the second and third 
shots, the beam-energy balance was varied to change the 
amplitude of the evaluated laser modes by minimizing
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with a larger variation for modes m = 0, where Eb
r  is the energy 

of the beams normalized to averaged beam energy in percent, 
(ib, zb) are the coordinates of the OMEGA beam ports, and 

,Y


m i z_ i are the tesseral spherical harmonics.34 On the third 
shot, one beam was reduced by 80% as a result of hardware 
malfunction, further amplifying the mode amplitudes. The 
beam energies were measured with integrated spheres within 

. %E 0 5b !d =r  that were absolutely calibrated within !2% 
with calorimeters. This resulted in the same relative error for 
all mode amplitudes of . %,e E N 0 06



m
b b !d d= =r` j  where 

Nb = 60 is the number of beams.

Four x-ray framing cameras, located at different lines of 
sight, used arrays of 16 pinholes to image the soft x rays emitted 
by the irradiated target on four strips of a microchannel plate 
(MCP).35 The cameras were set up to magnifications of M = 6 

(two cameras) and M = 4 (two cameras) with pinhole sizes of 
10 nm and 15 nm, respectively. Their point-spread functions 
(PSF’s) result in about 2-D Gaussian convolutions of the images 
with a full width at half maximum of dPSF . 10 nm and dPSF . 
15 nm, respectively.26 Four short, high-voltage pulses were sent 
to each strip to activate the signal amplification by the MCP 
and obtain time-resolved images. For all imploding shells, the 
electrical pulses were timed to +0.4 ns, +1.2 ns, +1.5 ns, and 
+1.8 ns, whereas for the reference shots, they were synchro-
nized to +0.2 ns after the beginning of the laser pulse (defined 
as 1% of maximum intensity). The absolute timings between 
the laser pulse and the images were known to an accuracy of 
20 ps, and the interstrip timings were determined within 5 ps 
(Refs. 26 and 36). Along each strip, the images were separated 
by +50 ps. Three cameras had integration times of 40 ps; one 
had an integration time of 200 ps. On all cameras, 25.4-nm-
thick Be filters were used to record the soft x rays above +1 keV. 
For each camera, the same pinhole array was used on all shots 
to maintain the distance between images.

On each self-emission image, the inner edge contour of the 
intensity peak [Figs. 151.32(a) and 151.32(b)] corresponded to 
the projection of the ablation-front surface along the line of 
sight of the diagnostic.29,37 The recorded intensity was the 
strongest near the ablation front because the emitting plasma 
had the largest density (which maximized its emission), and 
the integration distance of the emitting plasma to the detector 
was the longest. Just inside the ablation front, the recorded 
intensity dropped by a factor of 2 over a few microns as the 
plasma became optically thick, absorbing its emission and 
the emission coming from the back of the target. The time 
integration and spatial convolution of the diagnostic induced 
an inward shift, constant on a given image, of the inner gradi-
ent up to 4 nm and 20 nm for integration times of 40 ps and 
200 ps, respectively.

The angular variation of the projected ablation-front surface 
(DRi) was determined from the difference between the angu-
larly resolved contour radius (Ri) and the averaged contour 
radius .Ri` j  To reduce the error, self-emission images were 
angularly averaged over Di = 20°, which was larger than the 
radial convolution d R360 2 5<PSF cr i] _g i7 A and smaller 
than the scale length of the modes studied here (m > 120°). An 
error in Ri of dRi = !0.8 nm was determined on the reference 
shot by fitting Ri with a normal distribution and taking the 
number at the 90th percentile. This error was larger than the 
error in GRiH of . ,R N 0 2 m!d n=i iD  where NDi = 360°/
Di = 18 is the number of independent measurements. This 
resulted in d(DRi) . dRi.
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On each image, the location of the projected center of 
the ablation-front surface on the framing camera was deter-
mined by finding the center of the circle that minimizes 
the standard deviation of its radial difference with the con-
tour. This resulted in an accuracy in the center position of 

. .R R N 0 2 mcenter,1 !d d n= =i iD  The center location was 
corrected from the electrical-pulse (EP) propagation that 
introduced a displacement of the contour along the strip by  
–(DR)EP = VM(Dt)EP, where V is the implosion velocity,  
(Dt)EP = VEP GRiHM, and VEP is the electrical-pulse velocity 
that was characterized off-line within %.V V 10EP EP!d^ h  
V was determined by fitting the evolution of GRiH linearly for the 
images of first strip [within %V V 10!d =^ h ] and using a third-
order polynomial for the other images [within %V V 4!d =^ h  
(Ref. 26)]. The associated error of

	 R R V V V V
.2 2 0 5

center,2 EP EPEP.d d dD +^ ^ _h h i8 9B C' 1 	

grew with time up to !0.5 nm. When the images were on the 
same strip, the error in VEP did not affect the distance between 
images since it was approximately constant.

The inner edge contours were used to measure the diag-
nostic magnification on each shot and the magnification 
anisotropy for each image. On the first strip, the images were 
recorded at an early time so that the center of the ablation-
front surface corresponded to the initial target center, mak-
ing it possible to measure the diagnostic magnification M = 
1 + D/d, where D is the distance between contours and d > 
1270 nm is the distance between pinholes. This resulted 
in absolute and relative accuracies of .dd/d < !0.005 and 

,R M d2 1 5 10< 5
center,1 ! #-. d -^ h7 A  where dd = !15 nm is 

the error in the pinhole distance specified by the constructor. 
The error was slightly reduced by linearly fitting D and d over 
the recorded images. The anisotropy in the camera magnifica-
tion was determined at each image position on the reference 
shot by measuring the contour ellipticity. On this shot, all the 
images were recorded at an early time so the ablation-front 
nonuniformities were negligible. Although this anisotropy 
varied among images, it was shown to be consistent at a given 
image position by repeating the shot.

The shift between each contour center measured on implod-
ing capsule shots and the corresponding contour center mea-
sured on the reference shot was used to determine the projected 
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Figure 151.32
Comparison of the self-emission images 
recorded on (a) the second imploding capsule 
shot and (b) the reference shot. The circles 
correspond to the inner edge contours of the 
intensity peak. (c) Angular variations of the 
projected ablation-front surface (DRi) for 
the images in (a). (d) Projected ablation-front 
surface motions (DRcenter) as a function of 
the averaged contour radius Ri_ i  along x 
(orange circles) and y (blue squares) obtained 
by comparing the contour centers in (a) with 
the contour centers in (b).
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motion of the ablation-front surface (DRcenter). On the reference 
shot, each contour center corresponded to the projection of the 
initial target position on the diagnostic. On a capsule implosion, 
the contour centers determined on the first strip were aligned 
with the corresponding contour centers measured on the refer-
ence shot. This made it possible to correct for differences in 
diagnostic pointing and initial target position. Longitudinal 
and transverse differences were accounted for by comparing 
the diagnostic relative magnifications and the image locations, 
respectively. The error in DRcenter was given by

	 . .R R R2 0 8 m
.2 2 0 5

center center,1 center,2 !.d d d nD + =_ ` `i j j: D 	

The best estimations of the angular variation of the pro-
jected ablation-front surface (DRi)150 and motion (DRcenter)150 
at an average radius of 150 nm were obtained by linearly 
fitting their evolution with GRiH ranging from +300 nm to 
+100 nm [Figs. 151.32(c) and 151.32(d)]. These evolu-
tions were expected to be linear since, over these radii, 
there was no significant change in the laser intensity, lead-
ing to an almost constant pressure applied to the target: 

,R R R P P I I0- - -. . bD D Di i i` j  where R0 is the 
initial target radius; GPiH ? GIiHb; b . 0.5 (Ref. 15); and DR, 
DP, and DI are the angular variations and GRiH, GPiH, and GIiH 
are the angularly averaged values of the radius, pressure, and 
laser intensity, respectively. Errors in (DRi)150 and (DRcenter)150 
of d(DRi)150 = !0.4 nm and d(DRcenter)150 = !0.6 nm at the 
90th percentile of the error distribution were determined by 
comparing DRi and DRcenter with their linear fits.38

The four measured projected contours were oriented per-
pendicular to the lines of sight of the corresponding framing 
cameras to determine the 3-D shape of the ablation-front 
surface [Fig. 151.33(a)]. Because of the 3-D nonuniformities, 
the center and averaged radii of each contour were slightly 
different than the center and averaged radius of the 3-D object. 
To account for this, one contour was used as a reference and 
the other contours were shifted transversally and magnified 
to suppress their radial differences with the reference contour 
at the two crossing points (i.e., where the polar and azimuthal 
angles are the same).

The 3-D motion of the ablation-front surface was deter-
mined by finding the point at the minimum distance between 
the four lines defined by the lines of sight of the framing 
cameras shifted by the measured projected motions and by 
the displacements introduced during the contour alignment 
process [Fig. 151.33(b)]. The four projected contours provided 
two measurements each of the three coordinates of the 3-D 

center, so the five extra measurements reduced the error in the 
three coordinates.

The amplitudes of modes  = 1, 2, and 3 of the ablation-
front surface were obtained by decomposing the four oriented 
contours shifted by the measured 3-D displacement using 
spherical harmonics

	 ,, ,R r Y4
 







m m
m0

3
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-==
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where ,R c ci zr ^ h is the radius normalized to the averaged 
radius in percent %r 1000

0 =^ h and (ic,zc) are the coordinates 
of the four contours]. The errors in the mode amplitudes were 
evaluated by simulating the previously determined error 
distributions of d(DRcenter)150 and d(DRi)150 and fitting the 
errors by the normal distribution. Errors of . %,r 0 15m

1 !d =_ i  
. %,r 0 1m

2 !d =_ i  and . %r 0 1m
3 !d =_ i  were obtained at the 90th 

percentile for modes  = 1, 2, and 3, respectively.

Figure 151.33
(a) The four projected ablation-front contours measured on the second implod-
ing capsule shot were oriented perpendicular to the line of sight of the cor-
responding framing cameras and then shifted and magnified to minimize the 
radial difference at the connecting points with the reference contour. (b) The 
3-D motion of the ablation-front surface (orange arrow) corresponded to the 
minimum distance of the four lines (green lines) defined by the lines of sight 
of each framing camera shifted by the measured projected motions and by the 
displacements introduced during the contour alignment process.
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Figures 151.34(a)–151.34(c) show that, for each mode  , 
the difference in the mode amplitudes of the ablation-front 
surface between shots r



m
D  varied linearly with the differ-

ence in the corresponding normalized mode amplitudes of 
the laser’s beam-energy balance e



m
D  with low-mode coupling 

coefficients of C1 = –0.66!0.05, C2 = –0.38!0.04, and C3 = 
–0.18!0.04. The negative values were due to the fact that the 
more intense the laser, the more accelerated that part of the 
target. The fact that the factor was the same between different 
shots shows that the effects that create nonuniformities other 
than the beam-energy balance (such as target position, beam 
pointing, beam timing) were reproducible between shots. 
Errors in r



m
D  of . %,r 0 25



m !d D =` j  . %,r 0 32
m !d D =` j and 

. %r 0 31
m !d D =` j  at the 90th percentile were obtained by com-

paring the points with their linear fits. These comparisons were 
also used to determine the errors at the 90th percentile of C



.

The decrease of C


 with mode number [Fig. 151.34(d)] was 
caused by the phase plates that reduced the amplitude of the 
modes on target.39 The laser mode on target is given by

	 , , ,E e Y4








m
m 0

0
0i z r i z=

-
3

==
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where , ;e a E Y a e a
     

m m m
1

60
b b bb .i z= =

u r _ i/  are coefficients 
that describe the profile of each beam,

	 , cosE E a P2 1 4
 

 1b bi z r c= +3
=

u r_ ^ _i h i/ 	

normalized to have %,e 1000
0 =u  P



 is the Legendre polynomi-
als, and c is the angle between (i, z) and (ib, zb). The SG5 
phase plates reduced the values of modes 1, 2, and 3 by factors 
of 0.79, 0.47, and 0.2, respectively, which result in a constant 

. .C a 0 85 0 07
 

!=  that relate the laser modes on target to the 
target modes [Fig. 151.34(d)].

The values of C a R R I I
 

#D D= i i  resulted in 

	 . . ,R C a150 150 0 44 0 035
 0 # !- -. .b _ i 	

which was close to the theoretical value of 0.5. This shows that 
the smoothing of the laser modes by the lateral heat transport40 
and the amplification by the Rayleigh–Taylor instability were 
negligible for those modes, as expected.

These linear evolutions allowed us to determine the residual 
target mode amplitudes r



m
res] g7 A that remain when the laser 
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Figure 151.34
Comparison of the difference in the amplitude of the modes 
(a)  = 1, (b)  = 2, and (c)  = 3 of the ablation-front surface 

r


m
D` j between shots 1 and 2 (orange points), 1 and 3 (blue 

points), and 2 and 3 (green points) with the difference in the 
corresponding modes in the laser-energy balance .e



m
D` j  The 

linear fits are plotted in (a)–(c) as dashed black lines. (d) Com-
parison of C



 (orange points) with C a
 

 (blue points).
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beam energies are balanced and the optimum laser-mode 
amplitudes that compensate them .e



m
opt] g7 A  Over the three mea-

surements r


m
res_ i  is obtained by averaging r r C e








m m m
res -=^ h  

with an associated error of . %;r r 3 0 05




m m
res !.d d =^ ^h h  

e


m
opt^ h  is given by .e r C






m m
opt res-=^ ^h h  Applying these cor-

rected laser modes would lead to a spherical implosion with a 
maximum radial error

	 %.r 1








.
m

m

2

0
3

0 5

!. d D =
-==
a k; E( 2// 	

In summary, tomographies of imploding shells were used 
to determine the laser energy balance that suppresses target 
modes  = 1, 2, and 3. This is essential in direct-drive implo-
sion experiments including ICF, where 3-D simulations predict 
significant enhancement in fusion performance.8
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