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Introduction
In inertial confinement fusion (ICF),1 a shell of cryogenic 
deuterium (D) and tritium (T) filled with DT gas is imploded 
with direct laser illumination (direct drive)2 or through an x-ray 
bath produced inside a laser-irradiated hohlraum (indirect 
drive).3 Energy from the laser or x ray is absorbed in the plasma 
near the outer surface of the target, causing mass ablation. 
The ablation pressure pushes the shell inward by the “rocket 
effect.” In addition to the Rayleigh–Taylor (RT) unstable outer 
surface during the acceleration phase, the inner surface of the 
shell is also unstable to the Rayleigh–Taylor instability (RTI) 
during the deceleration phase. The RT spikes stream into 
the hot spot, decreasing the burn volume and increasing the 
surface-to-volume ratio of the hot spot. This, in turn, increases 
the conduction losses,4 resulting in a reduction in hot-spot tem-
perature. The perturbations rapidly become nonlinear, and a 
significant fraction of the shell’s kinetic energy is used to feed 
lateral motion, instead of contributing to the hot-spot pressure 
through radial compression.5,6 The effective areal density tR 
of the shell is expected to decrease and degrade the confine-
ment time, burn volume, hot-spot pressure and temperature, 
and, therefore, the neutron yield. The yield-over-clean (YOC) 
is used as a measure of the effect of hydrodynamic instabilities 
on the implosion performance:7 
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In an ICF implosion the initial nonuniformities arise because of 
ice roughness on the inner surface of the shell (which is usually 
greater than on the outer surface) and laser imprinting on the 
outer surface of the target. 

The National Ignition Facility (NIF)8 was built to perform 
1.8-MJ (i.e., ignition-scale) indirect-drive implosions with 
192 beams in a polar configuration. X-ray illumination was 
chosen because it was expected to improve target stability, 
but at the cost of a lower drive (i.e., reduced energy coupling 

to the target). Consequently, the stagnation pressure required 
for indirect-drive ignition is more than double that for direct 
drive with the same laser energy. Currently, the NIF is not 
configured to perform symmetric direct-drive illumination; 
therefore, it is being used in polar-direct-drive9 mode to 
test direct drive. Polar direct drive is expected to achieve 
lower performance levels than symmetric drive. OMEGA10 
experiments, on the other hand, routinely use symmetric 
illumination, so extrapolating OMEGA to the NIF should be 
viewed as an upper bound of current NIF polar-direct-drive 
capabilities. Nevertheless, given the low NIF shot rate and 
high cost, extrapolating OMEGA experimental results to the 
NIF provides a very valuable tool for guiding future direct-
drive experiments on the NIF.

The theory of hydrodynamic equivalence provides a way 
to extrapolate implosion performance on the OMEGA Laser 
System to ignition scales. Since scaling of the nuclear yield 
from an implosion ( a ,Y P T V2

s s b bx  where xb is the burnwidth 
and Vb is the neutron-averaged volume or burn volume) is 
dominated by the hot-spot pressure at stagnation Ps, the theory 
of hydro-equivalent scaling is developed keeping identical 
Ps for implosions with different driver energies. Unlike the 
pressure, the temperature at stagnation Ts is not scale invariant 
and is determined by considering the scaling of the hot-spot 
thermal conduction (see Hydro-Equivalent Scaling of the 
Deceleration Phase, p. 129). As described in Ref. 11, hydro-
equivalent implosions designed to achieve the same stagnation 
pressure require equal values of the implosion velocity Vimp, 
shell adiabat a0, and laser intensity IL. A consequence of this 
choice of scaling is that the acceleration-phase RTI also scales 
hydro-equivalently if the initial seeds of the instability scale 
proportionally to the target radius R. A complete table of the 
one-dimensional (1-D) hydrodynamic scaling relations for ICF 
is listed in Ref. 11. The target dimensions (i.e., radius R and 
shell thickness D) and time t scale with laser energy EL as 
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 Therefore, target sizes and laser 
pulse shapes for extrapolated direct-drive (NIF) ignition-
scale implosions are 4# larger and longer than on OMEGA. 
The goal of this article is to examine the effect of the above 
hydrodynamic scaling on the deceleration-phase RTI and the 
hot-spot ignition condition.

Hot-Spot Dynamics and Hydrodynamic Equivalence
This section presents a model that describes the deceleration 

phase, starting from the hot-spot formation to the onset of igni-
tion. The analysis is similar to that in Ref. 12. We also consider 
the effect of both losses and reabsorption of bremsstrahlung 
radiation. A fraction of the radiation energy emitted from the 
hot spot is reabsorbed at the hot-spot/shell interface; the remain-
ing energy is treated as a loss. In the following subsections an 
analytic formulation of the hot-spot energy balance and mass 
ablation from the inner surface of the shell is developed; the 
effect of the radiation losses on the ignition condition is shown; 
the scaling of the deceleration-phase RTI is discussed; and the 
scaling of the YOC and the ignition condition is derived. 

1.	 Hot-Spot Energy Balance
The hot-spot plasma is treated as an ideal gas with highly 

subsonic flows, and the hot-spot energy equation can be writ-
ten as follows:
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where p(r,t), , ,u r tv_ i  and t(r,t) are the pressure, velocity, and den-
sity of the hot spot, respectively. Since the hot spot is subsonic 

% ,u p2t_ i  the kinetic energy is small compared to the internal 
energy and has been omitted from the terms on the left-hand 
side. The ideal-gas adiabatic index C is 5/3 for DT gas. The first 
term on the right-hand side represents Spitzer thermal conduc-
tion ,T Tv

0l l=_ i  where v = 5/2 and l0 = 3.7 # 1069 m-1s-1J-5/2 

for ln K . 5. Energy gained from fusion reaction is given by 
the third term, where i is the fraction of total a-particle energy 
deposited in the hot spot, mi is the average mass of DT ions, and 
fa (3.5 MeV) is the energy per a particle. The fusion reactiv-
ity follows GvvH . CvT3 in the temperature range 3 to 8 keV 
with Cv . 2.6 # 10-26 m3keV-3s-1. The second term on the 
right-hand side of Eq. (3) represents the radiation losses, with 
Fv  as the first moment of the radiation field over angle.13 The 
bremsstrahlung emission from the hot spot integrated over all 
frequencies is given by

	 ,j C p Tb
/2 3 2= - 	 (4)

where #. .C Z Z3 88 10 1b
29 3 2+-

_ i  in J5/2N-2m s-1, the 
pressure p is in N/m2, temperature T is in joules, and j is in 
W/m3. The ionization fraction Z is 1 for DT gas, with the 
assumption that there is no high-Z material mixed into the hot 
spot, which would considerably increase the bremsstrahlung 
losses. The subsonic hot-spot approximation applied to the 
momentum equation results in p . p(t) (i.e., the hot spot is 
isobaric). The temperature of the low-density hot spot is much 
higher than the high-density shell, resulting in a self-similar 
solution for the hot-spot temperature given by14 
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where Tc(t) is the temperature of the hot spot’s center and 
r r Rhs=t  is the radial distance normalized to hot-spot radius 
Rhs. Bremsstrahlung radiation flux leaving a sphere of radius 
rt calculated using Eq. (4) is given by
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assuming that the low-temperature shell does not produce 
emission. Here,

	 .d .f r r 2 54/
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and L(t) is the fraction of emitted energy leaving the hot spot 
and shell. 

The hot-spot energy equation was derived by integrat-
ing Eq.  (3) from 0 to the hot-spot radius Rhs(t). Since the 
shell velocity a km/sR 350hs

o` j is much greater than the 
ablation velocity (Vabl + 10 km/s), it was neglected; i.e., 

., .u R t R V Rhhs s abl hs-= o o
_ i  The hot-spot energy equation can 

be written in a dimensionless form as 

	 ,R R T R Tp p p
d
d L/

1
5 5 5 3 22 2-

x
c b x= -vtt t t t t t t t` _j i 	 (7a)
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with  v = 1, ck = 1.6 # 10–16 J/keV,  and #f r . . .r 0 7d2
21

0
#3=n t t#  

The dimensionless variables [see Eqs. (8a) and (8b)] are writ-
ten in terms of implosion velocity Vimp and adiabatic stagna-
tion values for hot-spot radius Rs, pressure ps, and central 
temperature Ts. The fraction of emitted energy that is lost 
L (or reabsorbed R) is normalized to its value at stagnation 
Ls (or Rs):
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In Eqs. (7), the parameter c is proportional to the ratio of 
the fraction of a-particle energy deposited in the hot spot and 
the initial shell kinetic energy, and b1 [also b2 in Eqs. (10)] is 
proportional to the ratio of the bremsstrahlung energy emitted 
from the hot spot and the initial shell kinetic energy.

2.	 Hot-Spot Mass Ablation and Temperature Equation
The heat and radiation flux leaving the hot spot are recycled 

back as internal energy and PdV work on the material ablated 
from the inner surface of the shell (illustrated in Fig. 143.6). 
We consider that only a fraction of the emitted bremsstrah-
lung energy (R) causes ablation, while the remaining frac-
tion L is treated as a loss in energy [in Eq. (7a)]. Integrating 
Eq. (3) across the hot-spot boundary (or ablation front) as in 
Refs. 12, 14, and 15 and using the hot-spot mass ablation rate 
as m V ApV Tabl abl ablt= =o  with A m Z1i= +_ i gives
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Equation (9) can be rewritten using the dimensionless variables 
in Eq. (8a) as 
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where . . .f r r3 1 69d1 21
1 #n = -

0
t t#  The ablation velocity in-

cludes contributions from both thermal and radiative compo-
nents. It was calculated by balancing the heat and radiation flux 
leaving the hot spot with the mass ablation on the inner surface 
of the shell:
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Mass ablation into the hot spot increases the hot-spot density 
and reduces the temperature but has no effect on the pressure.15 

Figure 143.6
Density t and temperature T profiles during the deceleration phase of the 
implosion. The heat flux and a fraction of the emitted radiation energy are 
recycled back into the hot spot, causing mass ablation from the inner surface 
of the shell.
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3.	 Solution of the Ignition Model
The system of equations governing the deceleration phase 

includes the hot-spot energy equation, the hot-spot mass equa-
tion, and the equation of motion for the imploding shell. They 
are summarized as follows:
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The last equation [Eq. (12c)] considers the shell to be an 
incompressible thin piston but with finite mass Msh. The thin-
shell approximation is discussed in Ref. 14 and is compared 
to the more-accurate thick-shell model in Ref. 15. Although 
the latter is more accurate, it is substantially complicated 
and leads to the same ignition-scaling relations (but different 
proportionality constants). Since the hydrodynamic scaling of 
the deceleration phase is the primary objective of this article, 
the thin-shell model is used. The stagnation values for Rs, ps, 
and Ts are obtained by solving Eqs. (12) adiabatically, i.e., 
without a-energy deposition in the hot spot (c = 0) and radia-
tion (b1, b2 = 0). This leads to relations between the initial and 
stagnation parameters; the energy conservation requires that 
M V p R42 3

sh imp s sr=  [from Eq. (12c)] and adiabatic compres-
sion requires p R p R0 0 5 5

s s=_ _i i  [from Eq. (12a)]. Rewriting 
Eq. (9) in dimensionless form as Eq. (10a) gives T* . 1.3 Ts 
[in Eq. (8b)]. The initial conditions ,p 0 /5 2f= -t_ i  ,R 0 1/2f=t_ i  

,T 0 1/2f= -t_ i  and 1R 0 -=to_ i  are written in terms of the dimen-
sionless parameter & ,M V p R4 0 0 12 3

sh impf r= ^ _h i  which is 
the ratio of the shell’s kinetic energy and the hot spot’s internal 
energy at the beginning of the deceleration phase (see Ref. 12). 
The thin-shell model overestimates the conversion of the shell’s 
kinetic energy to the hot spot (i.e., 100% conversion); in order 
to limit this transfer, a heuristic finite shell-thickness correc-
tion (developed in Ref. 16) was used. Using this correction, the 
constants in Eqs. (7b), (7c), and (10b) can be rewritten in terms 
of tD (kg/m2) of the shell and T* (keV) as
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where

	 #. ,C 1 77 10 keV m kg/ / /3 15 8 3 2 3 4= - - -
a

	

	 # . ,C 0 327 keV m kgR / / /5 8 3 2 3 4
s2

= -
b 	

and 
	 #. .C C2 75 L Rs s1 2

=b b` j 	

For a direct-drive ignition-scale target, the fraction of brems-
strahlung radiation energy reabsorbed by the shell is shown 
by the blue curve in Fig. 143.7; at stagnation, Rs is 0.54 and 
b1 = 2.34 # b2. The hot-spot model [Eqs. (12)] is solved 
numerically with a large value for f (+104). The solution for ,pt  

,Tt  and Rt for a given value of b1 becomes singular if c exceeds 
a critical value cign. The cign curve shown in Fig. 143.8 is fit 
with a polynomial as 

	 . . . . .1 13 0 29 1 891 1
2

ignc b b+ + 	 (14)

Figure 143.7
The fraction of emitted bremsstrahlung energy from the hot spot that is reab-
sorbed by the shell (R) versus normalized NIF time (S = 4) is shown for the 
hydro-equivalent implosions on the NIF (blue) and OMEGA (red) scales. The 
remaining fraction of the emitted energy (L) accounts for the radiation losses.
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The analytic ignition parameter obtained from scaling 
[Eq. (13a)] can be normalized using the critical value from the 
model [Eq. (14)] and represented in terms of the no-a quanti-
ties; therefore, the no-a hot-spot-ignition condition is given 
by $ .1no ign| c c=a  A more-elaborate compressible model 
(in Ref. 17) yields the same scaling as Eqs. (13a) and (14) but 
with different constants of proportionality. The scaling of the 
ignition parameter |no a can be approximated (as first shown 
in Ref. 18) with
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where tRn and Tn are the 1-D neutron-averaged areal density 
in g/cm2 and temperature in keV, respectively, and a value 
of 1no $| a  implies hot-spot ignition. All the quantities in 
Eq. (15) are evaluated without a-particle deposition. Here, YOC 
is the ratio of the neutron yield from no-a two-dimensional 
(2-D) simulations and yield from no-a 1-D simulations. Since 
alpha heating is negligible in OMEGA implosions, the first step 
of an OMEGA-to-NIF extrapolation requires using the no-a 
performance (i.e., |no a). Based on the extrapolated value of 
|no a for a NIF target, one can then determine the level of alpha 
heating on the NIF. If, after the extrapolation from OMEGA 
to the NIF, the value of |no a is unity, one can then conclude 
that the NIF target would have ignited. 

4.	 Hydro-Equivalent Scaling of the Deceleration Phase
In this section we consider the hydrodynamic scaling of the 

deceleration-phase RTI. The growth rate for the deceleration-
phase RTI in the linear regime can be approximated with19 
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where GgH is the average acceleration, GLminH is the average 
minimum density-gradient scale length, GVablH is the average 
ablation velocity, and the coefficients a and b are 0.9 and 1.4, 
respectively. As shown in Ref. 20, increasing Vabl and Lmin 
reduces the RTI growth rate and the unstable spectrum exhibits 
a cutoff around l . 90. The stabilizing terms depend on the 
thermal and radiation transport in the hot spot. The nepers of 
the deceleration-phase RTI scale as
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Equation (17) was written in dimensionless form using k = l /Rhs,  
a ,t R Vhs imp  and the sound speed in shell a .c P2

sh sh sht  
The inertia of the shell is balanced by the hot-spot pres-
sure as M R R P4 2

sh hs hs hr=p  with a ;M R2
sh sh hst D  this was 

used to determine the scaling of the shell acceleration 
/ a .R g c R2

hs sh hs
p a k  To determine the scaling of the stabiliz-
ing terms, i.e., V Vabl imp` j and ,L Rmin hs` j  it is necessary to 
determine the scaling of the thermal conduction and radiation 
transport in the hot spot and how they differ from the accel-
eration phase.

Thermal conduction, radiation, and a transports are typi-
cally modeled using diffusive terms. The diffusive terms in 
spherically converging geometry [i.e., r-2∂r (r

2∂rQ), where 
r is the radial coordinate and Q is the diffused quantity] can be 
written in the reference frame of the ablation front as

	
2
2

2
2 ,

R
R Q1

2
2

abl
ablg gg

g
+

+
_

_
i

i< F 	 (18)

where g = r–Rabl, with Rabl representing the position of the 
ablation front. During the acceleration phase, the distance 
between the critical-density surface where the laser (or x-ray) 
energy is absorbed and the ablation front corresponds to the 
region where energy is diffused, i.e., a .R Rc abl-g _ i  For 

Figure 143.8
Plot of cign versus b1. When c $ cign, the solution to Eqs. (12) becomes singular.
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ICF implosions this distance is small compared to Rabl, i.e., 
%a . .R 0 1 1ablg` j  Therefore, the thermal diffusion term reduces 

to planar geometry 2 2i.e., Q2 2g_ i8 B and the convergence effects 
can be neglected for the outer ablation-front surface. Therefore, 
the ablative stabilization term (derived in Ref. 11) can be written 
as a ,V V m I P I V/ /

L
3 5 3 5
0abl imp abl L abl impao _ _i i  and the outer-

surface ablative RTI scales hydro-equivalently as long as IL, a0, 
and Vimp are kept constant. Instead, during the deceleration phase, 

a ;R 1ablg  therefore, the convergence effects are significant and 
the diffusive terms do not scale hydro-equivalently. 

Using the scaling relation for the temperature at target center 
as Tc + E0.07 + R0.21, the ablation velocity [Eq. (11)] scales with 
the target size as 
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The temperature scaling was first derived in Ref. 21 and can be 
retrieved analytically since T* + Tc + R2/7 from the temperature 
relation in Eq. (8b) (with Vimp and ps as the constants in scal-
ing). Equation (19) indicates that larger targets exhibit lower 
ablative stabilization. It will be shown in Effect of Thermal 
Conduction: V Vabl imp` j Scaling (p. 133) that scaling of the 
ablative stabilization caused by V Vabl imp` j is determined 
solely by thermal conduction, whereas scaling of the finite 
density-gradient scale-length stabilization L Rmin hs` j is deter-
mined by radiation transport (see p. 135). The Atwood number 
in Eq. (16) for finite Lmin can be written as

	 / a
l

.
kL L R1
1

1
1AT

min min hs+ + ` j
	 (20)

Reabsorption of radiation on the inner surface of the shell 
enhances the scale length such that GkLminH + 1 for l < 60 
and &1kLmin  for l > 60. Therefore, it is useful to assess 
the scaling of radiation transport using L Rmin hs` j as the 
normalized scaling parameter. It is shown from simulations 
(see p. 135) that for NIF-like targets a . ,L R 0 1min hs NIF` j  
while for OMEGA targets a . .L R 0 07min hs Ω` j   Since 

a . ,L R L R 1 5min minhs NIF hs Ω` `j j7 A  stabilization by Lmin is 
enhanced for larger targets, which is an opposite trend com-
pared to ablative stabilization. 

Alpha-particle transport is not considered because the 
hot-spot-ignition condition |no a uses no-a parameters. The 
alpha particles stopped within the hot spot augment the hot-

spot temperature, and those leaking out of the hot spot deposit 
their energy on the inner shell surface, driving mass ablation. 
As shown in Ref. 22, both mechanisms enhance the ablative 
stabilization of the RTI. In a NIF-size target close to ignition, 
the stabilization of the RTI from alpha-driven ablation is 
significant. Even though we use a no-a extrapolation of |no a 
from OMEGA to the NIF, the alpha-driven ablative stabiliza-
tion is included through the value of the power index of the 
YOC [Eq. (15)]. This is discussed in Ref. 7, where it is shown 
that without ablative stabilization, the power index of the YOC 
would have been larger (.0.8). It is because of the ablative 
stabilization that the power index is reduced by half (.0.4), 
indicating that implosions close to ignition are less affected by 
the deceleration-phase RTI as the instability growth rates are 
reduced by alpha-driven mass ablation. 

5.	 Hydro-Equivalent Scaling of the Yield-Over-Clean
The scaling of the Lawson parameter in Eq. (15) using 

tR + E1/3 and T + E0.07 can be written as

	 a .E YOC. .0 38 0 4
no no| aa 	 (21)

The hydro-equivalent ignition condition on OMEGA considering 
aE E 64NIF Ω  is . .0 21 YOC YOC .0 4

NIF| =Ω Ω` j   Since the 
normalized surface-roughness level on NIF targets is +4# lower 
than on OMEGA targets , ,R R 4i.e., ice ice

NIF
NIF +v vΩ

Ωa ak k  
the hydro-equivalent ignition condition on OMEGA improves 
(see Ref. 11) to

	 . .0 19
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| =Ω

Ω
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The small improvement in the ignition condition from 0.21 to 
0.19 occurs only by considering the above-mentioned surface 
roughness scaling and assumes equal growth factors between 
NIF and OMEGA during the deceleration phase. Here we also 
assumed that the laser imprint level on direct-drive OMEGA 
and extrapolated direct-drive ignition-scale implosions is equal. 
This choice refers to the most-stringent ignition condition on 
OMEGA (discussed in Ref. 11).

The yield degradation resulting from the deceleration-phase 
RTI can occur for two physical reasons: a reduction in the clean 
volume (i.e., volume within RT spikes) and a reduced coupling 
of the shell’s kinetic energy to hot-spot pressure as the energy is 
used to drive the RTI. A simple estimate for the YOC, assuming 
a reduction of the clean volume only (i.e., without consider-
ing a drop in hot-spot pressure and temperature compared to 
without RTI), leads to 
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c RT-
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=e eo o 	 (23)

where R1-D is the hot-spot radius in 1-D (i.e., without consid-
ering deceleration RTI), Vc + (R1-D–v0GRT)3 is the hot-spot 
clean volume under the RTI spikes, v0 is the initial perturbation 
on the inner surface, and GRT is the total growth factor of the 
RTI spikes into the hot spot. The YOC’s from the implosions 
of the two scales (NIF and OMEGA) are related through the 
following equation:

D

D-

- .
G

G

R

R
1 1YOC YOC /

0

0

1

1 1 3
3

NIF
RT

NIF
RT
NIF

NIF- -
v

v
= Ω Ω

Ω

Ωf f `p p j> H 	 (24)

The ablative stabilization of the deceleration-phase RTI is 
different on the two scales, resulting in different growth fac-
tors. Simulations have been performed to determine the scaling 
of GRT and YOC and to predict the hydro-equivalent ignition 
condition on OMEGA. 

Hydro-Equivalent Implosion Design and Simulations  
of Deceleration-Phase RTI

This section describes the design and performance of the 
set of hydro-equivalent implosions used in this article. The 2-D 
simulations of the deceleration phase using the Eulerian radia-
tion–hydrodynamics code DEC2D/3D23–25 are also described.

The OMEGA-scale target shown in Fig. 143.9(a) is similar 
to those used in current cryogenic implosions performed on 
OMEGA.26 This target had an 11-nm plastic (CD) ablator, 
41 nm of DT ice, and a 431-nm outer radius. It was imploded 
with 27 kJ of laser energy, and when simulated with the 

1-D hydrocode LILAC,27 it achieved an implosion velocity of 
+360 km/s with an average in-flight adiabat of 3. The hydro-
equivalent NIF-scale target [Fig. 143.9(b)] was designed by 
scaling up the radius of each layer roughly by a factor of 4 since 
the laser energy was scaled 64# to 1.8 MJ. The NIF-scale target 
had a 35-nm-thick CD ablator, a 209-nm-thick DT ice layer, 
and a total radius of 1769 nm. The laser intensity IL versus nor-
malized time (t/tbang) was kept unchanged [see Fig. 143.10(a)]. 
The time of peak neutron production, tbang, was 11.42 ns and 
2.83 ns for NIF and OMEGA implosions, respectively. The 

Figure 143.9
Target specifications for (a) an OMEGA-scale and (b) a NIF-scale cryogenic 
implosion simulation.

Figure 143.10
Time history of the essential hydrodynamic parameters (a) laser intensity 
IL, and (b) fuel adiabat a, and (c) implosion velocity Vimp versus normalized 
time (t/tbang) for the NIF-scale (blue) and hydro-equivalent OMEGA-scale 
(red) implosions.

TC11973JR

CD
DT ice

DT gas

OMEGA
431 n

m

37
9 
n

m

11 nm
41 nm

CD
DT ice

DT gas

NIF

1769 n
m

15
25

 n
m

35 nm
209 nm

(a) (b)

0.0

10

8

6

4

2

0

Normalized time
(t/tbang)

0.80.4

I L
 (

10
14

 W
/c

m
2 )

 

(a)

Normalized time
(t/tbang)

0.6

4

2

0
0.8 1.0

M
in

im
um

 a
di

ab
at

 (
a

)

(b)

TC11977JR

Normalized time
(t/tbang)

0.0

0

–100

–200

–400

–300

0.4 0.8

Sh
el

l v
el

oc
ity

 (
km

/s
)

(c)

Vimp



Hydrodynamic Scaling of the Deceleration-Phase Rayleigh-Taylor Instability

LLE Review, Volume 143132

target thickness had to be modified slightly to account for the 
nonscalable effects of radiation preheat in the acceleration 
phase. This arises because the radiation mean free path lm_ i

is the same in both target scales but the thickness of the abla-
tor (CD) layer is 4# less on the OMEGA target, resulting in 
a lower preheat shielding. To keep the same fuel adiabat [see 
Fig. 143.10(b)] for implosions of different scales, some of the 
CD ablator was mass equivalently exchanged with DT ice for 
the larger targets.11 The implosion velocity for targets of both 
scales is the same [shown in Fig. 143.10(c)]. The time evolution 
of the in-flight aspect ratio (IFAR) and the pressure profiles at 
stagnation Ps for the targets of both scales match closely (see 
Fig. 143.11), showing that the implosions are in accordance 
with the theory for 1-D hydro-equivalent scaling.11 Energy in 
radiation flux leaving the hot-spot boundary [i.e., (1/e)tmax and 
tmax (peak of shell density)] was measured. These measure-

ments were used to calculate the fraction of emitted energy that 
was reabsorbed, R(t) (see Fig. 143.7), and the fraction that was 
lost, L(t). The minimum density-gradient scale length Lmin and 
ablation velocity V M R4 2

abl hs shellhsr t= o` j at the inner surface 
of the shell were calculated. Radiation transport was turned 
on/off during the deceleration phase to study the individual 
effects of thermal conduction and radiation transport on the 
scaling of Vabl and Lmin.

The effects of the RTI on the deceleration phase of ICF 
implosions were studied using the hydrodynamic code 
DEC2D/3D.25 The radial profiles of density, pressure, 
velocity, and temperature were extracted at the end of the 
acceleration phase (i.e., when the laser is turned off) from 
the 1-D NIF-scale simulation. The hydro-equivalent OMEGA 
profiles were generated by scaling down the size by a factor 
of 4, producing implosions with an exactly hydro-equivalent 
acceleration phase; therefore, an exclusive study of the scal-
ing of the deceleration phase is possible. The profiles were 
mapped onto a 2-D high-resolution grid with single- or 
multimode velocity perturbations applied at the inner sur-
face of the shell. The velocity perturbations were identical 
(i.e., hydro-equivalent) on both scales. The deceleration RTI 
developed at the unstable interface and degraded the implo-
sion performance by reducing the clean volume. Thermal 
transport, a transport, and multigroup radiation transport 
were modeled as diffusion processes. Each of these can be 
turned on/off in the simulation. Since the no-burn case is 
considered in this article, the a-energy deposition was turned 
off. In Effect of Thermal Conduction: V Vabl imp` j Scal-
ing (see p. 133), radiation transport was turned off. The next 
subsection discusses results where both thermal and radiation 
transport processes were included. 

The 2-D axisymmetric simulations (considering z sym-
metry) were performed on a cylindrical x–z plane over a 
90° wedge, with a high resolution of 900 # 900 grids for the 
hot spot and shell assembly on both scales. DEC2D is an 
Eulerian radiation–hydrodynamics code23 with a moving mesh 
that shrinks radially with the average velocity and maintains a 
high resolution throughout the convergence during the decel-
eration phase (i.e., by a factor of +3 to 5). The conservation 
equations are rewritten in a new dimensionless coordinate 
system p = r/R(t) and g = z/Z(t), where R(t) and Z(t) are assigned 
functions of time. The computational domain is described by 
the Eulerian coordinates p and g varying between 0 and 1. 
There is no direct remapping involved. Since the actual spa-
tial domain in r and z is compressed in time as a result of the 
prescribed inward motion of R(t) and Z(t), the high resolution 

TC11978JR

0.7

60

40

20

0

Normalized time (t/tbang)
0.8 0.9 1.0

IF
A

R

0

20100 30 40

150

100

50

0

r (nm) NIF

r (nm) OMEGA

10050 150 200

P
s 

(G
B

ar
)

(a)

(b)

Figure 143.11
(a) In-flight aspect ratio (IFAR) versus normalized time (t/tbang) and (b) pres-
sure at stagnation Ps^ h versus radial distance for the NIF-scale (blue) and 
hydro-equivalent OMEGA-scale (red) implosions.
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(900 # 900) is preserved throughout the real spatial domain for 
the entire simulation. The accuracy has been verified through 
convergence tests and is good enough to resolve modes up to 
l = 100. We use both a second-order centered MacCormack28 
scheme with artificial viscosity and second-order HLLC 
(Harten–Lax–Van Leer–Contact) Riemann solvers29 without 
artificial viscosity. Earlier versions of DEC2D have been used 
to study the ablative stabilization of the deceleration-phase RTI 
in Refs. 15 and 20.

Single-mode simulations for a mode number l varying 
from 2 to 68, with three different initial velocity perturbation 
amplitudes7 (DV/Vimp)—0.01%, 0.05%, and 0.1% of implosion 
velocity Vimp—were carried out. The DV/Vimp was chosen to 
keep the RTI within the linear regime. The time of peak neutron 
production, tbang, was 1 ns after the laser was turned off on the 
NIF scale and 250 ps on the OMEGA scale. The single-mode 
growth factor was calculated as the ratio of the amplitudes at 
tbang and at tbang–800 ps into simulation on the NIF scale (or 
tbang–200 ps on OMEGA). 

Multimode simulations were carried out by including modes 
# #l .2 68  An l 2-  roll-off spectrum for mode numbers l > 20 

and a constant amplitude for # #l2 20 were used. Simulations 
were repeated by varying DV/Vimp from 0 (unperturbed) to 4%. 
The YOC D D- -yield yield2 1` j was calculated for implosions 
on both scales. Simulations with an alternative l 1-  roll-off 
spectrum show good agreement with these results.

Non-Hydro-Equivalent Physics of the Deceleration Phase
The scaling of the deceleration-phase RTI is determined 

by scaling the stabilization resulting from mass ablation 
V Vabl imp` j and density-gradient scale length ,L Rmin hs` j  

which can be understood by studying the effect of thermal 
conduction and radiation transport during this phase. This sec-
tion presents the results from simulations and compares them 
to the analytic scaling. 

1.	 Effect of Thermal Conduction: V Vabl imp` j Scaling
The analytical scaling of V Vabl imp` j shown in Eq. (19) 

can be rewritten using the radius and time-scaling factor 
S R R 4NIF/ =Ω  as

	 a a . .
V

V

R

R
0 5

.0 5

abl

abl
NIF

NIF
-

Ω
Ω

e o 	 (25)

On OMEGA the hot-spot mass density at stagnation ts is 
higher and the hot-spot temperature Ts is lower than on NIF-

scale implosions (see Fig. 143.12), leading to the 1-D scaling of 
hot-spot temperature as T + R0.21. This can be attributed to the 
higher mass ablation rate on OMEGA, which is in qualitative 
accordance with Eq. (25). The pressure at stagnation Ps is the 
same on both scales, showing hydro-equivalence. 
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Pressure P, density t, and temperature T at time of peak neutron rate tbang ver-
sus radial distance for NIF-scale (blue) and OMEGA-scale (red) implosions. 
Simulations were performed using the 1-D code LILAC, including thermal 
conduction (without radiation transport) during the deceleration phase.

The Vabl for the implosions of both scales is shown in 
Fig. 143.13(a). It is clearly seen that thermal conduction deter-
mines the scaling of ablation velocity V Vi.e., abl imp` j because 
including radiation transport has no effect on the scaling of Vabl 
since it enhances the Vabl on both scales equally. Simulations 
show that 

	 a a . ,
V

V

V

V
0 6

abl

abl
NIF

no rad abl

abl
NIF

rad
Ω Ωf fp p 	 (26)

which agrees with the analytical scaling in Eq. (25).

The normalized density-gradient scale length L Rmin hs` j 
arising from thermal conduction is rather small and has 
almost no effect on the scaling of the deceleration-phase 
RTI. From Fig. 143.13(b), considering the simulations with-
out radiation, the normalized scale lengths at stagnation 
a re a .L R 0 02min hs NIF` j  and a . .L R 0 05min hs Ω` j  Since 

%1L Rmin hs  on both scales, it affects only the very high 
l modes that are already stabilized by ablation and has little 
effect on the scaling of the deceleration RTI [see Eq. (20)].
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While the classical RTI (i.e., no ablation) is exactly hydro-
equivalent [see Figs. 143.14(a) and 143.15(a)], the ablative 
stabilization caused by thermal transport does not scale hydro-
equivalently [Fig. 143.14(b)] with the OMEGA target exhibiting 
higher stabilization.

To study the effect of V Vabl imp` j scaling (i.e., ther-
mal conduction) on the deceleration-phase RTI, a series of 
single-mode simulations without radiation transport (i.e., 
only thermal transport) for different l numbers were carried 

out. Hydro-equivalent velocity perturbations with a single 
cosine mode were imposed on the inner surface of the shell. 
Short-wavelength modes exhibit higher ablative stabilization 
because of thermal conduction [see Eq. (17) and Fig. 143.15(b)]. 
The growth factors on the NIF are +2.7# those on OMEGA, 
which is in agreement to the scaling in Eq. (17). Multimode 
simulations show that differences in the deceleration phase of 
hydro-equivalent implosions have an effect on the YOC ratio, 
with YOCΩ > YOCNIF by + 25% when the RTI becomes highly 
nonlinear (near saturation).

Figure 143.14
Density plots at hydro-equivalent times showing l = 60 deceleration RT growth on OMEGA (top half) and the NIF (lower half). (a) Simulations without thermal 
conduction on both scales match perfectly, illustrating that classical RTI is exactly hydro-equivalent. (b) Simulations with ablation caused by thermal transport 
(only) do not scale hydro-equivalently, resulting in different RT growth.
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2.	 Effect of Radiation Transport: L Rmin hs` j Scaling
In this subsection we discuss the scaling of the RTI stabili-

zation mechanism caused by reabsorption of bremsstrahlung 
emission from the hot spot. As the central plasma is heated 
by compression during the deceleration phase, it emits brems-
strahlung radiation. Some of the radiation emitted from the hot 
spot is absorbed on the inner surface of the shell, causing mass 
ablation and increasing Lmin and Vabl during the last 400 ps 
(NIF-scale time) before bang time tbang (see Fig. 143.13). The 
mean free path (mfp) of photons with energy ho (in DT plasma) 
is given by the Kramers formula13

	 . . ,l
T hv

2 25 104
2

3

#
t

_ i
	 (27)

where l is in nm, the electron temperature T and photon energy 
ho are in keV, and the density of plasma t is in g/cm3. Photons 
emitted in a 5-keV hot spot exhibit an mfp of 2500 nm in 
the hot spot (considering a mass density of 50 g/cm3) and an 
mfp of 20 nm in the cold (200-eV) shell with a mass density of 
250 g/cm3. The shell thickness for a typical NIF-scale target near 
stagnation is +50 nm, whereas for a hydro-equivalent OMEGA 
target, the shell is 4# thinner (+12.5 nm). Consequently, more of 
the radiation emitted from the hot spot is reabsorbed by the NIF 
shell (see Fig. 143.7). The fraction of emitted energy that is reab-
sorbed by the shell at stagnation (Rs) is greater on the NIF (0.54) 
than on OMEGA (0.36). As a result of higher reabsorption, the 
density-gradient scale length is more enhanced in the NIF target 
than in the OMEGA target (see Fig. 143.16). A quantitative mea-

Figure 143.15
Deceleration-phase RTI linear growth factors versus mode number l for NIF (blue) and OMEGA (red) hydro-equivalent implosions. (a) The classical growth 
factor, (b) growth factors with thermal transport (i.e., without radiation transport), and (c) growth factors with stabilization related to both thermal and radia-
tion transport are shown.

Figure 143.16
Density profiles at time of peak neutron rate for hydro-equivalent (a) OMEGA 
and (b) NIF implosions. It is shown that radiation reabsorbed by the NIF shell 
results in a greater enhancement of the scale lengths for the NIF with respect 
to the OMEGA target.
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bilization related to Vabl is predominant on the smaller target, 
resulting in a . ,G G 2 7RT

NIF
RT no rad
Ωa k  whereas the stabilization  

related to L Rmin hs scales inversely and reduces the difference 
to a . .G G 1 35RT

NIF
RT rad
Ωa k  The impact of thermal conduction 

is more significant on the scaling of the RTI. The results of 
single-mode linear growth factors including both thermal con-
duction and radiation transport show that deceleration-phase 
RTI growth factors on NIF implosions are +35% higher than on 
hydro-equivalent OMEGA implosions. 

Scaling of the Ignition Condition
Multimode simulations (see Fig. 143.17) with hydro-

equivalent initial perturbations (i.e., equal DV/Vimp, described 
on p. 131) were used to calculate the YOC YOCNIFΩ  ratio 
[see Fig. 143.18(a)]. Increasing the nonuniformities results in 
higher YOC ratios, until the RTI becomes highly nonlinear (as 
in Fig. 143.17) and saturates at

	 a . .1 17
YOC

YOC

NIF

Ω
f p 	 (29)

The scaling of the deceleration-phase RTI discussed in earlier 
sections is applicable to the linear and moderately nonlinear 
regimes of the instability. In the highly nonlinear regime the 
RTI saturates and this phase of the instability scales equiva-
lently (from simulations); therefore, the YOC ratio asymptotes 
as shown in Fig. 143.18(a). This indicates that the opposite 
scaling of the ablative and radiative stabilization mitigates their 
effects on the capsule performance and makes the deceleration 
RTI almost effectively hydro-equivalent. 
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sure is provided in Fig. 143.13(b); by adding radiation transport to 
the simulations, the scale length L Rmin hs` j increases by fivefold 
on the NIF scale, whereas the change is only a factor of 1.6 on 
OMEGA. Since there is a broad spectrum of emission frequency 
o from the hot spot, the photons absorbed deeper in the shell 
enhance the density scale length; therefore, radiation transport 
determines the scaling of Lmin in hydro-equivalent implosions:

	 .
L

L

L

L
>

min

min

min

min
no rad

rad

NIF
no rad

rad

Ω

f fp p 	 (28)

A comparison of the central hot-spot temperatures for the simu-
lations with and without radiation transport show that radiation 
transport has little effect on the scaling of the temperature 
with target size, unlike thermal conduction. The scaling of the 
temperature21 with target size is Tc + R0.28 without considering 
radiation transport, and it changes to Tc + R0.21 when radiation 
transport is included.

The effect of the L Rmin hs` j scaling on the linear RTI 
growth factors is shown in Fig. 143.15(c). The RTI on the 
NIF-scale implosion experiences higher stabilization from 
enhanced density gradients compared to OMEGA for the 
same initial perturbation DV/Vimp. Similar studies on another 
target with a high implosion velocity (+430 km/s) showed 
identical trends. Comparing Figs. 143.15(b) and 143.15(c) 
shows that stabilization of the deceleration-phase RTI 
caused by ablation velocity V Vabl imp` j and density scale 
length L Rmin hs` j scales oppositely with target size. The sta-



Hydrodynamic Scaling of the Deceleration-Phase Rayleigh-Taylor Instabiliity

LLE Review, Volume 143 137

The analytic curve [shown in Fig. 143.18(b)] is obtained 
from Eq. (24) by varying the YOCΩ and using a 35%-higher 
linear growth factor on the NIF (see Hydro-Equivalent Scal-
ing of the Yield-Over-Clean, p. 130); the curve matches 
well with the multimode simulations in the linear regime and 
reproduces the YOC ratio of 1.17 obtained from simulations 
(for a YOCΩ of 0.66, the calculated YOCNIF is 0.56). It is 
important to note that the formula in Eq. (24) assumes that the 
yield deterioration is caused by a reduction in the clean volume 
only; i.e., the hot-spot pressure and temperature are unaltered 
(compared to 1-D). In the highly nonlinear regime the YOC 
ratio obtained from simulations deviate from the linear theory 
[see Fig. 143.18(b)]. This can be attributed to the fact that for 
such highly nonlinear RTI, the conditions in the burn volume 
differ from the 1-D predictions because a significant fraction of 
the shell’s kinetic energy is used to drive the instability instead 
of compressing the hot spot to higher pressures. This effect 
is being investigated by studying trends in neutron-averaged 
quantities from deceleration-phase simulations with nonlinear 
RTI. The scaling of the YOC with the burn average volume 
will be the subject of a forthcoming publication. 

Using the above YOC ratio derived from considering the 
scaling of the stabilizing effects on the deceleration-phase RTI, 
the ignition parameter in Eq. (22) is given as |Ω . 0.2. This is 
in agreement with the analysis in Ref. 11 and valid within the 
frame of the 2-D analysis. While 3-D effects on the RTI may 
lead to a quantitative change of our conclusions, we do not 
expect any qualitative changes in the scaling results. A similar 
study in 3-D geometry is the focus of our current research and 
will be the subject of a forthcoming publication.

Conclusions
A comprehensive study of the scaling of the deceleration-

phase RTI has been carried out to assess its impact on the 
YOC scaling and the hydro-equivalent ignition condition. An 
analytic model for the hot-spot-ignition condition has been 
developed, including the emission losses and reabsorption 
and mass ablation. It is shown that because of the convergence 
effects, the diffusive terms responsible for ablative stabiliza-
tion (thermal conduction and radiation transport) do not scale 
hydro-equivalently with implosion size. Thermal conduction 
determines the scaling of the ablation velocity Vabl during the 
deceleration phase, and NIF implosions exhibit lower Vabl than 
hydro-equivalent OMEGA implosions. On the other hand, 
radiation emitted from the hot spot is more effectively reab-
sorbed by the thicker NIF shell, enhancing the density-gradient 
scale lengths L Rmin hs` j in NIF more than in OMEGA targets. 
Therefore, mitigation of the deceleration-phase RT instability 
caused by V Vabl imp and L Rmin hs scale oppositely with target 
size. The linear growth factors on the NIF are 35% higher than 
on OMEGA. Considering both linear and nonlinear multimode 
simulations, it has been shown that the deceleration-phase YOC 
for OMEGA is a17% higher than the YOC for NIF ignition-
scale targets. A no-a Lawson ignition parameter of |Ω . 0.2 
on OMEGA is required to achieve hydro-equivalent ignition 
for symmetric direct drive on the NIF.
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Figure 143.18
(a) Results from multimode simulations showing YOC ratio versus velocity perturbation for NIF- and OMEGA-scale implosions asymptote to 1.17 (red dashes). 
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