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Introduction
High-energy electrons are detrimental to laser fusion because 
they can preheat the fuel, preventing the high compression 
necessary for central hot-spot ignition and high gain.1 The 
direct-drive approach is particularly vulnerable as a result of 
the long scale length of plasma that exists at the quarter-critical 
density of the target, although it can also occur in indirect-
drive geometry.2

Direct-drive–implosion experiments on OMEGA have 
observed hard x rays (a signature of hot electrons) that are 
coincident with the emission of half-integer harmonics and the 
predicted two-plasmon-decay (TPD) threshold.3 Four-channel 
x-ray spectroscopy ranging in energies from 20 to 500 keV indi-
cates hot-electron temperatures of Thot K 100 keV for irradia-
tion intensities of I0 + 1015 W/cm2 at m0 = 351 nm (Ref. 4). Since 
electrons in excess of 100 keV are inferred experimentally via 
the hard x rays that they produce, it is apparent that the pos-
sibility of preheating exists. This will lead to an increased fuel 
adiabat and diminished fuel compressibility. Estimates of target 
preheat based on measured x rays are difficult, but likely fall in 
the range of 40 to 50 J, where the impact on target performance 
might be measurable on OMEGA (Delettrez et al. estimate a 
40% reduction in areal density for a worst-case scenario on the 
basis of one-dimensional hydrodynamic calculations5).

Definitive evidence of preheat-impaired performance 
[e.g., in reduced areal density (tR)] on OMEGA is currently 
lacking,6,7 which complicates any extrapolation of preheat 
to ignition-scale designs. For example, in implosion experi-
ments, close to 80% of maximum predicted areal density above 
200 mg/cm2 has been achieved using 10-nm-thick deuterated 
plastic (CD) ablators.8 The TPD instability is only weakly 
excited in these targets. It can be more strongly excited by using 
thinner shells since the TPD threshold is more easily attained 
in hydrogenic plasma. While a significant degradation of tR is 
observed for thinner CD ablators, it is not currently possible to 
rule out other competing mechanisms such as shock mistim-
ing, hydrodynamic instability, radiation preheat, and preheat 
by nonlocal thermal electrons.

Hot-Electron Heating Caused by Two-Plasmon-Decay Instability

The need for a physical model of target preheat clearly 
exists. The self-consistent modeling, however, of hot-electron 
generation and the resulting preheating of the target is a very 
challenging problem. The purpose of this article is to present 
a model that represents an attempt in this direction. It includes 
aspects of the experimental conditions that are thought to be 
important. Namely, it assumes that all preheat is associated 
with TPD instability and the plasma inhomogeneities (density 
gradient) play an important role. The model contains non-
linearities that have been shown by detailed particle-in-cell 
calculations to play a dominant role in saturation.9,10 The 
possibility of multiple acceleration stages for hot electrons as 
they periodically pass through the quarter-critical surface is 
also investigated. It takes the trajectory of the heated electrons 
that lies outside of the simulation boundaries into account. It is 
shown that, for the parameters of current OMEGA direct-drive 
cryogenic implosions, recirculation (or reheating) of electrons 
is an important effect.

While several simplifications are made, we attempt to show 
how, in future work, these simplifications may be systemati-
cally relaxed. The most important of these is the development 
of a self-consistent quasilinear model for the evolution of the 
electron distribution function11 that would replace the current 
test-particle treatment.

The sections that follow describe the model for electron 
heating, with subsections describing the extended Zakharov 
model for the saturated electric field spectrum and outlining 
the test-particle method; present the results of electron-heating 
calculations; and, finally, present a summary and conclusions.

Description of a Model for Hot-Electron Production
Based on experimental observations, there are reasons to 

believe that TPD is the sole instability active in producing 
hot electrons in current OMEGA experiments. Half-integer 
harmonic signatures of TPD are strongly correlated with hard 
x-ray production, with x-ray energies of the order of Ex ray + 
100 keV (Refs. 3 and 4). The onset of TPD signatures is also well 
predicted by the simple linear threshold for the absolute TPD 
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instability of a plane electromagnetic wave in a density gradient 
when the intensity of the plane wave is equated with the average 
overlapped-beam intensity on OMEGA. Thresholds for TPD in a 
linear gradient have been computed by a number of authors.12–21 
The “above-threshold parameter” ,I L T32014 m keVh = n _ i  
which is based on the expression for absolute instability com-
puted by Simon et al.,13 4.134k Lv v >2

0osc e` j  (i.e., the large 
b limit), has proven itself to be a very useful empirical tool 
for interpreting OMEGA experiments.3,5,8 While the onset 
is well predicted by the h parameter, which signals absolute 
instability, the measured spectrum of plasma waves is gener-
ally not consistent with the absolutely unstable eigenmode.3 
Above threshold, the absolutely unstable wave corresponds to 
a forward-going plasmon of wave number close to k0, where k0 
is the laser vacuum wave number, and a plasmon with small 
perpendicular wave number given by
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while experimentally, most Langmuir wave (LW) intensity is 
found to be located close to the Landau cutoff (k + 0.25 kDe, 
where kDe is the Debye wave number).3 This is not too surpris-
ing because convective growth can become important at similar 
intensities and can dominate the nonlinear state9,22 because it 
is not as easily saturated as the absolute mode (see Zakharov 
Model for the Saturated LW Spectrum, below).

Raman backscattering is neglected in the model because 
of the absence of an experimentally observed Raman back-
scattering signature. This is consistent with linear gain 
estimates: Raman scattering is expected to be convectively 
unstable below quarter-critical, with the Rosenbluth gain23 
A V V0

2
1 2Ros rc l= l be-ing negligible for the relevant experi-

mental parameters 

 ~ . .A I n n L0 04 1 150 m14
1 2

Ros e c m- n
-

n` `j j   

The envelope approximation, upon which the previous expres-
sion relies, is not valid near the quarter-critical density. Drake 
et al. have demonstrated the potential for absolute instability 
of stimulated Raman scattering (SRS) near the quarter-critical 
density24 with the threshold condition

 .c k L1 2v > /
0

2 3
osc

-_ _i i  

The ratio of the TPD threshold to the above expression for 
absolute SRS is given approximately by
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It appears that the effects of absolute Raman scattering near 
the quarter-critical density should be taken into account. The 
model currently omits this possibility (and achieves a worth-
while simplification by ignoring the equation for the envelope 
of the scattered transverse wave). This is based on the observa-
tions of the dominance of convective TPD over absolute TPD 
(see Zakharov Model for the Saturated LW Spectrum, 
below) and, by association, absolute Raman or high-frequency 
hybrid instability.18,19 The neglect of these terms also appears 
consistent with results reported for explicit particle-in-cell 
(PIC) calculations.9

The spectrum of LW’s driven by TPD instability is assumed 
to be saturated by nonlinearities that are contained within the 
extended Zakharov approximation.25,26 Recent comparisons 
between the Zakharov model and reduced PIC calculations of 
TPD in homogeneous plasma indicate this to be a reasonable 
approximation.10 The model takes into account the density 
gradients and flow velocities at quarter-critical that are predicted 
to occur experimentally on the basis of 1-D radiation–hydro-
dynamic calculations using the LILAC code.27

Electron heating in response to this spectrum of electrostatic 
waves is computed in a test-particle approximation, i.e., the 
electron distribution is heated by the LW’s, but the modified 
electron-distribution function does not act back on the LW’s, 
i.e., there is no kinetic modification of the LW dispersion rela-
tion. This is done in order to make contact with experimental 
observations, as well as to investigate the effects of recircu-
lating electron trajectories, which have for a long time been 
thought to be important.11,28 

The test-particle approach to electron heating also allows 
for a systematic investigation of the validity of a self-consistent 
quasilinear model for TPD11 along the lines of Sanbonmatsu et 
al.29,30 by explicitly computing the diffusion of electron 
velocities, tv 2D Dv] g  (Refs. 31–33). This will be the subject 
of a future publication.

1. Zakharov Model for the Saturated LW Spectrum
The LW fields near the quarter-critical surface are mod-

eled in the extended Zakharov approximation in two spatial 
dimensions taking into account a prescribed density gradient, 
as has been described previously,25,26 and now extended here 
to include a prescribed flow velocity
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(1)

In the above equation, Ev is the slowly varying complex envelope 
of the longitudinal electric field E expE i t1 2 c.c.0l p~= +v v ` j  
(i.e., the electric field is decomposed into longitudinal and 
transverse components E E E .l t= +v v v  The quantity E0

v  is the 
slowly varying (in time) complex envelope of the transverse, 
electromagnetic (EM) field, 

 E ,expE ik x i t i2, , 0t j j p jj

N
0 0 01

j - -$ ~ ~ z= +=
v v v v ` j9 C/  

which consists of Nj beams of amplitude E ,j0
v  and of wave 

number k , j0
v  that differs only in direction k k, ,i j0 0=v va k and 

phase zj. The reference electron-plasma frequency is 

 ,n e m4
/

p0 0
2 1 2

e~ r= ` j  

and T mv /1 2
e e e= ` j  is the electron thermal velocity. For the 

slow density variation, dn + dN represents the departure from 
the reference density n0 = 0.23 nc, where n m e40

2 2
c e~ r= _ i 

is the laser critical density. The static, i.e., non-evolving, 
component of the electron density corresponds to a linearly 
increasing density profile,

 . . ,N x n N x l n0 23 0 04 2 1x0 c-/ d+ = +_ `i j9 C  

which varies from 0.19 nc to 0.27 nc over the simulation 
length lx, where x ! [0,lx] and has a density scale length 
of .logL N x x l8 23d dn x

1 1/ =- -_ _i i8 B  The value of Ln is 
assumed to be constant in time during the integration period 
of the Zakharov model. The evolving component , ,n x td v̂ h  a real 
quantity, satisfies the second Zakharov equation
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(2)

  ,S n+ d  (3)

which takes into account the ponderomotive force of the light 
waves, each having the phase zj. The low-frequency (LF) 
fluctuations are also driven by the ponderomotive pressure of 
the LW’s, which is quadratic in .Ev  The damping operators oe% 

and oi% are local in k-space and contain the contribution of 
collisional and Landau-damping terms corresponding to a fixed 
Maxwellian ion- and electron-velocity distribution function of 
temperatures Ti and Te, respectively. The terms SE and Sdn are 
noise terms that support a thermal level of LW and ion-acoustic-
wave (IAW) fluctuations in the absence of other sources.25

The numerical domain X = [0,lx] # [0,ly] on which the 
extended Zakharov model is solved is typically arranged 
so that the linear electron-density profile spans the range 
0.19 0.27.n n< <e c  This ensures that the electric field asso-
ciated with the LW’s vanishes on the longitudinal boundaries. 
The electrostatic waves are damped at low density (large 
kmDe) and reflected (turn) before encountering the boundary 
at the high-density side. Based on predicted scale lengths on 
OMEGA of Ln + 150 nm, this translates into a spatial dimen-
sion lx of approximately lx + 50 nm. The transverse dimensions 
are usually a few tens of microns. The transverse dimension 
should be as small as possible for computational efficiency, 
but no shorter than the correlation length for the LW fields. 
Typically, the transverse length ly, where y ! [0,ly], is chosen 
to be ly L 12.0 nm.

a. Zakharov predictions for the saturated LW spectrum.  
The nonlinear saturation of TPD based on the model presented 
in Zakharov Model for Saturated LW Spectrum (p. 67) is 
seen to involve a process of density-profile modification,25,34 
the generation of ion-acoustic-wave turbulence as a result of 
the ponderomotive response to primary TPD LW’s,9,25 LW 
cavitation and collapse, and Langmuir decay instability.25 
The development is quite similar to that observed in homoge-
neous reduced particle-in-cell calculations made recently by 
Vu et al.10 and is broadly consistent with earlier observations 
that saturation occurs as a result of ion-wave fluctuations35 or 
profile steepening.34,36

A series of two-dimensional calculations solving Eqs. (1) 
and (2) have been carried out with parameters motivated by 
conditions either currently or soon-to-be accessible on the 
OMEGA Laser System: the laser wavelength m0 = 0.351 nm, 
the electron temperature Te = 2.0 keV, the ion temperature Ti = 
1.0 keV, ion charge Z = 3.5 (effective charge state correspond-
ing to CH plasma), IAW damping of 0.1,kc0i i s/o o =  and 
density-gradient scale lengths in the range Ln = (100 to 350) nm. 
The simulation domain was chosen so as to include densities 
from ne = (0.19 to 0.27) nc. In the case of Ln = 150 nm (which 
we define as the “canonical” scale length on OMEGA), lx = 
45.0 nm, and ly = 12.0 nm (other cases were adjusted appro-
priately). The simulations were made with either a single-plane 
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electromagnetic (EM) wave (Nj = 1), normally incident along 
the direction of the density gradient ,k e k 1, ,x0 1 0 1$ =v ta k  or 
with two overlapping plane waves (Nj = 2), each incident at an 
angle of 0.23cos k e k, ,j j x j

1
0 0$ ! ci = =- v ta k  to the direction of 

the density gradient (the calculations with two crossed beams 
allow for the sharing of a common plasma wave10 that is thought 
to be an important experimental process on OMEGA.37) The 
plane of simulation is chosen to be coincident with the plane of 
polarization, which also assumes that all Nj beams are similarly 
polarized. The laser intensities IL (incoherent overlapped “inten-
sity” I c E8 ,ii

N
01L

j/ r =
2v^ h/  in the case of multiple beams) 

were varied in the range IL = (5 # 1014 – 2 # 1015) W/cm2. The 
combination of laser intensity and density scale length was 
chosen to put the absolute TPD instability in either the weakly 
unstable (h + 1.5) or moderately unstable regime (h + 2 to 3) 
with respect to the threshold criterion as defined by Simon et 
al.13 Although there are differences between the single-beam 
and crossed-beam calculations, which will be described in a 
separate publication, the generic results described below are 
illustrative of both cases.

The calculations develop from the initial onset of absolute 
instability, which corresponds very well with the calculations 
of Simon et al.13 with regard to both the threshold intensity and 
unstable wave number (eigenmode), toward a broad spectrum 
of plasmons as shown in Fig. 126.14(a). [The onset of absolute 

instability and the resulting growth rate were determined 
accurately by removing the nonlinear coupling between the 
Eqs. (1) and (2). The threshold intensity was therefore observed 
to coincide with the Simon et al. prediction to within 10% for 
the normally incident single-beam case].

The absolutely growing mode eventually reaches a suf-
ficient amplitude where nonlinearities become important. The 
time required for strong nonlinearity to become important 
for canonical OMEGA parameters based on an initial noise 
level of E n T8 6 102

0
6

e #r = -_ i  and a laser intensity of 
IL = 1015 W/cm2 was found to be +1.2 ps. Density-profile 
modification34 was the saturating mechanism of the absolute 
modes in these calculations. This was determined by perform-
ing an estimate of the local steepening of the density gradient 
by taking a transverse (y direction) average of the density 

y,N x N x n x y/ d+u_ _ `i i j  (as shown in Fig. 126.15) and esti-
mating the modified gradient scale length in the neighborhood 
of the quarter-critical density .L mn  The observed scale length, 
when substituted into the threshold expression, was found to 
lead to marginal stability ~1.I L T23014 m keVh = n

u _ i  This 
situation was found to hold for all calculations that were 
performed. The collapse in growth of the initially unstable 
eigenmode is followed by an expanding region of large LW 
excitation at lower densities (corresponding to larger k9 LW’s 
in the single-beam case). This is seen in the Fourier spectrum  
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Figure 126.14
(a) The saturated Langmuir wave spectrum in Fourier space Ek

2v  corresponding to a crossed-beam irradiation geometry with an overlapped intensity of IL = 
1 # 1015 W/cm2 (canonical OMEGA parameters). Two EM waves are incident at angles of !23°. For each beam, the single-beam maximum-growth-rate curves 
for TPD10 are shown as dashed lines, while the solid red line defines the Landau cutoff. (b) The TPD growth rate in arbritary units from the theory of Short37 
for the same parameters as in (a).
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of the longitudinal electric-field intensity [Fig. 126.14(a)], 
where the active region of LW’s extends as far as the Landau 
cutoff at wave numbers k + 0.25 kDe (solid red line). These 
unstable modes, which are convective in nature, come to 
dominate the saturated LW spectrum at later times. The broad 
spectrum in Fig. 126.14(a), which corresponds to irradiation 
by two crossed beams, is dominated by the common LW and 
its associated daughter waves. This can be seen by comparing 
the spectral features in Fig. 126.14(a) with the expected growth 
rate based on a multiple-beam theory for identical parameters37 
[Fig. 126.14(b)]. The predicted maximum growth rate occurs 
at the intersection of the single-beam maximum growth rate 
curves (shown by the dashed lines) in Fig. 126.14. The growth 
rate has quite a broad peak, extending beyond the Landau 
cutoff (solid circle) for positive wave numbers—although the 
crossed-beam theory ignores wave damping. The absolute mode 
would appear to be relatively unimportant in the saturated state.

Yan et al.9,22 demonstrated that the convective Rosenbluth 
gain in amplitude [gR + exp(rK)] for the large k9 TPD modes 
can be simply written in terms of the Simon et al. threshold 
parameter for absolute instability 

 2.5 . . ,T T k1 0 0088 0 0047 2
keV keV- -r hK = =

ua k  

where .k ck 0/ ~u  Convective gain in intensity is therefore sev-
eral times larger than the threshold parameter and very weakly 

dependent upon the transverse wave number for the parameters 
of current interest. Close to threshold, all transverse modes 
up to the Landau cutoff can saturate convectively without the 
need for nonlinear processes. As laser intensity increases, these 
convective modes are observed to saturate as a result of the 
excitation of large-amplitude ion-acoustic perturbations with 
relative-density perturbations on the few-percent level.

Features of the growth and nonlinear saturation of Fourier 
modes that come to dominate the spectrum at times t L 1.2 ps 
in the case of single-beam illumination are illustrated in 
Fig. 126.16. The left-hand column [Figs. 126.16(a)–126.16(c)] 
shows a series of snapshots of the low-frequency density per-
turbations GdnHrms (x)/nc taken at different times (see figure cap-
tion). Note that the reference n0 and linearly varying part of the 
density dN(x) have been extracted and that a one-dimensional 
lineout has been obtained by taking the root-mean-square (rms) 
average over the transverse (y) coordinate, 
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normalized to the critical density nc, taken at the time of saturation of the 
absolutely unstable eigenmode (t = 1.2 ps) for the simulations described in 
Zakharov Predictions for the Saturated LW Spectrum (p. 68). The dashed 
line approximates the slope in the neighborhood of quarter critical and is used 
to define the modified density scale length .Lnu  
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The left-hand column [(a)–(c)] shows a series of snapshots of the 1-D density 
perturbation ,n nrms cd  while the right-hand column [(d)–(f)] shows the 
transverse average of the LW excitation level ,E 2v  both plotted against the 
longitudinal coordinate x (in microns). From top to bottom, the rows corre-
spond to times t = 1.2, t = 2.0, and t = 2.4 ps. The figure illustrates the correla-
tion between LW amplitude and the region over which . %.n n 0 5rms c Ld  
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 j, ,n x n n x x1
/

i y ij
n 2

1

1 2

rms
y/d d=` ` aj j k; E/  

where ny is the number of transverse grid points. The right-hand 
column [Figs. 126.16(d)–126.16(f)] shows the normalized LW 
excitation level E 2v  averaged over the transverse direction.

Figure 126.16(a) shows the situation at t = 1.2 ps, where the 
convective LW growth is well described by the linear evolution. 
The excitation of the LF density perturbations is due to the non-
linear ponderomotive force [first term on the left side of Eq. (2)] 
of the unstable LW’s and has a negligible effect on LW growth 
given by Eq. (1) (its contribution is negligible compared to the 
damping rate, for example). In Fig. 126.16(d), the LW’s appear 
to grow more rapidly at higher density for reasons that are 
not fully understood. As time progresses [Fig. 126.16(b)], the 
density perturbation GdnHrms (x) level has grown significantly 
and is at the few-percent level. A two-dimensional Fourier 
analysis of the density perturbations (not shown) reveals these 
perturbations to be IAW’s driven in response to the pondero-
motive beating of primary TPD LW’s, a feature previously 
identified in the reduced PIC calculations of Vu et al.10 The 
absolute mode has saturated as described above. Notice that 
the maximum in the LW excitation level max E x2 _ i9 C occurs 
at roughly x = 19 nm, which is the point where GdnHrms (x)/nc 
falls below 0.5%. This peak in LW excitation moved to this 
location continuously from near ne = 0.25 nc, following the 
boundary of density excitations. For larger values of x, there 
is evidence of saturation of the LW amplitude. The saturation 
leads to a lower level of LW amplitudes and a weakening of 
the ponderomotive excitation of dn.

The onset of a new type of behavior is shown in Figs. 126.16(c)–
126.16(f). The LF density perturbations have decreased to a 
value of 0.5%.n nrms c Kd  This appears to permit some 
renewed growth of the LW’s (i.e., at x = 30 nm) and leads to 
a new peak in LW excitation located close to the minimum in 

.n nrms cd  This close correlation between the evolution of 
uEu2 and dn is given as evidence of the detuning effect of LF 
density perturbations on the convective growth of TPD modes. 
We recall that this is the same mechanism proposed as the 
saturation mechanism for TPD in the OSIRIS PIC calculations 
of Yan et al.9 It would appear that density perturbations need 
to exceed the level 0.5%n nrms c .d  in order to be effective. 
An alternate description of nonlinear saturation will be given 
in a paper by Vu et al.,38 where evidence is presented from 
RPIC and Zakharov simulations that Langmuir collapse is the 
essential dissipative saturation mechanism in these relatively 
weakly driven regimes, with the Langmuir decay instability 
(LDI) playing a minor role.

In general, the evolution of the LW spectrum to a steady 
state is observed to take several tens of picoseconds. While 
oscillations of the kind described above persist, the spectrum 
becomes “steady” only after roughly one acoustic transit time 
across the density range Dn spanning from the Landau cutoff 
to quarter-critical. For canonical parameters, this time is tsat + 
Dx/cs = (Dn/n0) Ln # 1/cs . 100 ps. This steady LW spectrum 
is used below to investigate the generation of hot electrons.

b. Estimate of the maximum energy gain for an electron in 
transit through the interaction region.  The late-time (saturated) 
LW spectrum obtained from the Zakharov calculations on 
p. 68, although broad, is dominated by a shared common wave 
and the corresponding daughter waves whenever the irradiation 
consists of symmetrically arranged, overlapping plane waves 
(Fig. 126.14) (an effect that may explain the experimentally 
observed scaling of preheat on overlapped-beam intensities4). 
Since this is the usual experimental configuration on OMEGA, 
consider the simple case where the action on the plasma electrons 
is due to a single coherent LW wave. In this case, an estimate for 
the expected scale of electron heating can be obtained (although 
it should be noted that similar numbers can be obtained without 
invoking the common wave). Taking the wave numbers of the 
LW’s at their point of origin to be kmDe = 0.16 and 0.07, respec-
tively (see Fig. 126.14) (the common wave is only resonant at a 
particular density;10 here the density is 0.241n ne c = ), then the 
trapping width can be estimated from the formula 

 E2 2 ,e m kv v v/ /
l

1 2 1 2
tr e osc= = z` aj k  

where Ee mv losc e~= ` j is the oscillatory velocity of an 
untrapped electron and k k1 1 3v v 2 2

Te De Dem m= +z
/1 2` j  is 

the LW phase velocity for a wave satisfying the Bohm–Gross 
dispersion relation .k1 32 2 2 2

p De~ ~ m= +a k  In practical units the 
trapping width becomes 
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Substituting the wave numbers for the common and daughter 
waves gives the values 

 E E1.38v v /
l t

1 2
tr Te= ` j  

and E E2.1 ,v /
l t

1 2
Te` j  respectively. In both cases the trapping 

width is insufficient to trap thermal electrons because of the 
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high phase velocity of the waves ( 6.49v vTe =z  and 14.40 for 
the common and daughter LW’s, respectively). As a result, wave 
breaking will not easily occur.39 

The presence of the density gradient modifies the propagation 
of the TPD-produced LW’s from their point of origin. Theoreti-
cal treatments of wave–particle interaction that lead to particle 
trapping and acceleration most often consider unbounded homo-
geneous plasma.40,41 The present situation involves both a spa-
tially localized region of LW excitation (excitation is restricted 
to densities in the range . 0.25n n0 2 e cK K h and plasma 
inhomogeneity. Of most importance is the inhomogeneity in the 
plasma density. For example, the common wave, which is blue 
shifted with respect to ,20~  propagates up the density gradi-
ent. For a freely propagating LW of fixed frequency ~, the wave 
number will decrease in order to preserve the dispersion relation 
as the local density (and plasma frequency) increases. The phase 
velocity will likewise increase ,x3v v /2 2 2 1 2

Te p-~ ~ ~=z _ i: D& 0  
at some point becoming superluminal (the group velocity has 
the opposite dependence, V 3v vg Te= z). The density at which 
the LW will turn depends on its frequency. The daughter wave 
(red-shifted plasmon) propagates down the gradient. Its phase 
velocity decreases until it becomes a few times the thermal 
velocity and the wave is damped (the Landau cutoff).

The density gradient creates the potential for electron accel-
eration to higher energies than can be obtained in homogeneous 
plasma since the phase-velocity increase can keep pace with the 
electron as it is accelerated up the gradient.42 Given an arbitrary 
LW amplitude, it might be possible to accelerate electrons to 
arbitrarily high energies, but, practically, there will come a 
point at which the maximum acceleration in the LW field will be 
insufficient to match the acceleration of the LW phase velocity. 
Following Brooks et al.42 (with a trivial generalization to include 
relativistic velocities), the magnitude of the largest-attainable 
acceleration may be simply obtained from the relativistic 
momentum equation for electrons Ev e mmax l

3
ec=l ` j by 

assuming the electron maintains constant phase with respect to 
the LW. In practical units the maximum-attainable acceleration is 

 2
E E. ,I1 5 10 cm/sv /

max l t
24

15
1 2 3

ph # c= -
l ` j  

where the prime denotes the time derivative. Equating this 
with the acceleration of the LW phase velocity up the density 
gradient x x x x L2v v p p n

2 2 2 2-~ ~ ~=z z
1-l _ _ _ _ _i i i i i8 B  enables 

one to calculate the location x and phase velocity at which 
the electron can no longer remain in phase (vz)max—the 
above is solved iteratively since the relativistic gamma factor 
is dependent on the phase velocity .cv v1

/2 2 1 2
-c =

-
z z_ ai k  

The energy gain is given by DE/(mec2) = c [(vz)max]–c [(vz)0], 
where (vz)0 is the initial (phase) velocity of the electron (LW). 
Substituting in values I15 = 1, El = Et, and (vz)0 = 6.49 vTe from 
the Zakharov calculations presented in Zakharov Predictions 
for the Saturated LW Spectrum (p. 68) gives an estimate for 
the energy gain of DE + 110 keV (or DE + 177 keV for El = 2 Et).

The actual situation does not involve a single coherent wave, 
but rather there are many waves whose resonances are expected 
to have significant overlap, leading to orbits that become 
diffusive. It might be possible to approximate the stochastic 
acceleration of electrons in the predicted LW fields with a 
self-consistent Fokker–Planck43 or quasilinear model.11,29,30 
To estimate the heating effect more accurately and to investi-
gate the importance of reheating, test electron trajectories are 
directly integrated in the LW fields predicted by the Zakharov 
model of Zakharov Predictions for the Saturated LW Spec-
trum (p. 68). This will also form the basis for future work that 
will examine the applicability of quasilinear diffusion32–44 for 
the two-plasmon-decay instability.

2. Test-Particle Equations of Motion
Test-particle motion is governed by the relativistic Newton–

Lorentz equations. For the ith electron test particle, these are 

 ,
t

x

d

d
vi
i=

v
v  (5)

 E E B, , , ,
t

p
e x t x t c x t

d

d
vi

l i t i i i- #= + +
v

v v v v v v v_ _ _i i i9 C  (6)

where p m vi i i0c=v v  is the electron momentum. The longitudinal 
electric field El

v  is associated with the LW’s resulting from the 
TPD instability and is obtained from the Zakharov field Ev  
by restoring the carrier frequency ~p0 (which was explicitly 
removed in the Zakharov approximation)

 E , / , expx t E x t t1 2 c.c.l p0-~= +v v v v^ ^ ah h k  (7)

The transverse fields Et
v  and Bv  are associated with the 

incident laser light and are currently ignored when comput-
ing test-particle trajectories (they are prescribed fields in the 
current extended Zakharov model). Although the transverse 
electric-field strength is quite large, 

 E ~ 8.7 10 1 10I W/cm V/cm,
/

t
8

0
15 2 1 2

# #b l  

it is not effective in accelerating electrons at nonrelativistic 
laser intensities (I0 K 1018 W/cm2). The transverse fields result 
merely in a “quiver” imposed on the unperturbed motion. The 
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quantity El
v  is defined only at discrete spatial locations that 

are determined by the discretization (grid points) used in the 
numerical solution of Eqs. (1) and (2) and is interpolated onto 
the ith test electron position xiv  using bilinear interpolation. The 
test-particle equations [Eqs. (5) and (6)] are integrated numeri-
cally using a fourth-order Runge–Kutta scheme.

Ensemble averages of test-particle quantities are obtained 
by averaging over test-particle initial conditions x t 0i =v ^ h and 
p t 0i =v ^ h since averaging over realizations of the electric-field 
spectrum is impractical. The initial position of a test particle 
x x t 00 / =v v^ h is a random variable defined on  X = [0,lx] # [0,ly] 
with a uniform probability distribution .f x x dx l ld x y0 0 0=v v v_ `i j  
The initial momentum p p t 00 / =v r^ h is given by 

 ,sin cosp p e ex y0 0 z z= +v t t_ _i i8 B  

where the magnitude of the momentum p0 is fixed according 
to a given kinetic energy 

 ,p m c T m c 1 10 0 0 0
2 2

-= +
/1 2

b l< F  

while the angle z is a uniform random variable on [0,2r] with 
the probability distribution f(z)dz = dz/(2r). The effect of 
the finite boundary on the particle trajectories is addressed 
in the following section, while the boundary conditions on 
the longitudinal fields are periodic in the transverse direction 
E E, ,x y l x yl y l+ =v v` `j j and vanish at the longitudinal boundaries 
E E, , 0x y x l y0l l x= = = =v v_ _i i  (see Fig. 126.17).

3. Estimation of Global Particle Trajectories
For the numerical simulation of Eqs. (5) and (6), any poten-

tial for electrons to re-enter the TPD active region after their 
transit through the simulation domain must be manifested 

through the boundary conditions because of limitations placed 
on the maximum size of the region over which Eqs. (5) and 
(6) can be realistically integrated. In general, the problem of 
boundary conditions in kinetic29,30 or PIC calculations9 is 
usually addressed by assuming that transverse boundaries are 
periodic, while longitudinal boundaries are thermalizing. The 
thermal boundary conditions have the effect of driving the 
electron-distribution function to a Maxwellian,30 which may 
or may not be physically reasonable. It is clear that the choice 
of boundary condition has a significant impact on the proper-
ties of the hot-electron spectrum.11,28 Such a “thermalizing” 
scheme is easily implemented for test particles in Eqs. (5) 
and (6) above. Inspection of the target areal densities relevant 
to OMEGA implosions at the time of TPD instability (tR + 
10–2 g/cm2) shows, however, that they are unlikely to be 
completely stopped [the range r0 = 6.65 # 10–2 g/cm2 for an 
electron of energy of 100 keV in hydrogen in the continuous-
slowing-down approximation—energies corresponding to 
those estimated in Estimate of the Maximum Energy Gain 
for an Electron in Transit Through the Interaction Region 
(p. 71) and observed experimentally4].45 As a result, an estimate 
of the effect of electron recirculation is needed.

The spherical nature of the quarter-critical surface means 
that hot electrons can pass through the center of the target and 
re-encounter it once more on the opposite side (as long as they 
are sufficiently energetic so as not to range out; i.e., trajectories 
of type A, shown in Fig. 126.18). Less obvious is the fact that 
electrons on outward-bound trajectories (heading away from 
the target) may also be reflected back by the presence of sheath 
fields11,46,47 (trajectory of type B, shown in Fig. 126.18). The 
possibility therefore exists for complex orbits where electrons 
can be accelerated multiple times by the TPD active region 
near the quarter-critical surface.
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Figure 126.17
An illustration of how the boundary conditions for electron test particles 
are implemented. The region X = [0,lx] # [0,ly] over which the LW fields are 
calculated is shown, where the colors correspond to the magnitude ,E x y

2v` j  
from a particular run. Periodicity is assumed for trajectories crossing the trans-
verse boundaries (y = 0 or y = ly), while a test particle reaching a longitudinal 
boundary (x = 0 or x = lx) at time t with angle b and energy E0 is re-injected 
at the same boundary at the later time tl = t + Dt with a reduced energy El = 
E0–DE. The position along the boundary at reinjection is randomized, while 
its angle is given by bl = b. The white curve illustrates this process for an 
imaginary trajectory.
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The global radiation hydrodynamics of an imploding target 
at any given time during an implosion is calculated with the 
one-dimensional radiation–hydrodynamics code LILAC27 
without consideration of the effects of TPD (i.e., no increased 
absorption or effects of preheat). The parameters are taken to be 
those of current cryogenic implosion experiments on OMEGA 
at the time of peak TPD instability. These parameters place 
the quarter-critical surface at a radius of r1/4 + 500 nm, while 
the dense shell is at a radius of approximately 300 nm (see 
Fig. 126.18). The energy loss and time of flight associated with 
the electron trajectories beyond the quarter-critical surface are 
approximated below by “unperturbed” trajectories. That is, the 
energy loss and time of flight between an electron leaving the 
critical surface and returning (either by passing through the 
core or by reflection by sheath fields far out in the corona46) 
are estimated assuming a straight-line trajectory with angle 
and energy given by the values on leaving the quarter-critical 
surface. The time of return will be delayed by an amount that 
is dependent on the particular boundary that has been crossed 
and the details of the trajectory. Periodicity in the transverse (y) 
direction is motivated by the fact that the radius of curvature of 
the quarter-critical surface is much larger (typically ten times 

larger) than the lateral extent ly of the simulation volume (and 
therefore the correlation length for Ev).

a. Practical implementation of delay-type boundary con-
ditions on test particles.  At the boundary of the Zakharov 
calculation located at x = lx (see Fig. 126.17), which looks 
toward the target core, electrons crossing at time t with angle 

cos p n p1 $b = - v t_ i with respect to the outward normal nt of 
the simulation volume n ex=t t_ i cut a chord of length smax = 
2 r1/4 cos(b) across the circle that describes the intersection of 
the quarter-critical surface with the plane defined by the laser 
polarization vector and the radius vector defined with respect to 
target origin (Fig. 126.18). Note that this angle (b) is, to an excel-
lent approximation, the same as the angle between the negative 
radius vector and the electron momentum vector .n er-.t t_ i  The 
radius r(s) along this chord as a function of path length s is given 
by ,cosr r s r s2/ /

2
1 4
2 2

1 4- b= + ` _j i  and inverting this function 
allows one to specify the hydrodynamic variables ne(r), Te(r) 
from the hydrocode LILAC along the trajectory, ne(s), Te(s). The 
time of flight for an electron to transit the path is estimated by 

 ,c s
s1 d

s

0 e

max
x

b
D = & _ i

 (8)

where the particle velocity is computed in terms of its energy 
E(s) according to
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with

 E s E
s
E s
d
d d

s

0
0

-= %_ i  (10)

being the kinetic energy of the electron as a function of dis-
tance s along the path. The total energy loss along the path is 
simply DE = E0–E(smax). The stopping power –dE/ds is given 
by .logE s e c m cd d p p

2 2 2 2 2 2
e e e- '~ b b ~= _ _i i9 C  With the 

above assumptions, the energy loss DE and time delay Dt may 
be computed as a function of energy E0 and angle b.

As mentioned previously, there is also a possibility that 
electrons leaving the outer simulation boundary (x = 0) (see 
Fig. 126.17) will return. This time, the effect is not geometrical 
but is instead related to the formation of a plasma sheath far out 
in the corona46,47 (see Fig. 126.18). In principle the structure 
and dynamics of the sheath formation are complicated and 
coupled to the hot-electron–generation mechanism itself, which 
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Figure 126.18
A schematic drawing showing a two-dimensional plane passing through the 
origin of a spherical implosion and containing the plane region X over which 
the extended Zakharov equations are simulated. The region X is illustrated by 
the blue shaded rectangle spanning the radius of the quarter-critical density 
surface, r1/4. Periodicity (modulo ly) is assumed in the tangential direction 
so that the whole annular region bounded by the dashed concentric circles is 
assumed to be modeled (mapped onto) X. Because of the spherical geometry, 
electrons that leave the region X in the direction of the origin (trajectory of 
type A as indicated) can re-intersect the quarter-critical surface and re-enter 
X. Outgoing trajectories (type B) can also return because of reflection from the 
ion sheath. Dimensions characteristic of OMEGA implosions are indicated. 
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requires a level of knowledge that is currently unavailable. 
Here we take a practical approach and adopt a greatly simpli-
fied model that has been previously used by Delettrez et al.5 
This has the advantage of facilitating comparisons between the 
current work and the phenomenological model of Delettrez et 
al. The model specularly reflects electrons when they reach 
the radius of the last Lagrangian cell of the LILAC calcula-
tion. The total path length is therefore given by smax = 2 lexc, 
where lexc = rsh cos(H)–r1/4 cos(b) is the distance to the last 
Lagrangian cell of the LILAC calculation, rsh is its radius, and 

.sin sinr r/
1

1 4 sh bH = - _ i9 C  The radius is now given in terms of 
the path length according to cosr s r r s2/ /

2 2
1 4
2

1 4 b+ + + ` _j i for 
s # lexc, and by 2 cosr l s r r l s2 2/ /

2 2
1 4
2

1 4exc exc- - b= + +_ _i i  
for s > lexc.

The energy losses and time delays as a function of electron 
momentum (energy and angle) are precomputed and stored 
in look-up tables, one for each longitudinal boundary. Fig-
ures 126.19 and 126.20 show examples of look-up tables for 
the boundary at x = lx corresponding to a cryogenic implosion 
on OMEGA (shot 45009) at the time of experimental onset of 
two-plasmon-decay signatures (roughly 2.5 ns from the start 
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Figure 126.19
Look-up tables for energy loss at the x = lx boundary (i.e., type-A trajectories 
in Fig. 126.18) corresponding to OMEGA shot 45009 at time t = 2.5 ns. Angle 
b is the angle between the outward normal of the boundary er-. t_ i and the 
direction of the electron-velocity vector (see Fig. 126.17). As b increases 
from 0° [radially inward trajectory (black solid curve)] to b K 40°, the energy 
loss increases (i.e., the blue dashed curves move as indicated by the arrow). 
The effect is due to the increased path length in the dense compressed shell 
(see Fig. 126.18). Maximum energy loss occurs at b . 40°. For angles greater 
than 40° (red dotted curves) the energy loss falls dramatically and vanishes 
at b = 0° since the trajectories no longer intersect the dense shell and the 
path length vanishes.

of the pulse). Test particles, upon reaching the boundary, are 
re-injected at the same boundary at a later time t + Dt with the 
modified angle bl = –b and energy E0–DE. The transverse 
coordinate of the returning electron is randomized, taking the 
new position to be a uniform random variable on [0,ly]. This is 
illustrated in Fig. 126.17. If a particular energy loss results in 
a re-injected energy of the electron falling below a threshold 
value (typically Ecut = 200 eV), the trajectory is terminated.
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Figure 126.20
An example of the boundary look-up tables for time delay Dt at the x = lx 
simulation boundary corresponding to OMEGA shot 45009 at time t = 2.5 ps. 
The delay reaches a maximum value of Dt + 8 ps for trajectories that are nearly 
radial (inward) (b . 0°), and it vanishes for tangential trajectories b = 90°. The 
curves types/colors are the same as described in Fig. 126.19.

Results of Test-Particle Calculations
To quantify the contributions from separate processes, the 

effect of heating is first calculated with absorbing/thermal 
boundary conditions in the longitudinal direction, while peri-
odicity is assumed in the transverse direction. This corresponds 
either to a massive target in which all hot electrons range out or 
alternatively to the usual boundary conditions that are applied 
in the kinetic modeling of TPD using PIC codes.9,10 The density 
scale length is varied within the range Ln = (100 to 350) nm, 
while holding the electron temperature fixed at Te = 2 keV. 
This addresses the range currently accessible on OMEGA and, 
for the longer scale lengths, the range accessible in the near 
future on OMEGA EP. The laser intensities are chosen to be 
between IL = (0.1 to 2.0) # 1015 W/cm2. With this choice, the 
absolute TPD instability is found to be slightly above threshold 
to approximately three times above threshold [b = (1.15 to 3.1)] 
according to the formula of Simon et al.13 Finally, the impact 
of reheating is addressed by taking as an example the hydro-
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dynamic conditions of a cryogenic implosion that has been 
fielded on OMEGA (shot 45009) and computing the effects of 
reheating on the hot-electron temperature as the laser intensity 
is increased (within the above quoted range).

Figure 126.21 shows the energy distribution of test electrons 
as a function of electron energy for a typical case. The initial 
energies were chosen from a Maxwellian distribution of tem-
perature Te = 2 keV, chosen to be consistent with the electron 
temperature used in the Zakharov calculation. Note that the 
deviation from the initial Maxwellian occurs at an electron 
kinetic energy of roughly 20 keV. This is consistent with the 
smallest phase-velocity waves (largest wave number) observed 
in the LW spectrum (Fig. 126.14). The tail is well fit by an 
exponential, the slope of which is used to define an effective 
hot-electron temperature Thot.
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Figure 126.21
The electron test-particle distribution function fe(E) as a function of electron 
energy E constructed from an ensemble of 106 trajectories. The slope of the 
distribution function for energies E K 30 keV is close to the temperature of 
the sample distribution (Te = 2 keV) as indicated by the steep dashed red line. 
For energies E L 30 keV, a hot tail is observed. The slope of the hot tail is well 
fit by an exponential (solid red line), which is used to define an exponential 
slope temperature Thot.

Figure 126.22 shows the hot-electron temperature Thot 
inferred from a series of simulations, with the parameters as 
defined above, plotted against the threshold parameter h. Recall 
that density scale length and laser intensity are being varied, 
and while there is a small scatter in the inferred temperature 
for different combination of Ln and I giving the same h, the 
hot temperature is well predicted by the value of h alone. A 
hot component is generated once h has slightly exceeded unity 

(which is also an experimental observation3) and increases 
from Thot + 50 keV at h = 2 to a value of +140 keV at h = 3.0.

The insensitivity of the hot-electron temperature to density 
scale length for a fixed value of the threshold parameter h is 
shown in Fig. 126.23. Once again, as the density scale length 
is increased, the laser intensity is decreased in order to keep 
the value of h constant. Solid lines connect simulation points 
having constant h, while the filled markers correspond to a laser 
intensity of IL = 4.8 # 1014 W/cm2. From the filled markers, the 
rapid increase in hot-electron temperature with density scale 
length can be visualized. The reason for this insensitivity can 
be determined upon an examination of the Zakharov predic-
tions for the nonlinearly saturated LW spectrum in each case. 
Figure 126.24 shows the rms electric field taken over each 
Zakharov simulation volume (adjusted with Ln to span the den-
sity range of 0.19 0.27n n< <e c ). While the value of GEH rms 
depends on the value of the threshold parameter for a given 
scale length and is of the order of GEH rms = 106 statvolts/cm for 
fixed h, it decreases with density scale length. It is therefore the 
laser intensity that determines the level of LW excitation. The 
acceleration of hot electrons, very crudely speaking, is given 
by the characteristic electric field multiplied by the acceleration 
length. In this way, the increasing acceleration length is offset 
by the reduction in electric field.

Figure 126.22
The hot-electron temperature Thot as determined by the electron test-particle 
distribution function for a series of extended Zakharov realizations plotted 
against the threshold parameter .I L 230 keV14 mh = n ^ h8 B  For a given h, the 
open squares show the effect of varying the density scale length in the range 
Ln = (100 to 350) nm while holding the initial electron temperature Te fixed 
(intensities were adjusted appropriately). The red (solid) line indicates the 
general trend.
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and therefore multiple stages of acceleration. The size of this 
effect has been demonstrated by implementing the boundary 
conditions exactly as described in Practical Implementation 
of Delay-Type Boundary Conditions on Test Particles (p. 74) 
(see Fig. 126.25). Look-up tables corresponding to shot 45009 
at a time near the peak drive, when tR . 1 # 10–2 g/cm2, have 
been used (Figs. 126.19 and 126.20). In Fig. 126.25 the square 
symbols show the hot-electron temperature as a function of the 
threshold parameter h with absorbing boundaries, while the 
circles show the hot-electron temperature when the “physical” 
boundary conditions are adopted. It can be seen that there is 
a significant effect; corresponding to an (+3#) increase in the 
hot-electron temperature. This demonstrates the futility of 
studying an isolated region of the target near the quarter-critical 
density when attempting to compute hot-electron temperature 
and, by extension, the expected hot-electron preheat. This is an 
extremely unfortunate result since the mixing of spatial scales 
is severe. On one hand, the LW wavelength must be resolved 
(which is submicron), while on the other, electron trajectories 
must be traced over millimeters. A similar mixing (four orders 
of magnitude) also holds for the temporal scale. 

The size of the effect obviously increases in importance with 
higher one-pass temperatures since more-energetic electrons 
can more freely pass through the core. So as to not overstate 
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Figure 126.23
The hot-electron temperature Thot in keV as determined by the electron test-
particle distribution function for a series of extended Zakharov realizations 
plotted against density scale length Ln in microns. The upper (red), middle 
(blue), and lower (green) curves correspond to values of the threshold param-
eter of h = 3.10, 2.20, and 1.45, respectively. The filled triangles correspond 
to a laser intensity of IL = 4.8 # 1014 W/cm2. In all cases the initial electron 
temperature was Te = 2.0 keV.

Figure 126.24
The root-mean-square electric field at saturation obtained from a series of 
extended Zakharov runs with an electron temperature Te = 2 keV plotted 
against density scale length Ln in microns. The upper (red), middle (blue), 
and lower (green) curves correspond to values of the threshold parameter of 
h = 3.10, 2.20, and 1.45, respectively. It is evident that for a given value of h 
and for a fixed electron temperature, the rms electric field decreases with an 
increase (decrease) in density scale length Ln (laser intensity IL). The filled 
markers correspond to a laser intensity of IL = 4.8 # 1014 W/cm2.
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The hot-electron temperature Thot in keV as a function of the threshold 
parameter h. The hot temperature was determined from the electron test-
particle energy distribution for test-particle trajectories employing thermal 
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The above results have ignored the possibility of multiple 
transits of the hot electrons through the quarter-critical region 
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the size of the effect, the one-pass temperatures were actually 
reduced from the pure Zakharov predictions in making these 
calculations (e.g., comparison of Fig. 126.25 with Fig. 126.22 
shows a smaller one-pass temperature). In fact, when comput-
ing test-particle heating for Fig. 126.25, the predicted electric 
field Ev  has been reduced artificially (“renormalized”) in mag-
nitude [only where it appears in Eq. (6)] so that the resulting 
hot-electron temperature, in the case of thermal boundaries, is 
computed to be no larger than the best current estimate based 
on reduced description particle-in-cell modeling.28 It might be 
expected that the non-self-consistent test particle model would 
lead to exaggerated hot-electron temperatures because of the 
absence of any modification to the linear dispersion (damp-
ing) caused by the hot tail. It is hoped that a self-consistent 
treatment using a quasilinear model will remove the need for 
such renormalization.

Summary and Discussion
An extended Zakharov model of two-plasmon-decay insta-

bility has been presented and used to predict the saturated LW 
spectrum in the absence of electron kinetic effects (heating). The 
parameters were motivated by current OMEGA experiments, 
and the assumed electron temperature and density profiles were 
defined by 1-D radiation hydrodynamic (LILAC) calculations 
for a given time corresponding to peak TPD instability.

The LW spectrum has been observed to evolve as a conse-
quence of the interaction between the unstable LW’s and LF 
density fluctuations. It was argued that convectively unstable 
modes come to dominate the late-time spectrum, while the 
absolute TPD model is relatively unimportant after initial 
saturation by profile modification. The convective modes are 
either linearly saturated close to threshold or by ponderomo-
tively driven ion-acoustic turbulence once threshold is exceeded 
significantly. It was noted that several tens of picoseconds 
are required for the LW spectrum to approach a statistical 
steady state.

Hot-electron production was first calculated by a non-self-
consistent test particle approach using the Zakharov predictions 
for the electric fields at saturation and with the assumption of 
thermal boundary conditions. An exponential hot-electron tail 
was observed once the absolute threshold was exceeded (h > 1), 
and the characteristic temperature of this tail increased from 
approximately Thot = 50 keV for h . 1.5 to a value of Thot = 
140 keV when h = 3. These temperatures were shown to be rea-
sonable based on estimates of the maximum-allowable energy 
gain over the interaction region, and they are also broadly con-
sistent with experimental measurements and RPIC simulations.

It was noted that electron heating also depends on the global 
details of the implosion because of the long-range nature of 
the hot electrons and the possibility of reheating [as has been 
described in Practical Implementation of Delay-Type Bound-
ary Conditions on Test Particles (p. 74)]. This effect has been 
captured by using a particular form of boundary condition on 
the test-particle trajectories. A prescription for such boundary 
conditions has been constructed and described. Adoption of 
these boundary conditions was shown to lead to an increase in 
the computed hot-electron temperature by a factor of +3#. It was 
noted that any attempt to model the hot-electron temperature 
or preheat in such targets must account for this physical effect.

The model allows for systematic refinement. Future plans in 
this regard include the inclusion of a propagating scattered trans-
verse EM envelope at a frequency 20~  so that absolute Raman 
and high-frequency hybrid instability18 may be included. The 
test-particle method developed here, together with reduced par-
ticle-in-cell calculations,10 will be used to guide the development 
of a self-consistent quasilinear model of electron heating. This 
will require the inclusion of the delay-type boundary conditions 
and an investigation into the effects of density inhomogeneity. 
The delay-type boundary condition model can also be improved. 
In particular, a self-consistent model for the sheath potential will 
be developed, and the effect of angular scattering will also be 
taken into account when computing electron trajectories.

Finally, diagnostics such as preheat, half-harmonic emis-
sion, and bremsstrahlung spectra26,48 will be added to the 
model to facilitate comparison with experiment. 
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