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Introduction
Ignition experiments at the National Ignition Facility (NIF) 
will use x rays in indirect-drive (hohlraum) targets to drive 
implosions of capsules containing deuterium–tritium (DT) 
fuel.1 These inertial confinement fusion (ICF) targets use three 
shock waves to quasi-isentropically compress the capsule before 
the main compression wave drives the implosion of the fuel 
assembly.2 The goal is to minimize the required drive energy 
by minimizing the entropy imparted to the capsule as it is 
imploded. To achieve ignition, both the strength and timing of 
the shock and compression waves must be accurately set. 

The National Ignition Campaign (NIC) is a multi-laboratory 
program3 that designed and will perform experiments that lead 
to ignition on the NIF. The campaign includes various tun-
ing experiments that iteratively optimize the laser and target 
parameters to achieve specified conditions and maximize target 
performance. To achieve optimal shock conditions, experiments 
using optical diagnostics will detect the shock-velocity tempo-
ral profiles, providing both the strength and timing of the vari-
ous shocks within the capsule fuel.4 The tuning campaign will 
use these data to adjust the laser (and, therefore, x-ray) drive 
until the shock strengths and timings meet design specifica-
tions. These experiments require surrogate targets that make 
it possible to diagnostically access the inside of the capsule but 
closely mimic the behavior of the ignition targets. The ignition 
capsule in these targets has a re-entrant Au cone filled with 
liquid deuterium and extends out beyond the hohlraum wall.5 
With these targets, optical diagnostics can detect spherically 
converging shock waves within the deuterium-filled capsule. 

Optical diagnostics can readily measure both shock velocity 
and timing to the precision and accuracy required for ignition 
target designs. These measurements, taken in a cryogenic 
capsule embedded in a hohlraum and driven to radiation tem-
peratures in excess of 150 eV, present considerable challenges. 
To demonstrate that this is a viable technique for the NIF, 
experiments were performed at the Omega Laser Facility.6 This 
article discusses the resolution of several issues associated with 

this approach and demonstrates that this technique is a valid 
method to time shocks in ignition targets on the NIF. 

Shock Timing
ICF targets are spherical shells that have a layer of solid 

(cryogenic) DT fuel that must be compressed to 1000 g/cc on 
a low adiabat and then heated to +5 keV to initiate ignition and 
burn.1 This compression is produced by the ablation process 
that can be driven either directly or indirectly by laser beams. 
In the indirect case, the capsule is contained in a cylindrical 
hohlraum that is irradiated by many high-power laser beams 
that produce up to a 1 # 1015 W/cm2 flux of thermal x rays that 
drive an ablative implosion of the capsule. Target design is a 
delicate optimization of maximizing fuel compression while 
minimizing the internal energy imparted to the pusher and fuel. 
The primary approach is to approximate an isentropic compres-
sion using a series of three shock waves of increasing strength, 
followed by a compression wave that drives the compressed 
shell of fuel to implode at velocities of +3.6 # 107 cm/s. Shock 
waves provide discrete “markers” that will be used to diag-
nose the compression history. The steps in drive pressure (that 
produce the shocks) are controllable parameters that make it 
possible for the compression to be optimized while controlling 
entropy increases. Shock waves are also desirable for ablators 
that may have a spatial structure that can be smoothed out by 
the melting produced by a first shock.7

In its simplest form, an ICF target is a two-layer system—
an ablator surrounding a layer of DT ice. (Actual ablators have 
internal layers of varied composition to enhance the absorption 
and ablation processes.8) For optimal target performance each 
shock must have the correct strength. Specification requires 
that the velocity be set to a precision of 1%. The shocks must 
arrive at the inner DT-fuel surface in a tight sequence, with 
their launch times known to a precision of 50 ps (Ref. 4). The 
assembled mass is swept inward by the compression wave that 
must be timed to a precision of 100 ps. When properly tuned 
in strength and timing, the shocks minimize the adiabat (inter-
nal energy) of the DT fuel, keeping it on a low isentrope. By 
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arriving at the inner surface of the ice in a tightly controlled 
sequence, most of the fuel has been shocked and re-shocked 
along a low adiabat.

If the later, stronger shocks overtake the first shock too early, 
a large portion of the fuel is heated by this strong shock and will 
be on a higher adiabat and be harder to compress. Late coales-
cence means that previous shocks have time to unload significant 
material from the inner surface of the ice, creating a low-density 
blowoff that would be significantly heated by the subsequent 
shocks, again placing the fuel on a higher isentrope.

Temporal profiles of the laser and resultant radiation tem-
perature need to produce the desired shock strengths and tim-
ing. The residual uncertainties in the calculated hohlraum drive 
and the opacity and equation of state (EOS) of the ablator and 
fuel require full-scale tuning experiments to achieve the preci-
sion required for ignition. The NIC includes experiments that 
will iteratively “fine tune” the drive to optimize shock timing. 
Critical to this effort are precise measurements of shock timing 
in surrogate targets that are equivalent to ignition targets.

Figure 117.1(a) depicts the Lagrangian trajectories of four 
shocks through the ablator and DT ice. For optimal perfor-
mance, these shocks should arrive at the inner DT-ice surface 
in a tight temporal sequence.4 The laser pulse shape for ignition 
targets is shown schematically in Fig. 117.1(b), along with the 
expected radiation temperature in the hohlraum. The steps in 
the radiation temperature launch three successive shocks with 
pressures of approximately 0.8, 4, and 12 Mb in the DT fuel. 
The main compression wave begins with pressures greater than 
40 Mb. (Individual designs vary these values slightly.) 

Since the EOS of deuterium is known,9 a measurement of 
the shock velocity provides all the pertinent information about 
the shock wave. The NIC shock-timing campaign will use 
shock-velocity measurements to iteratively adjust the level and 
timing of each “step” in power to produce the desired shock 
velocity (pressure) and timing. Knowledge of the temporal 
velocity profiles provides, through integration, the positions 
of shock coalescence.

The velocity interferometry system for any reflector 
(VISAR)10 probe beam is reflected off the leading shock 
front (the one closest to VISAR). At these pressures, shock-
compressed deuterium is a metal-like reflector that is opaque 
to visible light.11 The following shock fronts cannot be viewed 
inside the opaque medium; instead, they are detected only when 
they overtake or coalesce with the leading shock front.

Figure 117.1
(a) Lagrangian trajectories of shocks in an ignition target showing optimal 
timing with shocks arriving at the inner DT-ice surface in a tight sequence. 
(b) Temporal history of laser intensity and resulting radiation temperature for 
an ignition target on the NIF. A shock-timing tuning campaign will iteratively 
adjust (arrows) the laser pulse shape to optimize shock timing. 
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The single-shock velocities corresponding to the pressures 
of the first three steps in the drive pulse (i.e., following coales-
cence) are approximately 20, 36, and 57 km/s, respectively. 
(Again, there are several designs and the specified velocities 
range by +5% from those values, depending on how the implo-
sion optimization is performed.) For a given design the veloc-
ity can have a 2% shot-to-shot variation, but to ensure proper 
timing, the shock velocities will be measured with a precision 
of 1% and the coalescence times to less than 30 ps. For the 
75-nm-thick DT layer the transit time of the first shock is 
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+3.75 ns. By integrating the first shock velocity (known to 1%) 
up to the coalescence time (known to 30 ps), one can determine 
the coalescence position to a precision of <2 nm. The precision 
of the VISAR diagnostic is more than adequate to determine 
this position. The error budget for shock-strength and timing 
experiments is readily met if the velocity is measured to 1% 
and shock timing is measured to 30 ps.

A DT ignition capsule has a specific drive profile needed 
to achieve optimal performance. To guide the ignition-tuning 
campaign, that optimal drive profile is applied (in simulations) 
to a capsule containing liquid deuterium-deuterium (DD). The 
resultant shock structure (velocity profiles and timing) in that 
simulation then serves as the metric to which shock-timing 
experiments are gauged. The optimal shock strengths (veloci-
ties) in liquid DD are obtained from this simulation. Because 
the shock velocities (but not the shock pressures) are nearly 
the same in liquid DD as in solid DT, the optimal coalescence 
position for the shock-timing experiments is very close to that 
in the solid-DT layer of an ignition capsule. This simulation 
procedure introduces a surrogacy error that is estimated to be 
less than 1% in shock velocity.

Experimental Technique
1. VISAR Windows

VISAR has been extensively used to detect and measure 
laser-driven shock waves in transparent media and has a 
demonstrated shock-speed precision of 1%-2% and temporal 
accuracy of <30 ps (Refs. 12-14). Shock waves with pressures 
above +0.2 Mb transform liquid deuterium (normally transpar-
ent) into a conducting medium;11 as a result, the steep shock 
front (a conducting surface) readily reflects the VISAR probe 
beam at a wavelength of 532 nm (and similarly at 590 nm for 
the NIF VISAR). The arms of a VISAR interferometer have 
unequal optical paths and produce an output phase that is pro-
portional to the Doppler shift of the reflected probe beam and 
to the difference in the unequal paths (usually expressed as a 
time delay). The time delay determines the velocity sensitiv-
ity of the interferometer and is adjustable (proportional to the 
thickness of a glass delay element placed in one arm of the 
interferometer). For these experiments, the VISAR on OMEGA 
had a velocity error of +1.7%. The NIF VISAR is designed to 
achieve 1% velocity measurements.

Cryogenic targets require a closed volume to retain the 
deuterium gas. In a standard target, the spherical shell is the 
boundary of that volume. In shock-timing experiments a line of 
sight is needed for VISAR to probe the shock-velocity profile. 
Various target configurations were considered, but the stringent 

Figure 117.2
NIC shock-timing tuning experiments will use ignition-style targets that have 
a re-entrant cone in the capsule. The capsule and cone are filled with liquid 
deuterium. Optical diagnostics probe the inside of the capsule through the 
window and aperture in the cone. 
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performance tolerances dictated that shock-timing surrogate 
targets mimic ignition targets with high fidelity. For the NIC 
tuning experiments, spherical targets will be fitted with a re-
entrant cone that extends through the hohlraum wall and is 
capped by a 20-nm-thick quartz window that confines the DD 
fuel. This target configuration is shown in Fig. 117.2. Integrated 
3-D simulations of this target show that perturbations to the 
radiation temperature and hohlraum symmetry are minimal.15 
By design, the change in the albedo caused by the portion of 
the cone traversing the hohlraum-capsule space is offset by that 
of the sections of ablator surface and hohlraum wall displaced 
by that cone. It is expected that on the hohlraum wall, where 
shock timing is measured, the radiation flux will mimic a full 
ignition target to +4% (1% in Trad) (Ref. 5).

It has been shown that for direct-drive targets at high inten-
sities the normally transparent material ahead of the shock 
wave can absorb the VISAR probe laser.16 This is caused by 
high-energy x rays produced in the laser-plasma corona.17 
The x rays photoionize the unshocked material, creating free 
electrons that interact with and absorb the probe light, causing 
a “blanking” of the probe beam in the material. This could 
compromise the VISAR data. This is not expected to be a 
problem in the deuterium (which has a low x-ray-absorption 
cross section), but the diagnostic window that retains the DD 
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Figure 117.3
(a) The pattern of beam spots in an ignition hohlraum. (b) Target configuration 
to study effects of M-band emission on windows. (c) NIF laser intensity at the 
hohlraum equator wall (dashed curve); laser intensity for OMEGA experi-
ments with stacked pulses (solid curves). (d) VISAR data from a stacked-pulse 
OMEGA experiment showing continuous fringes. The quartz window remains 
transparent throughout irradiation history, indicating that M-band emission 
from the laser spot does not “blank” (photoionize) the quartz.
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in the NIF shock-timing targets (Fig. 117.2) can experience this 
ionization blanking.

Single-sided [one laser entry hole (LEH)] hohlraum experi-
ments with cryogenic and warm targets were used to study 
this effect and to select a window material. Windows made 
of silicon nitride, diamond, sapphire, and quartz were tested. 
Quartz (20 nm thick) was chosen because of its resistance to 
blanking (band gap of +15 eV), optical quality, and ease of 
fabrication. Though quite resilient, quartz, nevertheless, blanks 
if exposed to sufficient x-ray flux.

In NIF shock-timing targets, the VISAR window has a line 
of sight through the ablator material to the hohlraum wall that 
is directly irradiated by laser beams (Fig. 117.2). Since the 
ablator absorbs most of the radiation below +1.5 keV, ioniza-
tion blanking in these targets results primarily from the Au 
M-band (2 to 4 keV) emission produced by the laser spots. 
The VISAR cone has a 260-nm hole at the end through which 
shock timing is measured. The aperture size has been chosen 
to limit the extent of the hohlraum wall with a “view” of the 
VISAR window without limiting the area over which a VISAR 
signal can be collected for NIC-scale capsules. Figure 117.3(a) 
is a map of beam placement on the interior of a NIF ignition 
hohlraum. While the capsule is driven by thermal radiation 
from many beams, the VISAR window is irradiated by M-band 
emission (ho > 2 keV) that originates only from beam spots in 
the line of sight through the cone aperture. The region on the 
hohlraum wall that can irradiate the VISAR window is shown 
as the black dot in Fig. 117.3(a). Two NIF quad beam spots 
overlap at that point.

A series of experiments were performed on the OMEGA 
laser using planar targets to investigate the effect of x-ray 
emission from laser spots on the optical transmission of quartz 
windows. The configuration is shown in Fig. 117.3(b). A gold 
foil was placed 1.5 mm from a Be-Cu-Be sandwich (75, 0.5, 
and 75 nm thick, respectively) that mimics the opacity of a 
typical NIC ablator design. An aperture was placed directly 
behind the ablator and a window was placed 3.5 mm from the 
Au foil. VISAR probed the rear surface of the aperture and 
ablator (through the aperture). Nine OMEGA beams without 
beam smoothing were focused onto the gold foil to replicate 
the wall intensity of a NIF target at the relevant incidence 
angle (60°). The window transmission was observed, and the 
intensity at which x rays from the laser spots would blank the 
window was determined. The energy and pulse widths avail-
able on OMEGA dictate that the test be done in two steps, 
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separately measuring peak and integrated fluences associated 
with ignition-target conditions up to the breakout time of the 
third shock. Figure 117.3(c) (dashed curve) shows the incident 
intensity at the NIF hohlraum wall at the VISAR window line 
of sight [Fig. 117.3(a)]. The intensity profile for the OMEGA 
experiment with nine beams having temporally square pulses 
staggered to approximate the NIF wall intensity up to 12 ns 
is also shown (thick curve). Figure 117.3(d) shows a VISAR 
record with fringes that have continuous intensity throughout 
that experiment, indicating that the window remains transpar-
ent. Similar results were obtained for nine beams overlapped 
[thin solid curve in Fig. 117.3(c)] to replicate the intensity at the 
fourth rise. To investigate the limiting flux for this configura-
tion, a third experiment was performed with a 1-ns pulse at 
500 TW cm2. At this fluence the quartz window blanked, but 
this is 2.5# higher than required for the NIF.

These results indicate that the quartz windows remained 
transparent when exposed to both the instantaneous flux and 
the integrated flux (up to the third shock) required for shock 
timing. These tests are conservative in that the NIF beams have 
high angles of incidence and will traverse considerable plasma 
en route to the hohlraum wall, reducing the actual intensity at 
the wall. Also, the Au foil was 1.5 mm from the aperture and 
3.5 mm from the window; in the NIF targets those distances 
will be .2 mm and .8 mm, respectively.

2. Hohlraum Experiments
The radiation environment in a laser-driven hohlraum is dif-

ferent than that of an open-geometry planar-target laser plasma: 
the laser beams overlap and are tightly focused at the LEH and 
the plasma scale lengths are changed by the closed geometry. 
VISAR measurements were performed with hohlraum targets 
to investigate if they could cause window blanking or other 
deleterious effects.

For these tests, NIF-sized Au re-entrant cones were inserted 
into OMEGA-scale hohlraums (2.55 mm long, 1.6 mm in 
diameter with 1.2-mm laser entrance holes). The cones were 
5 mm long and had an 11° opening angle (to accommodate the 
f/3 VISAR focal cone). The NIF tip has a 10-nm wall formed 
into a spherical shape that will be ultimately placed within 
+200 nm of the spherical-ablator inside surface. That tip has 
a 260-nm-diam aperture through which shocks are viewed. 
Inside the shell the cone wall is 50 nm thick and the rest of 
the cone is 100-nm-thick Au. The hohlraums were empty: no 
gas fill, no LEH windows. Figure 117.4(a) shows three views 
of these targets.

Figure 117.4
(a) The OMEGA targets have NIF-sized diagnostic cones inserted into the 
OMEGA scale-1 hohlraums. (b) The ablator and cone tip assembly for the 
OMEGA shock-timing tests in hohlraum targets. The Be-Cu sandwich repli-
cates the opacity of a NIF ablator. (c) VISAR data for a warm, empty hohlraum 
heated to 180 eV. The probe beam reflects off the cone face and the ablator 
(through cone aperture). These data show the Be ablator unloading because 
of preheat and window transparency persisting throughout the experiment, 
thereby proving viability of this technique.
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The OMEGA experiments used planar ablators, so those 
cones had a 10-nm-thick, 260-nm-aperture planar tip. The rest 
of the cone was identical to the NIF cone design. The ablators 
were sandwiches of Be and Cu to simulate the x-ray opacity of 
the Cu-doped Be ablators2 for the NIF. They were comprised of 
two 75-nm Be foils with a 0.5-nm Cu foil in between and were 
“brazed” to form a glueless bond. The ablators were mounted 
190 nm from the cone tip to replicate the shell-to-cone-tip 
distance in the NIF targets.

One concern was that M-band x rays entering the aperture at 
high angles could heat the inner cone wall sufficiently to create 
a secondary hohlraum that would re-radiate and blank the win-
dow. To mimic the spherical-capsule geometry, which allows 
these high-angle rays to enter the aperture, the ring that held 
the planar ablator away from the cone tip was made of 60-nm 
polyimide. This ring has similar opacity to the Be-Cu ablator. 
The ablator and cone geometry are shown in Fig. 117.4(b).

The VISAR diagnostic is not perpendicular to any conve-
nient and symmetric hohlraum axes in the OMEGA chamber. 
Rather than perturb the irradiation pattern and line of sight 
for radiation-temperature measurements (Dante), the VISAR 
cones were inserted 79.2° from the hohlraum axis to accom-
modate this offset [Fig. 117.5(a)]. This deviation from the NIF 
geometry is considered conservative since, at this angle, the 
cone views the region irradiated by beams with lower angles 
of incidence and are, therefore, of higher intensity than those 
at the equator. The cones were inserted so the ablators were on 
the central axis of the hohlraum. The ablators were +0.8 mm 
from the hohlraum wall, less than half the distance of the NIF 
targets to the hohlraum wall.

The hohlraums were irradiated by 38 OMEGA beams 
with no beam smoothing and having 2-ns-long, temporally 
square pulses to produce radiation temperatures of >180 eV. 
VISAR measurements of the rear side of the ablator (i.e., 
made through the window and cone aperture) are shown in 
Fig. 117.4(c). The VISAR data comprise a series of interfer-
ometer fringes13,16 whose vertical position is proportional to 
the velocity of the reflecting surface (shock wave or ablator 
surface). Figure 117.4(c) shows two regions of the target probed 
by the VISAR: the inner surface of the aperture, and the rear 
surface of the ablator, viewed through the aperture. Prior to the 
drive pulse and subsequent thermal radiation (graphs shown 
in plot), the fringes are horizontal and of constant intensity. 
As the drive temperature rises, the ablator is heated and, at 
+1 ns, the expanded rear-surface material absorbs the VISAR 
probe beam, causing the signal to diminish. It is important to 

Figure 117.5
(a) The cryogenic target is identical to that in Fig. 117.4(a), except that the 
cone is filled with liquid deuterium and the assembly is mounted on a cryostat. 
(b) VISAR data show again that the window remains transparent and that the 
shock in deuterium is observed. (c) Streaked optical pyrometer (SOP) data 
showing temporal features (in self-emitted light) that confirm the behavior 
in the VISAR data (b).
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note that the signal from the Au aperture surface (above and 
below the ablator signal) that is well shielded and, therefore, not 
preheated and does not expand, persists throughout the drive 
pulse. This indicates that the window remains transparent and 
survives the radiation from the hohlraum.

Experiments with hohlraums driven to Trad > 200 eV pro-
duced blanking in the quartz window. This is consistent with 
the open experiments described in VISAR Windows (p. 3) and 
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ultimately limit the conditions under which windows can be 
used. In the Fourth Shock Timing section below a windowless 
target is proposed for timing the fourth “shock.”

During these experiments it was found that scattered light 
from the incident drive beams could blank the VISAR window 
from the outside. To prevent this, the diagnostic cones were 
fitted with shields to block all scattered light from irradiating 
the window. This is an important aspect of the NIF target 
design because a significant amount of unconverted light passes 
within a 3- to 10-mm annulus around NIF targets. As a further 
precaution, some cones were coated on the inside with CH to 
minimize any secondary-hohlraum effect by reabsorbing any 
low-energy photons re-emitted by the cone wall upon irradia-
tion by M-band emission. As expected, these experiments also 
showed no window blanking and CH overcoats are not expected 
to be required at the NIF.

3. Cryogenic Experiments
Experiments were performed using cryogenic targets filled 

with liquid deuterium. The hohlraums were empty while the 
cones were filled with liquid deuterium between the ablator 
and the VISAR window [Fig. 117.5(a)]. Figure 117.5(b) shows 
the VISAR data from such an experiment driven at 135 eV. 
These data clearly show that the window survives throughout 
the drive pulse and the shock in the deuterium is observed. 
The self-emission data [Fig. 117.5(c)] from the streaked optical 
pyrometer (SOP)18 exhibit identical temporal features that con-
firm the timing of the shock breakout (arrival at rear surface) 
and arrival time at the aperture after transiting the ablator-cone 
gap. Additionally, the heating of the aperture edge, as evidenced 
by its self-emission, is seen early in time. While this heating 
is unavoidable, it is not expected to present a problem with the 
measurements or their precision.

These data at 135 eV confirm that the proposed shock-
timing technique is viable for the NIF targets driven by higher 
radiation temperatures because the OMEGA experiments pro-
duce more M band than is expected on the NIF. Figure 117.6 
shows the predicted M-band flux from the NIF experiments at 
165 eV, compared to the OMEGA emission from the 135-eV 
hohlraums. Note that the OMEGA hohlraums produce sig-
nificantly more x-ray flux above 2 keV than expected from the 
NIF targets. This is because the OMEGA hohlraums have a 
smaller fraction of wall irradiated by beams and have lower 
time-dependent albedo and, therefore, require a higher beam 
intensity to reach a given radiation temperature. This higher 
intensity leads to more M band, which is produced primarily 
in the laser-spot regions. 

4. Fourth Shock Timing 
The tuning experiments for NIF shock timing must also 

time the compression wave (or fourth shock) that is driven by 
radiation temperatures above 250 eV. The fluxes from these 
drives are expected to blank the VISAR window; therefore, 
a windowless target was designed. These targets have a re-
entrant cone with no aperture, confining the deuterium only 
to the capsule. The compression wave will be detected by the 
arrival of the shock at the inner surface of the cone tip. This 
will be detected as either movement or cessation of the fringes. 
If the released material remains solid when the shock arrives at 
a solid/vacuum interface, this material can continue to reflect 
the VISAR probe beam and the free surface velocity can be 
detected. If, however, the material is sufficiently heated to 
melt and then expand, it typically produces a density gradient 
that absorbs the probe beam at the rear surface and the signal 
then vanishes.

This concept was tested on OMEGA with the hohlraum 
driven to much higher temperatures. Figure 117.7(a) shows 
the target design that comprised a standard NIF cone and [in 
Fig. 117.7(b)] the Be-Cu-Be ablator sandwich. The cone tip had 
an Au step assembly (16 nm and 36 nm thick) facing the abla-
tor. VISAR and SOP probed the rear surface of that assembly. 
In these experiments, for simplicity, there was no deuterium 
in the gap between the ablator and the Au step. The gap was 
filled with 1 atm of air during fabrication and well sealed. There 
was no need for a VISAR window, so none was used at the end 
of the cone. The VISAR data [Fig. 117.7(c)] show continuous 

Figure 117.6
Radiation spectrum expected on the NIF (thick solid curve) for conditions of 
the third shock (165 eV) and that for the OMEGA experiments at 135 eV (thin 
solid curve). Note that above 2 keV, the OMEGA experiments have higher 
fluxes. The ablator transmits (dashed curve) this region of the spectrum. 
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(a) The NIF target configuration used to measure the timing of the compres-
sion wave. It is similar to the design in Fig. 117.2, except there is no aperture 
in the cone and no diagnostic window. (b) The OMEGA cone-tip design 
used to test the compression-wave timing technique. (c) VISAR results for a 
target driven to 220 eV, showing persistence of VISAR fringes until shock 
breakout. This breakout provides an unambiguous arrival time for the shock 
at the rear surface of the steps.

fringes until the arrival (at 3.5 and 4 ns) of shocks at the rear 
of the two steps.

The radiation temperature in this experiment was 220 eV, 
and as was the case seen in Fig. 117.6, the M-band emission 
was significantly (12#) higher than that expected for a 250-eV 
NIF hohlraum. As a result, the shock that first breaks out of 
the two steps was driven by the M-band emission incident on 
the cone face. The subsequent arrival of the shock driven by 
the thermal spectra is seen as a brief increase of intensity that 
occurs at the thin step [upper portion in Fig. 117.7(c)] at +5.7 ns. 
These features are confirmed by 1-D simulations using the 
experimental drive including the M-band emission. Simulations 

of NIF targets predict that the thermal shock breaks out well 
before any M-band-driven shocks.

The unambiguous breakout feature is the cessation of the 
fringes caused by the release of material absorbing the VISAR 
laser. This is a common observation in shock experiments using 
opaque samples. This technique is applicable to shock experi-
ments over a wide range of shock pressures. At lower pressures, 
the breakout may not cause a cessation of fringes but, instead, 
the onset of motion. At very high drive intensities, the sample 
could be preheated, causing the rear-surface release. In this 
latter case, the VISAR signal could be lost, but experiments 
show that the arrival of the shock can still be observed [as in 
Fig. 117.7(c)] because it steepens the density gradient, produc-
ing a brief reflected VISAR signal and an unambiguous SOP 
signal. [The steepening occurs in times less than the resolution 
time of the VISAR (30 ps) and lasts a few hundred picoseconds, 
depending on the time it takes for that material to relax and 
once again form an absorbing profile.] This provides confidence 
that this technique can be used for a wide range of conditions on 
the NIF. It is expected that the shock-propagation time across 
the cone tip can be accounted for with precision sufficient to 
achieve the necessary shock timing on the NIF.

5. Spherically Convergent Shock Experiments
Previous experiments used planar ablators and single drive 

pulses for expediency. The NIF experiments will involve mul-
tiple, spherically converging shocks—conditions not attain-
able in OMEGA hohlraum experiments without resorting 
to quarter-scale spherical targets with insufficient reflecting 
surface area. To study these effects, larger-scale, direct-drive 
experiments were performed on cryogenic spherical targets. 
These targets were 900-nm-diam, 10-nm-thick CD shells 
fitted with the NIF-scale VISAR cones. The assemblies were 
filled with liquid deuterium and irradiated by 36 OMEGA 
beams in the hemisphere centered on the VISAR line of sight 
[Fig. 117.8(a)]. This produces spherical shocks that converge 
toward the cone aperture. Figure 117.8(b) shows the VISAR 
record for an experiment driven by the multiple laser pulses 
shown at the base of this figure.

These targets have a 1000-Å Al coating on their outer sur-
face. Before time zero, the VISAR probe beam reflects off the 
inner surface of this layer. At time zero, the laser ablates the 
layer and the x rays from the laser plasma cause the CD shell 
to blank (absorb) the VISAR probe beam, causing the VISAR 
fringes to disappear. At about 0.5 ns, the shock emerges from 
the CD shell and enters the deuterium. The VISAR fringes 
return because the shocked deuterium is reflective (>50%) and 
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(a) Direct-drive cryogenic spherical targets used to study the timing of multiple convergent shocks on OMEGA. (b) VISAR record for three shocks in deu-
terium produced by the multiple pulses shown at the base of the figure. Evidence of shock coalescence (stronger shocks overtaking weaker ones) are evident 
at 2 and 4 ns; these indicate that multiple convergent shocks can be timed with this target and diagnostic configuration. (c) The SOP data show that the 
coalescence features observed in VISAR data are replicated in the self-emission intensity. (d) Shock velocities inferred from VISAR data and self-emission 
intensity histories for the data shown in (b) and (c).

the unshocked deuterium in front of it remains transparent. The 
curvature in the fringes from 0.5 to 2 ns results from decelera-
tion of this first shock, which decays because it is unsupported: 
the first drive pulse has turned off. Just after 2 ns the shock 
produced by the second drive pulse (at 1.2 ns) overtakes the first 
shock. This is observed as a jump in fringe position produced 
by the jump to the new shock velocity. Since the first shock 
produces conduction electrons in the deuterium, the shocked 
material is reflective and opaque to the VISAR probe. As a 
result, VISAR cannot detect the second shock “through” the 
first shock, until the second overtakes the first shock.

At about 2.25 ns the “main” drive pulse begins at low 
intensity and ramps to higher intensity. At 4 ns, the shock from 
this pulse overtakes the combined first and second shocks, 
producing another jump in fringe position. About 1 ns later the 

shock hits the front surface of the Au cone. The bright feature 
that begins at +5 ns is either reflection off of or self-emission 
from the hot material from the aperture that was heated by 
the shock. This material flows into the aperture, producing 
the converging feature from 5 to 6 ns. Ultimately the material 
cools, the shock passes it, and the decaying shock can again 
be observed at late times. It should be noted that in the NIF 
tuning campaign the pertinent shock-timing events are over 
before the shock reaches the cone face.

The self-emission from the shock was acquired simultane-
ously with VISAR data. Figure 117.8(c) depicts the intensity 
of light (590 to 850 nm) emitted by the shock and detected by 
the SOP. The features of the three shocks described above are 
plainly visible in Fig. 117.8(c). The material closing into the 
aperture is not observed (as in the VISAR data), but the arrival 
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of the shock at the aperture can be seen as a spatial broaden-
ing of the emission region. The slope of this growing edge can 
be traced back to the original diameter, intersecting at +5 ns, 
which is the arrival time observed by VISAR. Figure 117.8(d) 
shows the shock velocity (deduced from VISAR) and the self-
emission intensity histories measured for this shot. Note that 
these measured velocities span the range of shock velocities 
(20 to 57 km/s) that are prescribed for the first three shocks in a 
NIF ignition target, demonstrating this technique at applicable 
shock conditions.

These data confirm that VISAR and SOP can readily detect 
the velocities and the timing of spherically converging shocks 
that have traveled (and converged) by the +200-nm distance 
from the shell to the cone tip. The lateral extent of the VISAR 
data is governed by the amount of probe light that is returned 
into the collection lens of the diagnostic and is proportional 
to the curvature of the spherical shell. The NIF capsules will 
be about twice the size of those used for the OMEGA experi-
ments, so the detected region will be twice that of the OMEGA 
experiments while the radial distance traveled is the same. The 
OMEGA conditions are therefore more stringent (i.e., smaller 
curvatures) than the NIF experiments.

Conclusions
The National Ignition Campaign requires that multiple 

spherically convergent shock waves be timed to high precision. 
Targets with re-entrant cones will make it possible for optical 
diagnostics to probe the interior of the capsules in situ, with 
minimal interference to the x-ray-flux environment driving the 
probed capsule region. These targets also make possible the pre-
cise optical measurements of the velocity profiles (and therefore 
timing) of multiple shocks in the harsh radiation environment of 
an ignition hohlraum; this presents formidable challenges.

Experiments were performed on the OMEGA laser to 
assess the viability of the proposed techniques. These experi-
ments used open and hohlraum geometries to select quartz 
as the material for the diagnostic window in the NIF targets. 
Hohlraum experiments showed that quartz remains transparent 
throughout experiments that were driven to radiation tempera-
tures greater than 180 eV, and that produced M-band emission 
greater than that expected on ignition targets, up to the tim-
ing of the third shock. Cryogenic experiments confirmed that 
the column of liquid deuterium is not adversely affected by 
thermal and M-band x rays from the hohlraum. Direct-drive 
experiments on cryogenic spherical targets demonstrated 
that shock timing can be performed on multiple, spherically 

convergent shocks, and that shocks up to +70 km/s can be 
detected optically.

Each of the OMEGA experiments had more adverse con-
ditions than those expected on the NIF, i.e., higher M-band 
emission, less standoff distance to the window, and smaller 
radius of curvature. These experiments, therefore, provide 
high confidence that the NIC plan for shock timing is viable 
and will successfully time shocks to adequate precision for 
ignition targets.
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