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Introduction 
Polar-drive (PD)1–4 implosions on the National Ignition Facil-
ity (NIF) require smoothing of the laser-imposed nonunifor-
mities. The spot shape on target is controlled by employing 
distributed phase plates (DPP’s).5,6 Smoothing by spectral 
dispersion (SSD)7–9 smoothes the far-field speckle pattern in a 
time-integrated sense by continuously changing the near-field 
phase front of the laser beam. The current configuration of 
the NIF has SSD in only one dimension (i.e., 1-D SSD), which 
is insufficient for directly driven targets. A two-dimensional 
(2-D) SSD system with a 1-THz ultraviolet bandwidth and 
two color cycles proposed for the NIF provides the requisite 
smoothing but it is an expensive option that adds considerable 
complexity.10 An idea originally suggested by Rothenberg11 
further improved beam smoothing of all spatial frequencies by 
augmenting the 2-D SSD system with multiple-FM modulators 
in both dimensions at the expense of both increased complex-
ity and cost. An alternative laser speckle smoothing scheme 
proposed here employs multiple-FM modulators in a single 
dimension (MultiFM 1-D SSD) with minimal cost increase 
and added system complexity since the added modulation can 
be applied in the all-fiber-optic front-end system. In addition, 
this system concentrates beam-smoothing improvements on the 
lower end of the spatial frequencies that most limit direct-drive 
implosions with a low in-flight aspect ratio.

MultiFM 1-D SSD employs multiple color cycles to improve 
the smoothing of lower-spatial-frequency nonuniformities with-
out producing resonances at higher spatial frequencies because 
multiple modulators interact and effectively average the reso-
nant features with a judicious choice of modulator frequencies. 
MultiFM 1-D SSD attains similar or even faster smoothing 
rates compared to the full 2-D SSD system, albeit with shorter 
asymptotic times. Two-dimensional hydrodynamic simulations 
using DRACO12 show that MultiFM 1-D SSD is sufficient for 
the targets and pulse shapes analyzed thus far, even for smaller 
overall bandwidth (in the 0.5-THz range), which means that a 
single frequency-conversion crystal system can be used for the 
NIF with significant cost and complexity savings.

Multiple-FM Smoothing by Spectral Dispersion—An Augmented 
Laser Speckle Smoothing Scheme

MultiFM Coherence Time 
When SSD is employed, smoothing for any spatial frequency 

can be characterized by an inverse coherence time (or smooth-
ing rate) and an asymptotic nonuniformity. The rms average 
of the inverse coherence times over all spatial frequencies is 
equivalent to the effective bandwidth applied to the laser beam; 
however, this bandwidth is not uniformly distributed over the 
spatial frequencies imposed in the far-field plane, which range 
from zero to the highest spatial frequency determined by the 
diffraction limited spot. The SSD system does not continue to 
smooth forever but is limited to the characteristic asymptotic 
level that is determined by the angular divergence of the near 
field imposed by SSD. Both of these characteristics can be 
represented by a fitted functional form
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where  ,00
2 2/v v] ^g h is the initial value of the nonuniformity 

and  ,2 2
asym 3/v v] ^g h is the asymptotic level of the nonuni-

formity for the spatial mode given by  .

After a few coherence times and prior to reaching the 
asymptotic level, Eq. (1) can be approximated by
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During this time, the coherence time proportionally affects the 
level of nonuniformity, whereas the “slope” is given by t –1. If 
the coherence time can be decreased by modifying the SSD 
design, the nonuniformity for a given mode will decrease pro-
portionally. The asymptotic nonuniformity level vasym is deter-
mined by the angular divergence of the SSD system because 
this determines the number of independent modes in the far 
field. Increasing the angular divergence reduces vasym.
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The smoothing performance of any SSD system, including 
MultiFM, is accurately calculated using a specialized, time-
dependent far-field simulation, like Waasikwa’.13 Figure 114.22 
shows the smoothing performance of the -mode range 30 < 
 < 60 for the NIF 1-D SSD system with 10.8 Å of applied 
IR bandwidth yielding 878 GHz of ultraviolet bandwidth.‌(a) 
The figure also indicates the relative improvements that could 
be made for this -mode range by increasing the applied 
bandwidth Dm or the angular divergence DiSSD. For  modes 
lower than the first local maximum in the distributed inverse 
coherence time (roughly  < 100 for systems in this article; 
see Fig. 114.25), the inverse coherence time is approximately 
given by ?  ,t Nc

1
ccDm-  where Ncc is the effective number 

of color cycles. The angular divergence of one dimension is 
given approximately by ? ,N mSSD cci m oD D  where om is the 
modulator frequency.
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Figure 114.22
Time evolution of the nonuniformity summed over the -mode range 30 <  < 
60 for the NIF 1-D SSD system with 10.8 Å of applied bandwidth (878-GHz 
UV). The solid line represents the result of a Waasikwa’ far-field simulation. 
The dashed line indicates the improvements possible by altering the coher-
ence time and/or the angular divergence: (1) decreasing the coherence time 
of a mode proportionally decreases the level of nonuniformity during tc < t < 
tasym and (2) increasing the angular divergence will decrease the asymptotic 
level vasym.

Figure 114.23 shows the smoothing effect on the lower  
modes by increasing the number of color cycles while hold-
ing the bandwidth and angular divergence constant. For early 
times in the laser pulse (not shown), the initial nonuniformity 
is the same  ,t t 0as2

0
2" "v v^ ]h g8 B for each case. However, 

increasing the number of color cycles delivers asymptotic 
smoothing performance at earlier times. This illustrates that as 
the inverse coherence time is increased for this -mode range, 
the far field can be smoothed faster and the asymptotic level 
can be reached earlier.
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Figure 114.23
Time evolution of the nonuniformity rss-summed over the -mode range 
30 <  < 60 for three different realizations of a 1-D SSD system. The applied 
bandwidth and angular divergence are held fixed at 10.8 Å and 100 nrad, 
respectively, while the number of color cycles is varied as 2, 4, and 8, which 
correspond to modulator frequencies of 17.5, 35.5, and 70.5 GHz, respectively. 
All three traces represent full Waasikwa’ far-field simulations. The effective 
bandwidth is 1.1 THz.

As previously noted, the inverse coherence time is not 
constant over the entire -mode range of the far-field intensity 
pattern. The inverse coherence time for each  mode and the 
values of 0

2v ] g and 

2
asymv ] g can be calculated by fitting Eq. (1) 

to time-dependent Waasikwa’ far-field simulations, but this is 
a computationally intensive process. A simplified phenom-
enological formulation is desirable for evaluating or designing 
many SSD system variations. However, it is essential that the 
simple mathematical model given here is verified against a 
full far-field simulation prior to performing the even-lengthier 
hydrodynamic simulation. This is done by verifying a final 
MultiFM system design using the simple t 1

c
-  model against a 

time-dependent Waasikwa’ simulation fitted to Eq. (1).

For a 1-D SSD system the inverse coherence time along a 
single spatial dimension11 is given by

(a)Conventionally, the applied laser bandwidth is specified in two different units to distinguish to which end of the frequency-converted laser system the band-
width refers. When the bandwidth is given in angstroms (Å), it refers to the bandwidth in the front-end IR system and when the bandwidth is specified in GHz or 
THz, it refers to the bandwidth following the frequency-conversion crystals in the UV range. An IR bandwidth of 12.3 Å corresponds to 1.0 THz in the UV.
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along one of the two spatial-frequency directions, where x / 
,k rx tarff
 ,f r DNIF UV tar NIF/l m ^ h  and ,kxff

 fNIF, mUV, rtar, and 
DNIF are the NIF spatial frequency, focal length, laser wave-
length, target radius and near-field diameter, respectively. A 
similar functional form represents the second dimension for 
a 2-D SSD system; if no second dimension is included, then 

0.tc y
1 =-  For a single-modulator 1-D SSD system, a 2-D plot of 

the inverse coherence time is shown in Fig. 114.24 for the two-
color-cycle, 10.8 Å, 1-D SSD system described in Fig. 114.23. 
Note that in Fig. 114.24 the inverse coherence time periodically 
goes to zero for spatial frequencies where no beam smoothing 
is achieved. Equation (3) defines the inverse coherence time 
in only a single spatial-frequency dimension, but an azimuthal 
average is standard practice for comparing the effectiveness 
of different SSD systems (including MultiFM and 2-D SSD). 
The inverse coherence time for an effective  mode in the 2-D 
plane is defined as
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where    x y
2 2=/ i +] g  is the radial  mode. In addition, 

it is necessary to account for the effect of the near-field beam 
envelope on the resultant inverse coherence time because the 
envelope affects the relevant weighting of the contribution 
of each spatial frequency in the 2-D spatial-frequency plane. 
The mathematical model of a 1-D or 2-D SSD system is then 
given by 
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where PSD0() is the spatial-frequency power spectrum of the 
diffraction-limited spot or single speckle pattern.16,17 Note that 
the PSD0() can be used to analyze the effect of partially filled 
near-field apertures.

Equation (5) is employed to calculate the inverse coher-
ence time versus  mode for the three realizations of the 1-D 
SSD system, as shown in Fig. 114.25. These curves illustrate 
distinct behavior for the large -mode and low -mode regions. 
The mean value of the inverse coherence time yields a mea-
sure of the effective bandwidth. For the 1-D SSD systems the 

Figure 114.24
The inverse coherence time t c

1-  (in GHz) plotted in two dimensions as a 
function of the normalized-spatial-frequency, two-color-cycle system in 
Fig. 114.23 (1.1 THz, 100 nrad). Note that the number of zeros counted along 
the positive or negative axis for non-zero frequencies up to the effective 
round-aperture cut-off frequency yields the number of color cycles. In this 
case, there are two zeros along the positive or negative vertical axis. The axis 
has been normalized to a square NIF aperture and therefore is lengthened 
by 2  relative to a round aperture. A lineout in the SSD dispersion direction 
illustrates how the inverse coherence time periodically goes to zero. No beam 
smoothing is experienced at these spatial frequencies.
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Figure 114.25
The inverse coherence time t c

1-  (in GHz) plotted as a function of the spa-
tial -mode number for the three different 1-D SSD systems described in 
Fig. 114.23. The number of color cycles is varied as 2, 4, and 8. The divergences 
are fixed at 100 nrad. Note that the average inverse coherence time for the large 
 modes is approximately 1.25# the applied bandwidth of 878 GHz and that 
the inverse coherence time for the lower  modes ( < first local maximum) 
is given by ?  .t Nc

1
ccDm-  The resultant effective bandwidth is 1.1 THz. The 

vertical dashed line indicates the approximate distinction between low  and 
high  modes.
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effective bandwidth is 1.1 THz, which is roughly 1.25# the 
applied bandwidth for a single modulator system. In the large 
-mode range, the inverse coherence time is given roughly by 
the effective bandwidth. The peak of the first local maximum 
is 1.1 2  of the applied bandwidth, as related to the maximum 
of Eq. (3) that is azimuthally averaged around the 2-D plane. 
In the -mode range lower than the first local maximum, the 
inverse coherence time is given by

	   ,t Nc
1

ccm lD=- ] g 	 (6)

which can be understood by taking the small angle approxima-
tion to Eq. (3).

Another feature in Fig.114.25 is the series of strong reso-
nances in the large -mode range. This is due to the coherent 
effect of having multiple color cycles across the near-field 
plane. Each color cycle is a copy of its neighbors and does 
not lend to smoothing at the corresponding spatial frequency, 
which leads to the zeroes of Eq. (3). The zeroes of the resonant 
features are a 1-D effect, and their relative effect is lessened 
due to the azimuthal averaging of Eq. (5); however, the zeroes 
are still present in the 2-D plane and represent spatial frequen-
cies that experience no smoothing and are a potential threat 
in an ICF implosion due to hydrodynamic instabilities. The 
only smoothing that these modes get is from multiple beam 
overlap on target.

The resonant features caused by multiple color cycles can be 
mitigated with MultiFM if the modulator frequencies are judi-
ciously chosen. The effect of multiple overlaid patterns dramati-
cally reduces the range of spatial frequencies that do not benefit 
from beam smoothing, as illustrated in Fig. 114.26. In the near 
field, the application of MultiFM in 1-D takes the form

	 , , ,E x y E x y e sini t x
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where E0(x,y) is the near-field beam envelope and dn, ~n, and 
px are modulation depth, frequency, and grating dispersion for 
the nth modulators, respectively.

To calculate the inverse coherence time for the MultiFM 
case, Eq. (3) can be generalized by root-sum-square (rss) sum-
ming the values for each modulator. This approximation is valid 
when the modulation frequencies are incommensurate and 
the mixing of the modes in the far field temporally integrates 
to zero since terms like cos(~mt) • cos(~nt) average to zero 
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Figure 114.26
The inverse coherence time t c

1-  (in GHz) plotted in two dimensions as a 
function of normalized spatial frequency for a MultiFM 1-D SSD system 
employing three modulators at frequencies of 65, 75, and 95 GHz (Ncc = 8, 
9, and 11, respectively) with a combined divergence of 175 nrad and effective 
ultraviolet bandwidth of 1.2 THz. A lineout in the 1-D SSD dispersion direc-
tion illustrates the significant improvement in beam smoothing compared to 
Fig. 114.24. Note that the inverse coherence time goes to zero for all modula-
tors at the origin by definition.

when m is not equal to n. A three-modulator MultiFM case is 
compared in Fig. 114.27 to a single-modulator, eight-color-cycle 
case. Three modulators at frequencies of 65, 75, and 95 GHz 
(Ncc = 8, 9, and 11, respectively) produce a combined divergence 
of 175 nrad and effective ultraviolet bandwidth of 1.2 THz. 
Beam-smoothing rates are comparable for low  modes, but the 
MultiFM configuration outperforms the single modulator for 
high  modes due to the overlapped effect of multiple modula-
tors, each with multiple color cycles. The effective color-cycle 
number is weighted by the bandwidth of each modulator,
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while the effective bandwidth and angular divergence can be 
estimated by rss-summing the contributions from each modula-
tor. The total angular divergence, however, can have significant 
energy in the wings of the distribution as far out as the linear 
sum of the individual divergences.

An important observation is that improved lower -mode 
performance can also be achieved while decreasing the total 
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applied bandwidth, as long as the product Dm • Ncc and the angu-
lar divergence Di are held constant. In general, high -mode 
nonuniformities decouple much sooner from directly driven tar-
gets with low in-flight aspect ratios than lower  modes, which 
implies that the larger  modes do not utilize all the potential 
smoothing of these modes. MultiFM 1-D SSD makes it possible 
to reduce the total bandwidth applied while maintaining the 
same performance of the lower  modes. This phenomenon is 
depicted in the third plot (dashed) in Fig. 114.27, where a dif-
ferent set of modulation frequencies and color cycles achieves 
the same performance with a lower effective bandwidth of 
750 GHz. Likewise, the two-modulator MultiFM 1-D SSD sys-
tem shown in Fig. 114.28 matches the low -mode performance 
with only 600-GHz effective bandwidth and 110 nrad of diver-
gence. Two-dimensional hydrodynamic DRACO simulations of 
NIF direct-drive targets with 1-nm (rms) inner ice roughness, 
30-ps (rms) mistiming, 50-nm (rms) beam mispointing, and 
8% (rms) energy imbalance for a 1.5-MJ CH-foam target in a 
symmetric-drive configuration show that this MultiFM system 
provides sufficient beam smoothing to achieve ignition. Fur-
ther research is underway to determine if the bandwidth and 
the total energy delivered to target can be reduced, as well as 
to investigate MultiFM 1-D SSD for polar-drive implosions. 
Significant costs and complexity could be avoided on the NIF 

if the applied bandwidth can be reduced to 0.5 THz, since only 
a single frequency-tripling crystal would be required.

MultiFM Divergence 
The asymptotic level of nonuniformity, vasym, of the lower 

 modes is governed by the angular divergence because more-
independent speckle modes are created. The angular divergence 
is ultimately limited by the smallest pinhole in the laser system. 
The primary concern is pinhole closure during the main drive 
pulse. Currently, the angular divergence DiSSD for the NIF is 
limited to 100 nrad (full angle), which is set by a minimum 
pinhole size of 300 nrad. Dynamic bandwidth reduction14 
should allow the angular divergence to be increased without 
the risk of pinhole closure since simulations indicate that strong 
beam smoothing is required only during the initial low-power 
portion of the laser pulse when significant laser imprinting 
occurs.15 The angular divergence of SSD for a single modula-
tor is given by

	 ? ,
N

m
SSD

cc
i o

m
D

D
	 (9)

where om is the modulator frequency. The angular divergence 
can be increased by increasing the NccDm product and/or 
decreasing the modulator frequency om. Current investigations 
of MultiFM have limited divergence to a maximum full angle 
of 170 nrad, but increasing this limit could further improve 
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Figure 114.27
Azimuthally averaged inverse coherence time plotted as a function of spatial 
-mode number for an eight-color-cycle, 1-D SSD system (eight color cycles, 
1.1 THz, 100 nrad) and MultiFM 1-D SSD system (8, 9, and 11 color cycles, 
1.2 THz, 170 nrad). Another MultiFM 1-D SSD realization is also shown (12, 
14, and 18 color cycles, 750 GHz, 170 nrad) using three modulators at 68, 
77, and 94 GHz, respectively, but a smaller effective bandwidth of 750 GHz. 
The vertical dashed line indicates the approximate distinction between low  
and high  modes.

Figure 114.28
The inverse coherence time plotted as a function of spatial  mode number for 
a four-color-cycle, 1-D SSD system and a low -mode–matching MultiFM 1-D 
SSD system with two modulators and lower applied bandwidth. This realiza-
tion of a MultiFM 1-D SSD system employs two modulators at frequencies of 
55 and 60 GHz (Ncc = 9 and 10, respectively) and used a combined divergence 
of 110 nrad and only 600 GHz of effective UV bandwidth.
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smoothing of these important modes. Detailed laser imprint 
experiments will be performed on OMEGA EP with a pro-
totypical NIF beam-smoothing system to establish practical 
dynamic bandwidth reduction schemes. Additional experiments 
will also be performed to establish any lower limit of beam 
smoothing required late in the drive pulse to mitigate adverse 
laser–plasma interactions.

The asymptotic nonuniformity level and the time it takes 
to reach this level can be accurately calculated for a square 
pulse shape due to MultiFM 1-D SSD.18 The nonuniformity 
as a function of time can also be calculated for arbitrary pulse 
shapes and 2-D SSD system configuration but is beyond the 
scope of this article and will be discussed in a forthcoming 
article. The asymptotic nonuniformity due to a MultiFM 1-D 
SSD system is given by

	  , ,J
2
1 dn

n
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asym iv
r
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'] ^g h7 A% 	 (10a)

where
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J0 is a zeroth-order Bessel function of the first kind, and 
 2 r D fc tar NIF NIF UV/ r m_ i is the -mode cutoff. The angle 
i is necessary because although the proposed MultiFM beam 
smoothing is applied only in a single direction, the spectrum 
is inherently 2-D and it facilitates the azimuthal average. The 
number of independent states is found by  .N 1 2

states asymv= ] g  If 
the coherence time is known for the  mode, then the asymptotic 
time is given by tasym = tc Nstates. The formulation represented 
in Eqs. (10) is appropriate for all  modes.

The statement that increasing the angular divergence, given 
by Eq. (9), decreases the vasym, given by Eqs. (10), can be 
understood by examining the arguments of the Bessel function. 
This applies only to the lower  modes due to the sine function 
as an argument to the Bessel function and to the multi-color-
cycle effects. As the argument of the Bessel function increases, 
the peak envelope of the Bessel function decreases. For  modes 
lower than the peak of the first maximum of the sine function, 
the argument of the Bessel function increases when the prod-
uct dmNcc increases. The product relates to the total angular 
divergence because N 2m mcc ccd m oD? ? .N iD_ i

Beam-smoothing performance depends not only on the 
inverse coherence time and the total divergence but also on 
the shape of the spectral divergence. Some combinations of 
modulators yield excellent smoothing rates (inverse coherence 
time) for a given total divergence, but do not provide adequate 
beam smoothing due to the spectral distribution. The effec-
tiveness of spectral modes is weighted by their amplitudes. 
The shape of the spectrum is found by taking the 2-D Fourier 
transform of the near-field beam with its associated SSD phase 
front applied but without a phase plate. In general, the shape of 
the far-field spectrum differs from the shape of the temporal 
frequency spectrum due to the near-field beam shape. Ideally, 
modes are evenly weighted for best smoothing performance, 
but edge-peaked spectra perform better than center-peaked 
spectra. An example is shown in Fig. 114.29, where the applied 
bandwidth and total divergences are identical for the two dif-
ferent MultiFM cases. The configuration with a more-uniform 
divergence but some edge peaking [Fig. 114.29(a)] gives better 
far-field simulation performance early in time than the strong, 
center-peaked divergence shown in Fig. 114.29(b), which is 
illustrated in Fig. 114.29(c).

Conclusion 
Implementing MultiFM 1-D SSD beam smoothing on the 

NIF is a promising approach to meet the smoothing require-
ments for polar-drive implosions. It provides the flexibility to 
tailor the inverse coherence time spectrum to meet the target 
hydrodynamic-instability requirements while potentially 
reducing the overall bandwidth of the SSD system. Multiple 
color cycles are used to increase the performance of the lower  
modes and multiple modulators are used to reduce the resonant 
effects of multiple color cycles. Figure 114.30 shows how the 
MultiFM 1-D SSD system with 600-GHz effective bandwidth 
and 110 nrad of divergence described in Fig. 114.28 nearly 
attains the same target performance for a 1.5-MJ CH-foam 
target as the baseline 1-THz, 2-D SSD. Future work will extend 
these results to a 500-GHz MultiFM 1-D SSD system and a 
1.0-MJ CH-foam target. It may require increasing the angular 
divergence and invoking dynamic bandwidth reduction.
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Figure 114.29
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of divergence. The modulator frequencies were (a) 61 and 55 GHz with eight and seven color cycles, respectively, and (b) 61 and 45 GHz with eight and five 
color cycles, respectively. The thin dashed vertical line represents the 100-nrad specification and the thick dashed line represents the 150-nrad boundary. 
Note how the spectrum in (b) is more widely distributed and edge peaked relative to (a). (c) The nonuniformity calculated by Waasikwa’ is rss-summed over 
 modes 30 to 60 and is plotted as a function of time. Both systems have the same resulting asymptotic value but the system with the edge-peaked spectrum 
has improved performance early in time.
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Figure 114.30
1.5-MJ CH-foam target at the end of the 
acceleration phase for three different SSD 
systems. (a) MultiFM 1-D SSD described 
in Fig. 114.28 and (b) 2-D SSD. Both the 
MultiFM 1-D SSD system and the 2-D SSD 
system attain nearly 1-D gain.
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