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metal patterns on the input surface, where regions coated with 
metal block the light while clear regions have a 100% transmis-
sion. Super-Gaussian beams can, for example, be generated by 
serrated tooth apodizers,9 i.e., apodizers with a high-frequency 
periodic structure where the duty cycle varies as a function of 
the distance to the center of the plate, which provides a smooth 
apodization function after Fourier filtering. These apodizers 
are appropriate for edge-only shaping, i.e., realizing a smooth 
transition from the high transmission at the center of the beam 
to the absence of transmission on the edges. However, they can-
not generate more-complex shaping functions. Smooth shaping 
functions can be generated using a vacuum-deposited layer of 
a metal such as aluminum.10 More control can be obtained via 
binary pixelated arrays of metal pixels, as used on the National 
Ignition Facility11 to precompensate for the spatial gain varia-
tion of large glass amplifiers.12

Figure 108.46 displays two examples of target transmis-
sion. In Fig. 108.46(a), the target transmission is a 40th-order 
super-Gaussian that is used in high-power lasers to optimize 
the fill factor in large-scale slab amplifiers, while decreasing 
the detrimental effects of diffraction that would occur with a 
sharp-edge square beam. The corresponding lineout is plotted 
in Fig. 108.46(c). In Fig. 108.46(b), the target transmission 
corresponds to the precompensation of the spatially dependent 
gain of 58 passes in 40-cm-diam Nd:glass disks, as required 
for OMEGA EP.13 The corresponding lineout, plotted in 
Fig. 108.46(d), demonstrates the required nonsymmetric shape 
due to the uneven distribution of the orientations of the disks. 
While the apodizing function of Fig. 108.46(a) can be synthe-
sized with serrated tooth apodizers, this approach does not work 
for the more-complex function of Fig. 108.46(b). Such precom-
pensation is mandatory for large-scale laser systems.10

Gray-scale rendering with black or white features is crucial 
in printing applications, where it is usually referred to as digital 
half-toning or spatial dithering.14 Among many other algo-
rithms,14 the error diffusion algorithm has been identified as 
particularly efficient at providing gray-scale images with visu-
ally pleasing results.15 Because of the analogy between image 

Introduction
Controlling the amplitude and phase of light is crucial in many 
technological applications, such as imaging, lithography, astron-
omy, and laser physics. In high-power laser systems, there is a 
need for precise beam shaping. Square beams with super-Gauss-
ian profiles are used to optimize the fill factor of amplifiers. The 
spatially dependent gain of amplifiers can be, to a large extent, 
precompensated, i.e., the spatial intensity of the beam to be 
amplified is shaped before amplification so that regions of higher 
gain in the amplifier correspond to regions of lower intensities 
in the input beam. To avoid damage or small-scale self-focusing, 
local intensity variations should be minimized and intensities 
kept below damaging intensities; therefore, there is a need for 
accurate beam-shaping systems with fine controls. While spatial 
light modulator (SLM) technology1 is well developed, it is not 
a perfect fit for these applications, since the damage threshold 
of most SLM’s is lower than the required operating fluences 
for some applications. Because of saturation in laser ampli-
fiers and nonlinear effects such as those encountered in optical 
parametric chirped-pulse amplification,2 precompensation 
may need to be performed at locations in the system where the 
fluence is already significant (for example, after a first stage of 
amplification). Beam shaping has been demonstrated using the 
modal discrimination of a laser cavity or regenerative amplifier 
cavity (for example, using intracavity phase masks3,4), but no 
elaborate beam-shaping function has been performed beyond 
the realization of flat-top beams. Additionally, some degree of 
complexity is added by the realization of a laser cavity combining 
amplification and shaping, compared to an architecture where 
these functions are performed by independent elements that can 
be optimized separately. A large variety of techniques have been 
demonstrated to generate a spatially varying transmission, such 
as photographic plates,5 mirrors with variable reflectivity,6 ele-
ments with spatially varying birefringence,7 and elements with 
spatially varying transmission based on total internal reflection.8 
It is unclear, however, if any of these techniques has the required 
versatility and reliability.

Historically, the solution for shaping high-energy laser 
beams has been to propagate the beam in a glass substrate with 
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rendering and transmission shaping, it is of interest to study the 
performance of error diffusion when designing binary masks 
leading to continuous beam-shaping functions. The purpose of 
this article is to provide insight into the potential and limitations 
of this technique. The principle of error diffusion and its applica-
tion to the design of pixelated binary masks are presented first. 
The performance of the obtained masks in terms of beam shap-
ing is then studied in the context of high-power laser systems. 
Finally, the influence of feature size on the shaping performance 
is studied analytically and via simulations.

Error Diffusion Principle
1. Shaping of a Coherent Light Source

It is assumed that a coherent source with constant intensity 
I E0 0

2=  is incident on a transmission mask, which is relay 
imaged to the image plane, following Fig. 108.47. A Fourier 
plane in the imaging system can be used for Fourier filtering. 
An example of such a system is a two-lens system, with lenses 
of identical focal length, for which Fourier filtering can be 
performed with a pinhole at the Fourier plane of the first lens. 
For the sake of simplicity, we assume an imaging system with 
magnification equal to 1. The electric field after the binary 
mask with transmission s(x,y) is E(x,y) = E0 # s(x,y), where s(x,y) 
is either 0 (presence of light-blocking metal) or 1 (no metal) and 
is pixelated. The electric field at a Fourier plane of the first lens 
is written as , ,E s u v0 #u^ h  where su is the Fourier transform of 
s. This field is filtered by a transmission filter p, leading to the 
field , , .E s u p uv v0 # #u^ ^h h  The resulting field at an image plane 
can be written as a convolution .E E s p0= # 7l u  Because the 

convolution with the Fourier transform of the filter pu acts as a 
local averaging operation on the electric field of light after the 
shaper, the intensity of the output field at a given point (x,y) is 
proportional to the square of the average value of s around this 
point. This is important when designing a beam shaper for a 
spatially coherent light source because the average transmis-
sion of the beam shaper before filtering must be designed to 
be equal to the square root of the target intensity transmission 
after filtering. The averaging operation provided by the filter in 
the far field is the key point in obtaining a smooth continuous 
intensity from a binary pixelated mask.

2. Design of a Binary Beam Shaper Using Error Diffusion
Error diffusion14,16,17 is based on the lexicographical pro-

cessing of the pixels of the mask, typically from top to bot-
tom and left to right, following the diagrams in Fig. 108.48. 
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Figure 108.46
(a) Example of 40th-order super-Gaussian intensity; (b) example of intensity distribution required to precompensate for the spatial gain variation in OMEGA EP; 
(c) lineout of the intensity of (a) at the center of the beam along the x direction; (d) lineout of the intensity of (b) at the center of the beam along the x direction.
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Figure 108.47
Principle of the generation of a continuous shaped intensity using a binary 
shaper and Fourier filtering.
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A pixelated representation of the target transmission of the 
shaper, t(m,n), is shown in Fig. 108.48(a), while the binary 
shaper being designed is shown in Fig. 108.48(b). On the latter, 
previously processed pixels have a transmission s(m,n) equal to 
either 0 or 1 and are plotted in black or white, while nonpro-
cessed pixels have been arbitrarily plotted in gray. Since the 
target transmission takes values in the interval [0,1] while the 
shaper transmission is either 0 or 1, the choice of the value of 
each pixel in the binary mask induces a transmission error. In 
error diffusion, the binary value of the pixel (m,n) is set by the 
information contained in the target shaper transmission t(m,n), 
which can be modified by the choices that have been made for 
the mask binary value s(m,n) for the pixels that have already 
been processed. Initially, one sets , , ,t m n I m n=^ ^h h  where I is 
the sampled representation of the target intensity of the coher-
ent source. Following the chart in Fig. 108.48(c), the choice of 
transmission s(m,n) is made by comparing the target shaper 

transmission to 0.5. If the target transmission is smaller than 
0.5, s(m,n) is set to 0, while, if the transmission is larger than 
0.5, s(m,n) is set to 1. The resulting error is “diffused” to pixels 
that have not yet been processed, usually neighboring pixels, to 
bias the binary choice for these pixels and locally compensate 
the transmission error. This is done by adding a fraction of 
the error e(m,n) = s(m,n) – t(m,n) to the target transmission for 
these pixels, which is symbolized in Fig. 108.48(a) by white 
arrows pointing to these pixels. The target transmission t(m + 
a, n + b) is then replaced by t(m + a, n + b) + c(a,b) # e(m,n) 
for the chosen set of integers a and b. In the initial develop-
ments of error diffusion by Floyd and Steinberg,16 only the 
four neighboring pixels at coordinates (m + 1, n – 1), (m + 1, n), 
(m + 1, n + 1), and (m,n + 1) are used in the diffusion process 
(four-weights error diffusion). The results presented in this 
article have been obtained with such implementation, as the 
gain of performance when diffusing the error to a large number 
of neighboring pixels does not seem significant. The function 
c takes for value c(1,–1) = –3/16, c(1,0) = –5/16, c(1,1) = –1/16, 
and c(0,1) = –7/16. The algorithm then proceeds with the next 
pixel, following the lexicographical order.

Properties of Binary Shapers Generated  
with Error Diffusion
1. Error Functions for Beam-Shaping Performance

Two functions have been used to quantify beam-shaping 
performance. A normalized version of the rms error between 
the target shaped intensity and the obtained shaped intensity 
after filtering is

 , , ,T x y T x y dxdy1
s

2
rms obtained target= -f ^ ^h h8 B##  (1)

where the double integral is calculated over the region S, where 
the target intensity is higher than a given threshold to ensure that 
only relevant values are kept. The normalization ensures that 
the calculated error remains the same after multiplication of the 
target and obtained intensities by a spatially varying function. 
This ensures that this rms error is also a proper description of the 
shaping performance after amplification of the shaped beam.

Another error function of interest when dealing with shaping 
elements for laser applications describes the presence of local 
high values of the intensity because of the potential damage 
to optics and self-focusing,
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where the maximum is calculated over a region of interest 
(typically, the region where the beam is amplified to signifi-
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Figure 108.48
Principle of the error diffusion algorithm. (a) Representation of the target 
shaper transmission t(m,n); (b) representation of the binary shaper transmis-
sion s(m,n) being designed; (c) chart describing the design process. The thick 
squares on (a) and (b) represent the pixel being processed. The horizontal 
arrows on (b) schematize the lexicographical process over the already pro-
cessed pixels. The white arrows on (a) represent the error diffusion to adjacent 
nonprocessed pixels.
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cant values). This error function quantifies the magnitude of 
hot spots in the beam. While these two error functions are, 
in general, not correlated, it was found that they had similar 
behaviors when varying the pixel size or the parameters of the 
far-field filtering operation, and we therefore plot only the rms 
error, but quote the peak error in relevant cases.

2. Comparison of the Error Diffusion Algorithm  
with the Random Dither Algorithm
A simple random dither algorithm is used to emphasize the 

properties of the error diffusion algorithm. The random dither 
algorithm is one of the simplest algorithms that can be used 
to design binary shaping elements. It is also known as white-
noise dithering because of the spectral content of the generated 
images.14 While this technique has shortcomings, its simplicity 
makes it an ideal choice to highlight the properties and perfor-
mance of the error diffusion algorithm. For the random dither 
algorithm, the binary transmission of each pixel is chosen by a 
random draw between 0 and 1. If the drawn number is smaller 
than the target transmission, the transmission of the pixel is 
set to 1, while if the drawn number is higher than the target 
transmission, the transmission of the pixel is set to 0. Properties 
of random draws ensure that this algorithm properly reproduces 
gray levels on average. One should note that there is no error 
feedback in such an algorithm.

3. Properties of the Error Diffusion Algorithm
Pixelated binary masks generated with error diffusion are 

highly ordered structures. Figure 108.49 displays pixelated 
binary distributions generated by error diffusion for target 
transmissions equal to 5%, 25%, and 75%. It was found that 
the error diffusion algorithm can reproduce gray levels very 
accurately. These close-ups are compared to close-ups of masks 
generated by the random dither algorithm to generate the same 
target transmission. The latter show no correlation between the 
presence of pixels at various locations in the mask.

To understand the binarization noise, the error diffusion 
and random dither algorithm were used to generate a shaping 
function corresponding to Fig. 108.46(b), using 10-nm pixels. 
The corresponding binary shaper generated by error diffusion 
is plotted in Fig. 108.50(a), and close-ups of the binary pixel 
distributions at the center and at the upper right corner are dis-
played in Figs. 108.50(b) and 108.50(c). A lineout of the shaped 
intensity plotted in Fig. 108.50(d) demonstrates the proper real-
ization of the transmission of the shaper, including the proper 
transmission at the center of the beam and the high-frequency 
content on the edges of the beam, owing to the high resolution 
and proper rendition of gray levels when using error diffusion. 

This lineout corresponds to the optimal filtering in the Fourier 
plane, as discussed below. As can be seen, the shaped intensity 
varies by less than 1% around the target intensity. Intensities 
of the far field of the shapers generated by error diffusion and 
random dither are compared in Fig. 108.51, where the average of 
the far-field intensity in a 4-mrad interval along the y direction 
has been plotted on a logarithmic scale as a function of the angle 
in the x direction. The noise due to the binarization is pushed 
to high frequencies in the case of the error diffusion algorithm 
but is present at all frequencies in the case of the random dither 
algorithm—an example of the general behavior of spatially 
dithered masks generated with error diffusion.17 The spectrum 
of the noise introduced by the binarization has no zero-frequency 
component and has only significant density at high frequencies, 
therefore the name “blue-noise dithering.”18 By comparison, the 
randomness of the random draw design algorithm generates a 
constant noise background in the far field (i.e., “white noise”). 
This point is particularly important for Fourier filtering because 
the amplitude filter in the far field (e.g., the pinhole) can effec-
tively block the binarization noise while preserving the frequency 
content of the target transmission.

To demonstrate the influence of the filtering operation, the 
rms error is calculated as a function of the angular diameter 
of a circular pinhole set in the far field for a shaping element 
designed with error diffusion and random dither to approxi-
mate the target-shaped intensity of Fig. 108.46(b). The rms 
error is also calculated when propagating a field having the 
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Figure 108.49
(a)–(c) Close-ups of shapers designed with error diffusion for a target-inten-
sity transmission equal to 5%, 25%, and 75%, respectively; (d)–(f) close-ups 
of shapers designed with the random dither algorithm for a target-intensity 
transmission equal to 5%, 25%, and 75%, respectively.
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a given pinhole diameter for each design algorithm. The rms 
error is minimal for a 7-mrad pinhole in the case of error dif-
fusion (frms = 0.7%, fpeak = 2.4%) and for a 3-mrad pinhole in 
the case of the random dither algorithm (frms = 7.5%, fpeak = 
27.4%). The corresponding shaped intensities were used to 
calculate the intensity after amplification, which is expected 
to be functionally similar to that of Fig. 108.46(a). The three 
lineouts of the amplified intensity plotted in Figs. 108.53(a) 
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Figure 108.50
(a) Binary shaper corresponding to the transmission of Fig. 108.46(b); (b) and (c): close-ups of the binary pixel distribution at the center and at the upper right 
corner of the beam, respectively; (d) lineout of the filtered intensity along the x direction (solid line) and lineout of the difference between the filtered intensity 
and the target intensity (dashed line).

Figure 108.51
Intensity of the far field of the binary beam shaper designed with the error diffusion algorithm (solid line) and the random dither algorithm (squares) for the 
generation of a shaped intensity of Fig. 108.46(c). The intensity is averaged over a 4-mrad angle in the y direction and plotted versus the angle in the x direc-
tion. Plots (a) and (b) cover different ranges of angles.
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target-shaped intensity. Figure 108.52(a) shows that the rms 
error is limited at low pinhole sizes by the propagation of the 
target-shaped intensity through the filtering system (i.e., the 
high frequencies of this intensity are blocked by the pinhole) 
that also constrains the rms error in the case of the binary dis-
tributions. The error increases quickly for the random dither 
algorithm as the pinhole size is increased, but decreases in the 
case of error diffusion. The rms error reaches a minimum for 
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and 108.53(b) show that the modulations due to the shaping 
process are not detectable for error diffusion, but are significant 
for random dither.

We have also studied the effect of pixel size in the design 
of shapers. It is intuitive that smaller pixels lead to better 
resolution in the reproduction of the shaping function. This 
is demonstrated by plotting the rms error as a function of the 
pinhole diameter for the shaping function of Fig. 108.46(b) 
designed with error diffusion and binary shapers with 10-, 20-, 

and 40-nm pixels [Fig. 108.52(b)]. Larger pixels increase the 
rms error, and influence the shaping performance in two ways: 
they generally decrease the ability to generate quickly varying 
functions and, in the case of a binary distribution, they imply 
a reduction in the number of parameters available to locally 
specify a gray level (for example, an area of 10-nm binary 
pixels has 16 times more bits of information than the same 
area covered with 40-nm pixels). The minimal rms error for 
a given pixel size is obtained for a pinhole size that decreases 
when the pixel size is increased. A shaper with 10-nm pixels 
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(a) rms error for the realization of the shaped intensity of Fig. 108.46(b) as a function of the pinhole angular diameter in the case of the error diffusion algorithm 
(circles) and the random draw algorithm (squares). The solid line corresponds to the propagation of a field having the target-shaped intensity through the same 
filtering system. (b) rms error for the realization of the shaped intensity of Fig. 108.46(b) as a function of the pinhole angular diameter for a pixel size of 10 nm 
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leads to frms = 0.7% and fpeak = 2.4% with a 7-mrad pinhole; 
with 20-nm pixels leads to frms = 1.7% and fpeak = 4.3% with 
a 5-mrad pinhole; and with 40-nm pixels leads to frms = 3.4% 
and fpeak = 9% with a 4-mrad pinhole.

Effect of Feature-Size Variation  
on the Shaping Performance

Practical applications of shapers are constrained by the ability 
to faithfully reproduce small-scale features. A typical process for 
generating metal masks is based on lithography.19 In the case of 
wet-etch lithography, etching can lead to a reduction in feature 
size, i.e., the light-blocking metal pixels are smaller than speci-
fied in the design, which leads to an increased transmission. It 
is important to understand the scaling of this effect, quantify it, 
and potentially come up with precompensation schemes.

1. Analytical Derivation
The design of shapers using error diffusion leads to highly 

ordered distributions of pixels, as shown in the previous sec-
tion. It has been observed that shapers with isolated 100% 
transmission blanks [example in Fig. 108.49(a)] were obtained 
for target transmission smaller than 10%. Shapers with isolated 
0% transmission pixels were obtained for target transmissions 
higher than 45% [example in Fig. 108.49(c)]. In these cases, the 
transmission can be predicted uniquely from the knowledge 
of the area of a blank (in the first case) and the area of a pixel 
(in the second case), these areas being scaled to the expected 
nominal area for these features.

In the case of isolated blanks, the intensity transmission 
after Fourier filtering is

 ,T d
N S

B S2

0

2

obtained blank
blank

= =
#

#
f p  (3)

where dblank is the density of blank pixels, B is the number 
of blank pixels in a representative area with a total number of 
pixels equal to N, Sblank is the surface of a blank pixel, and S0 
is the nominal surface of a pixel. Using the fact that Ttarget = 
(B/N)2, one obtains the relation describing the transmission of 
regions with isolated blanks as

 .T T
S

S

0

2

obtained target
blank

= # f p  (4)

In the case of isolated pixels, the intensity transmission after 
Fourier filtering is

 ,T d
N S

M S
1 12

0

2

obtained metal
metal

= - = -
#

#

_ fi p  (5)

where dmetal is the density of metal pixels, M is the number 

of metal pixels in a representative area with a total number of 
pixels equal to N, Smetal is the surface of a metal pixel, and S0 is 
the surface of a pixel. Using the relation ,T M N1 2

target = - _ i8 B  
one obtains

 .T T
S

S
1 1

0

2

obtained target
metal

= - -#a k> H  (6)

For transmissions between 10% and 45%, analytical derivation 
is not as simple. In the special case of a target transmission 
equal to 25%, the generated distribution of pixels is a checker-
board of metal and blank pixels [example in Fig. 108.49(b)], for 
which it can be seen that the transmission error can be predicted 
considering isolated metal pixels if the feature-size variation is 
due to the edge effect simulated below, i.e., using Eq. (6).

2. Simulations
A simulation was performed to quantify the impact of pixel-

size mismatch on the transmission of shapers. It is assumed that 
the primary effect of pixel-size variation is an edge effect, i.e., 
a metal pixel neighboring a blank pixel is over-etched and an 
additional section of metal is removed from the corresponding 
edge. The offset is defined as the ratio of the length of metal 
additionally removed over the nominal size of the pixel (e.g., 
nominal 10-nm metal pixels losing 0.5 nm on each side cor-
respond to a 5% offset, and an isolated metal pixel becomes 
a 9-nm pixel). A mask for a constant transmission Ttarget 
after filtering is first generated. The edge effect is simulated 
by increasing the transmission of every blank in the mask by 
n times the relative change due to the over-etching, where n 
corresponds to the number of neighboring metal pixels. The 
obtained transmission is obtained by calculating the actual 
transmission of the mask after this operation to get Tobtained. 
The transmission error is then defined as .T T 1obtained target -_ i  
While these simulations assume a specific process for the 
transmission degradation, it has been found to describe accu-
rately our experimental results. One should note however that 
the formulas of Eq. (4) and Eq. (6) are valid for shapers with 
isolated blanks and pixels of arbitrary shape.

The transmission error is plotted in Fig. 108.54 as a func-
tion of the target transmission in the case of a 5% offset (e.g., 
9-nm pixels obtained on a 10-nm grid) and a 10% offset (e.g., 
8-nm pixels obtained on a 10-nm grid), with the correspond-
ing analytical prediction calculated using the size of both the 
metal and blank pixels. The simulations and the analytical 
predictions of Eq. (4) and Eq. (6) agree well in their respective 
domain of validity. For over-etched metal pixels, the maximal 
transmission error is obtained for low target-intensity transmis-
sion smaller than 10%. The predicted transmission error at low 
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design transmission using the surface of a blank and Eq. (4) 
is, respectively, 44% and 96% for size offset equal to 5% and 
10%. This error can be reduced by decreasing the offset in 
pixel size. While small pixels lead theoretically to better shap-
ing capabilities, the absolute reduction in metal pixel size due 
to lithography is mostly independent of the pixel size, i.e., the 
offset becomes larger when using smaller pixels. For example, 
a process leading to a 10% offset error on 10-nm pixels would 
give only a 5% offset on 20-nm pixels. There is a trade-off 
between shaping capabilities and transmission error, unless 
some precompensation of the shaper design taking into account 
the feature size of the mask is performed.
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Figure 108.54
Transmission error simulated as a function of the target-intensity transmission 
for a pixel-size offset equal to 5% (lower curve) and 10% (upper curve). In 
each case, the circles correspond to the error prediction using Eq. (4) and the 
squares correspond to the error prediction using Eq. (6) (markers are plotted 
only in the domain of validity of these two equations).

3. Precompensation
Precompensation of the transmission error due to the feature 

size is made possible by the predictability of the transmission 
error. While an exact knowledge of the transmission error 
requires an exact knowledge of the feature sizes and shapes, 
one can rely on an approximate model of the pixel shape and 
size to precompensate the transmission by modifying the pixel 
density. One starts with the knowledge of the relation between 
design transmission and obtained transmission, written as 
Tobtained = f (Tdesign). It suffices to chose Tdesign = f –1(Ttarget) to 
obtain Tobtained = Ttarget, where f –1 is the reciprocal function 
of f. Precompensation can be performed simply by applying 
the error diffusion algorithm to f –1[Ttarget(x,y)] instead of 
Ttarget(x,y). In practice, the exact shape of the function f (and 
f –1) is not known. It depends on the feature size of the gener-
ated shaper as well as the feature shape. These properties are 

likely to be similar for different runs of the same fabrication 
process, which allows some precompensation of these effects 
at the design stage.

The function f calculated in the previous subsection for a 5% 
offset was used to precompensate the shaper design. As in the 
previous subsection, shapers with a target transmission ranging 
from 0% to 100% were generated by applying the error diffu-
sion algorithm. The transmission obtained with these shapers 
was then calculated, following the previous procedure, for 
pixels corresponding to offsets equal to 4%, 5%, and 6%. The 
transmission error in the absence of precompensation for these 
three offsets is plotted in Fig. 108.55(a). It can be compared to 
the transmission error with precompensation of a 5% offset, 
which is plotted in Fig. 108.55(b). A significant reduction of 
the transmission error is obtained. As expected, the transmis-
sion error after precompensation is positive for an offset equal 
to 6%, approximately equal to zero for an offset of 5%, and 
negative for an offset equal to 4%.

E15434JRC

–10

–5

0

0

0.0 0.2 0.4

Target transmission

T
ra

ns
m

is
si

on
 e

rr
or

 (
%

)
T

ra
ns

m
is

si
on

 e
rr

or
 (

%
)

0.6 0.8 1.0

5

10

10

20

30

40

50

60

6%

5%

4%

6%

5%

4%

(a)

(b)

Figure 108.55
Transmission error as a function of the target transmission for pixel-size 
offsets equal to 4% (dotted line), 5% (solid line), and 6% (dashed line) 
(a) without precompensation and (b) with precompensation of the pixel-size 
offset assuming a pixel-size offset equal to 5%.
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Conclusion
The error diffusion algorithm has been studied in the context 

of the design of beam shapers for high-power laser applications. 
The high resolution and accurate reproduction of continu-
ous shaping functions is beneficial to these applications. In 
particular, it has been shown that the shaped intensity has no 
significant hot spots, therefore decreasing the risk of damage 
in the laser system. The practical problem of accurate feature 
size reproduction has been studied in detail, and it has been 
shown that the transmission error can be reduced significantly 
by proper biasing of the target transmission before applying the 
design algorithm. The pixel size should be chosen by consider-
ing both the theoretical shaping capability and the influence of 
the practical fabrication process.
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