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Introduction
The unstable growth of target nonuniformities is the most 
important factor that limits target performance in inertial 
confinement fusion (ICF)1 and is crucial in understanding 
many astrophysics phenomena.2 In ICF, the target is driven 
either directly with laser beams (direct drive)3 or indirectly 
by x rays, in which the laser drive is converted into x rays in a 
high-Z enclosure (hohlraum).4 When laser light is incident on 
the target in a direct-drive configuration, the pressure created 
by the target ablation launches a shock wave that compresses 
the target. Any target modulations, either existing surface 
imperfections or modulations created by laser nonuniformities 
through laser imprinting, grow because of shock-driven Richt-
myer–Meshkov (RM) instability as a shock wave propagates 
toward the rear surface of the target.5–8 When the shock front 
reaches the rear surface of the target, it sends a rarefaction 
wave back toward the ablation surface; when it arrives, the 
target begins to accelerate. During the acceleration phase, the 
ablation-surface modulations grow exponentially because of 
Rayleigh–Taylor (RT) instability.9–19 RT instability has been 
extensively studied in both ablative12–19 and classical9–11 (with 
no ablative stabilization) regimes. RT growth rates were studied 
in the linear regime of the instability with both direct14–17 and 
indirect12,13 drive. The highly nonlinear, turbulent regime of 
RT instability was studied mostly in the classical regime.8–11 
Weakly nonlinear features, such as harmonic generation 
and mode coupling to longer wavelengths, were measured in 
experiments using indirect drive12,19 coupled to targets with 
preimposed, single-mode, and multimode initial perturbations. 
The saturation amplitudes of 3-D broadband nonuniformities 
were measured using laser-imprinted modulations as initial 
seeds for RT growth (conditions most relevant to direct-drive 
ICF).18 In those experiments, the finite target thickness limited 
unstable hydrodynamic growth, which did not allow accurate 
measurements of the nonlinear velocities.20 The experiments 
in this article present the first measurements of nonlinear satu-
ration velocities, allowing a direct comparison with the Haan 
nonlinear-growth model21 near saturation levels. The transition 
from linear to nonlinear growth of 3-D broadband modulations 
presented in this article is among the key factors required to 
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understand nonlinear RT instability. This experimental study is 
critical to the success of ICF because most ICF ignition designs 
rely on the accuracy of Haan’s predictions. 

Experimental Details
In the experiments, initially smooth, 1-mm-diam, 20- and 

50-nm-thick CH targets were driven with 12-ns square pulses 
at a laser intensity of ~5 # 1013 W/cm2 on the OMEGA Laser 
System.22 The modulation growth was measured with through-
foil, x-ray radiography20 using x rays from three different 
backlighters: an ~1.3-keV uranium backlighter for 20-nm-
thick targets and an ~2.0-keV dysprosium and an ~2.5-keV 
tantalum for 50-nm-thick targets. Harder x rays were used at 
later times when target modulations reached larger amplitudes. 
The backlighter x rays were imaged by an 8-nm pinhole array 
onto a framing camera, allowing for up to eight images with a 
temporal resolution of ~80 ps and a spatial resolution of ~10 nm 
to be captured at different times in each shot.20 The initial 
target modulations, used for RT growth measurements, were 
imprinted by laser-intensity nonuniformities of the imprint 
beam, which arrived ~200 ps before all other drive beams, 
used for target acceleration.18,20 The process of laser imprint-
ing takes ~200 ps. During this time, a plasma develops (from 
laser ablation) between the laser absorption (near the critical 
surface) and ablation surfaces, which decouples laser beams 
from the target, thereby stopping the imprinting process.23,24 
Two different initial target modulations were created by a 
laser beam with either a standard distributed phase plate25 
(SG8 DPP) or a laser beam with no DPP, defocused to an 
~1-mm spot. Figure 103.19 shows measured central, 333-nm-
sq parts of laser equivalent-target-plane images with an SG8 
DPP [Fig. 103.19(a)] and with no DPP [Fig. 103.19(b)]. The 
laser-modulation Fourier spectra of these laser images are 
shown in Fig. 103.19(c). The beam with a DPP (solid curve) 
has broadband modulations with spatial frequencies up to 
~320 mm–1, corresponding to the smallest spatial size of ~3 nm 
and an intensity modulation vrms of ~94%. The beam with no 
DPP (dashed curve) has modulations with spatial frequencies 
up to ~50 mm–1, corresponding to the smallest spatial size of 
~20 nm, and an intensity modulation vrms of ~51%.
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Experimental Results
The optical-depth (OD) images (obtained by taking the 

natural logarithm of intensity-converted, framing-camera 
images) of x-ray radiographs are shown in Figs. 103.20(a), 
103.20(b), and 103.20(c) for SG8 DPP initial conditions and 
in Figs. 103.20(d), 103.20(e), and 103.20(f) for no-DPP initial 
conditions. The early-time images (a) and (d) were obtained 
using a uranium backlighter, while later-time images (b) and 
(e) were obtained with a dysprosium backlighter and images 
(c) and (f) with a tantalum backlighter. A Weiner filter (based 
on measured system resolution and noise) was applied to these 
images to remove noise and deconvolve the system’s modulation 
transfer function to recover target OD modulations.20 The mea-
sured target OD variations are proportional to the variations of 
target areal density d[tR], ,t E R tOD CH=d n d t^ ^ ^h h h7 7A A  where 
nCH(E) is the CH target mass absorption rate at the x-ray energy 
E used for backlighting and t is the time of the measurement. 
The measured (in undriven targets) mass absorption rates were 
950!100 cm2/g, 320!30 cm2/g, and 240!20 cm2/g for ura-
nium, dysprosium, and tantalum backlighters, respectively. The 

areal-density modulations were obtained by dividing measured 
OD modulations by the target mass absorption rates. Harder 
x rays were used to measure higher-amplitude modulations at 
late times because softer x rays are completely absorbed in 
large modulation spikes, compromising the measurements. 
Measurement timings of 20-nm-thick targets were converted 
to those of 50-nm-thick targets according to the calculated (by 
1-D hydrocode LILAC26) target distance traveled. 

During the acceleration phase, the target’s laser-imprinted 
modulations grow because of RT instability. During this 
growth, the modulations shift to longer wavelengths, with 
initial small structures growing into large bubbles (the dark 
regions in x-ray radiographs shown in Fig. 103.20) and narrow 
spikes (light areas in the radiographs). Figure 103.21 shows 
the evolution of modulation areal-density Fourier amplitudes 
(for shots with DPP initial seeds). The dotted line is the Haan 
saturation level20 Sk = 2/Lk2, where L = 333 nm is the box size 
of the x-ray image, k is the spatial wave number of modula-
tions, k = 2rf, and f is the spatial frequency. The saturation 
level Sk was converted to areal density by multiplying it by 
the LILAC-calculated foil density of ~1.7 g/cc, which was 
predicted to be constant (within about 10%) for the duration 
of the experiment. In the Haan model,21 the spectral ampli-
tudes grow exponentially with the RT growth rate c(k) until 
they reach the saturation levels Sk; at this point they grow 
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Figure 103.19
Central, 333-nm-sq parts of the measured equivalent-target-plane images of 
laser beams with (a) a regular SG8 DPP and (b) with no DPP used to produce 
initial 3-D broadband modulations for RT growth. (c) Fourier amplitudes of 
relative laser intensity as a function of a spatial frequency of these laser-beam 
images with a SG8 DPP (solid line) and with no DPP (dashed line). 

SG8 DPP initial condition  

No DPP initial condition 

4 ns 5 ns 8 ns 

(d) (e) (f)

333 mm

(a)

4 ns 6 ns 10 ns 

(b) (c)

E13702JRC

Figure 103.20
X-ray radiographs of the 3-D broadband modulations initially produced by 
the imprinting of the laser beam with a SG8 DPP and measured at 4, 6, and 
10 ns [images (a), (b), and (c), respectively] and with the laser beam with no 
DPP and measured at 4, 5, and 8 ns [images (d), (e), and (f), respectively].
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linearly in time with saturation velocities Vs(k) = Skc(k). The 
RT growth rate is determined by the Betti–Goncharov disper-
sion relation27 . . ,k kL kV0 94 1 1 5kg m a= + -c

.0 58 B^ h  where g 
= 10 nm/ns2 is the target acceleration, Va = 0.65 nm/ns is the 
ablation velocity, and Lm = 0.1 nm is the density scale length 
(all three parameters were calculated by LILAC). The shorter-
wavelength modes grow most rapidly and quickly saturate at 
levels Sk while the longer-wavelength modes grow more slowly. 
As a result, the mid-wavelength modes have the largest growth 
factors, producing a peak in the spectrum. As the evolution 
continues, this peak moves to longer wavelengths, as shown in 
Fig. 103.21. Because the effects of finite target thickness, which 
compromised the evolution of the thin, 20-nm-thick targets in 
previous experiments,20 were detected only after ~7 ns in the 
present experiments with 50-nm-thick targets, the analysis was 
limited to data taken up to ~6 ns. 
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Figure 103.21
Fourier amplitudes of the target areal-density modulations as a function of 
spatial frequency initially produced by the imprinting of the laser beam with 
SG8 DPP and measured at 2.8 (thin solid), 4.0 (dotted), 5.0 (dotted-dashed), 
and 6.0 ns (thick solid curve). The dashed curve corresponds to the saturation 
amplitude predicted by Haan.20

Figure 103.22 shows the temporal evolution of the areal-
density Fourier amplitudes at four spatial wavelengths of 
20, 30, 60, and 120 nm for shots with DPP initial condi-
tions. The amplitudes of the 120-nm spatial wavelength [see 
Fig. 103.22(a)] are below their saturation levels Sk. They are 
growing exponentially in the linear regime. The solid lines 
in Figs. 103.22(a) and 103.22(b) are the exponential fits to the 
data, from which the growth rate is determined. The amplitudes 
of the 60-nm-wavelength modulations [see Fig. 103.22(b)] 
undergo a transition from exponential growth to linear temporal 
growth. The solid lines represent the exponential fit to the data 
below the saturation level Sk, while the dashed lines represent 

the linear fit above the saturation level. The dotted lines in 
Figs. 103.22(c) and 103.22(d) are the linear fits to the 30- and 
20-nm-wavelength data above their saturation levels. Similar 
fits were performed to the data with no DPP initial conditions. 
Figure 103.23 summarizes the growth results. The dashed line 
in Fig. 103.23(a) shows the growth rate c(k) (defined in the 
previous paragraph) as a function of spatial frequency. The 
diamonds correspond to the measured growth rates of 120- and 
60-nm-wavelength modulations (corresponding to the spatial 
frequencies of 8 and 16 mm–1, respectively) from all shots (with 
initial conditions including both SG8 DPP and no DPP). The 
dashed line in Fig. 103.23(b) shows the saturation velocity Vs(k) 
= Skc(k) as a function of the spatial frequency, as defined by 
the Haan model.21 The diamonds correspond to the measured 
saturation velocities of the 120-, 60-, 30-, and 20-nm-wave-
length modulations (corresponding to spatial frequencies of 8, 
16, 33, and 50 mm–1, respectively). The measured saturation 
velocities are in excellent agreement with Haan-model21 pre-
dictions. Once the modulations enter the nonlinear regime, the 
velocities no longer depend on initial conditions. The measured 
growth rates of long-wavelength modulations are higher (by 
about a factor of 2) than the Haan-model predictions (given 
by the Betti–Goncharov formula). Previous studies28,29 have 
predicted enhanced growth (with respect to the Haan model) of 
long-wavelength modes in the classical RT instability (without 
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Figure 103.22
Temporal evolution of the target areal-density modulations measured at spatial 
wavelengths of 120, 60, 30, and 20 nm [(a), (b), (c), and (d), respectively]. 
The solid and dotted lines represent exponential and linear-in-time fits to the 
experimental data, respectively, initially produced by the imprinting of the 
laser beam with an SG8 DPP. The horizontal dashed lines show the saturation 
amplitudes predicted by Haan.20
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ablation stabilization) because of enhanced mode-coupling of 
higher-amplitude, faster-growing, shorter-wavelength modes. 
The same studies,28,29 however, predicted no significant con-
tribution of mode coupling for the ablative RT growth (relevant 
to our experiments). A recent study30 by Sanz et al. predicted 
enhanced mode coupling to longer-wavelength modes in the 
ablative RT instability, compared to the classical RT case. 
The present experiments are consistent with this new study30 
rather than with the previous predictions.28,29 This correction 
to the Haan model has a small effect on the overall growth of 
the total rms modulation level because the longer wavelengths 
(120 nm and 60 nm) have smaller amplitudes than the shorter-
wavelength modes (as shown in Fig. 103.21) and shorter modes 
grow with the velocities that are in agreement with Haan model. 
Therefore, the average modulation levels (rms amplitudes) grow 
very close to Haan-model predictions.21 We find it remarkable 
that this simple model predicts so accurately such a complicated 
phenomenon as the nonlinear saturation of the RT instability. 
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Figure 103.23
(a) Modulation RT growth rates as a function of spatial frequency measured 
(diamonds) and predicted by the Betti–Goncharov dispersion relation (dashed 
curve). (b) Modulation nonlinear saturation velocities as a function of spatial 
frequency measured (diamonds) and predicted by the Haan model (dashed 
curve). 

Figure 103.24 shows the evolution of power spectra at three 
different times (with no DPP initial conditions). In the highly 
nonlinear, turbulent regime, it has been determined that the 
power spectra follow the “–5/3” Kolmogorov power-law scal-
ing.10 In the present experiments, the modulations undergo the 

transition from linear to nonlinear growth near the saturation 
levels. At a later time (~5.9 ns), a large part of the modulation 
spectrum is in the nonlinear regime, while modulations at 2.5 
and 3.8 ns approach the saturation levels. The thin, solid line 
presents the power-law fit to the 5.9-ns data showing the power-
law slope of ~ –2.1. This slope is steeper than Kolmogorov’s 
slope of –5/3 = –1.67, shown by a dotted line. Once the modula-
tions enter the highly nonlinear, turbulent regime of RT insta-
bility, the slope is expected to approach –5/3, as was shown in 
earlier classical RT experiments.11
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Figure 103.24
Measured power per mode of areal-density modulations at 2.5, 3.8, and 5.9 ns. 
The thin and dashed curves represent the lines with power-law slopes of –2.1 
and –1.67 (or –5/3), respectively.

Conclusions
In conclusion, the unstable RT growth of 3-D broadband 

modulations was measured near nonlinear saturation levels in 
planar plastic targets directly accelerated by laser light. The 
nonlinear saturation velocities were measured for the first 
time and are in excellent agreement with the Haan model.21 
Once modulations enter the nonlinear regime, the measured 
growth does not depend on the initial modulation spectrum. 
The measured growth of low-amplitude, long-wavelength 
modes is consistent with the generation of enhanced nonlinear 
long wavelengths in ablatively driven targets, predicted30 by 
Sanz et al. This experimental study is critical to the success 
of ICF because most ICF ignition designs rely on Haan’s 
predictions.
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