
Energy Prediction on the Omega EP
Laser System Using Neural Networks

David Villani

The Harley School

Advisor: Mark Guardalben

June 2023

Laboratory for Laser Energetics

University of Rochester



1

1. Abstract

OMEGA EP is a kilojoule-class laser system with four independently configured

beams. The amplification and wavelength conversion processes are highly nonlinear,

and laser performance is currently predicted using a physics-based model, PSOPS.

An alternative neural network model was created and trained using simulated data

from PSOPS to predict the required laser input energies for a wide range of output

energies and pulse shapes. The network model predictions were within 0.05% of

PSOPS predictions with 1000x faster processing speed. Although initial training time

was 3 hours on a Graphics Processing Unit node, by implementing transfer learning

the network was retrained in only 24 minutes to accurately predict a new category of

pulse shapes. The network model provides a proof-of-concept for laser performance

prediction using neural networks and can be implemented as an efficient, accurate

replacement for certain PSOPS functions within OMEGA EP shot operations.



2

2. Introduction

2.1. The OMEGA EP System

The OMEGA EP laser at the University of Rochester Laboratory for Laser

Energetics is a four-beam, kilojoule-class, frequency-tripled laser system with

independent beam configuration and the ability to produce either nanosecond-scale

ultraviolet (UV) pulses or picosecond-scale infrared (IR) pulses via optical parametric

chirped-pulse amplification [1]. For the purposes of this paper, we are considering

only the former functionality and ignoring the latter. Each beam on OMEGA EP starts

with a temporally shaped pulse created by an integrated front-end system from a

continuous laser with a waveform generator. This pulse is injected into front-end

amplifiers before injection into the main beamline, where it is amplified by

flashlamp-pumped Nd:glass in several passes through the primary beamline

amplifiers, which can be configured to use a different number of amplifier discs [2].

Finally, the infrared pulse is converted via frequency tripling into an ultraviolet

wavelength pulse before reaching the target. This structure is depicted in Fig. 1. Each

amplification step and frequency conversion are highly nonlinear processes.

Fig. 1. A simplified diagram of the OMEGA EP laser configuration.
An integrated front-end system (IFES) provides shaped 1053-nm seed pulses from
a continuous-wave fiber laser, before amplification and frequency conversion.



3

2.2. PSOPS and Prediction for OMEGA EP

The ability to produce complex laser pulses is necessary for various fields of

high-energy research, such as laser-driven inertial confinement fusion [3]. In such

laser facilities, the ability to model, in real time, the energy of a pulse as it travels

through a laser system is critical to provide flexibility and optimize operational

effectiveness. OMEGA EP uses the MATLAB-based PSOPS model for this purpose

[4,5]. This model provides accurate, flexible, real-time predictions for pulse shapes,

stage energies, and beam profiles in both the forward and backward directions, and

allows for real-time optimization of the model between shots using measurements of

laser energy, pulse shape, and beam profile at different locations within the laser

system. Figure 2 shows the process by which PSOPS predicts required IR laser

energy, including the backward prediction step that is discussed in this paper. The

machine-learning model discussed herein could replace the physics-based model in

this step for faster backward predictions.

Fig. 2. A diagram of the PSOPS pulse prediction process
To configure the laser for a shot, backward prediction is used to provide an initial
value of injected beamline energy for subsequent forward prediction optimization. The
neural network discussed in this paper focuses on the backward prediction step,
highlighted in yellow.



4

2.3 Artificial Neural Networks

Artificial Neural Networks, or ANNs, are connectionist optimization models

capable of performing a variety of tasks efficiently. An ANN processes input data and

passes the processing data through connected neurons.

Fig. 3. An example of a neuron in an artificial neural network (based on Ref
[6]).
This neuron has three inputs, x1, x2, and x3, which are transformed by the linear
functions w1, w2, and w3, respectively. The sum of those transformed values is
input into an activation function, in this case a Rectified Linear Unit (ReLU). The
output, U1, is then input into the next layer of the neural network. The dotted lines
represent how the same data points can also be input into other neurons, with
different weights and biases, before ReLU activation.

As shown in Figure 3, each neuron applies a linear transformation (the slope of

which is known as the weight and the y-intercept as the bias) followed by a nonlinear



5

activation function to each of its inputs.

Therefore, each neuron of a neural network is a system of equations

Tn = ∑1
k (Wkxk + Bk) (1)

un = f(Tn) (2)

where Wk is the weight, xk is one input, Bk is a bias, Tn is the temporary sum of inputs

to the activation function, and un is the output of a neuron.

As Fig. 4 shows, the output of each neuron in a layer can then either be

collated into output data or input into another layer of neurons, creating a deep neural

network. ANNs essentially manipulate and sum nonlinear components to approximate

continuous functions. They have a strong ability to learn and apply nonlinear mapping

and function modeling, allowing for the modeling of complex behaviors while

maintaining low operational complexity due to only summing simple linear or nearly

linear functions. The activation function (such as ReLU) provides the nonlinearity

required to model complex functions, as otherwise the sum of a series of linear

functions will always be linear.

An ANN is initialized with random weights and biases, and then optimized via

backpropagation during a training process. Backpropagation is the recursive process

by which a neural network is gradually optimized to ‘learn’ a data set, by calculating

the error compared to a training data set, finding how to change each weight and bias

to best reduce the error, and then iteratively repeating this process.



6

Fig. 4. A diagram of
a neural network
with three inputs,
four hidden nodes,
and two outputs.

This is a
feed-forward, fully
connected neural
network, as each
neuron in one layer is
connected to every
neuron in the next.
More fully connected
hidden layers can be
added to increase
computational
complexity and ability.

Neural networks almost exclusively use backpropagation for optimization.

During backpropagation, the Jacobian matrix (a matrix of the first-order partial

derivatives of a multivariable neural network) of the ANN is calculated that contains

the first derivatives of the errors in the network with respect to each weight and bias.

Traditionally, for a feed-forward neural network, error is calculated as the mean

squared error (MSE) of each output across the entire training data set. Algorithms

such as the Levenberg-Marquardt algorithm [7] (a modified version of Newton’s

method) are then used to generate approximations of the Hessian matrix H (the

square matrix of second-order derivatives) and gradient g of each variable of the

neural network,

H = JTJ (3)

g=JTe (4)



7

where J is the Jacobian matrix of the network and e is the set of vectors of network

output errors relative to each weight and bias [8]. Following this, the weights and

biases of the neural network, wi, are then incremented with Newton-like updates

wk+1 = wk - [JTJ + μI]-1 JTe (5)

where μ is the learning rate (a scalar that is decreased after each successive step of

the function by a ratio determined by the gradient descent function) and I is the

identity matrix. The number of vectors in e equals the total amount of training data

used. This process is repeated until the performance of the neural network ceases to

significantly improve, as measured by the mean squared difference between the

network output and the known training (or ‘ground truth’) data, or until another

termination limit, such as a certain number of epochs of training or a minimum

gradient, is reached. Other methods, such as Newton’s Method gradient descent, are

possible but typically approach local minima less efficiently, so Levenberg-Marquardt

training was used for the model described in this paper.

3. Predictions on Simple Pulse Shapes

MATLAB was selected as the programming language and workspace for the

creation of neural networks. The software already has a suite of premade machine

learning algorithms and the ability to handle large-scale matrices. Initially, an ANN

was developed and trained using PSOPS ‘ground truth’ data to predict simple ESG

(EP Super Gaussian) pulse shapes. Fig. 5 shows an example of an ESG output pulse

and the input pulse needed to produce it. This system used a number of inputs



8

describing the laser configuration and the requested UV energy and pulse shape, and

the injected IR energy as the output. For the model described in this section, unlike

that used in the rest of the paper, the Full Width at Half Maximum (FWHM) was used

to describe the shape of the UV pulse. Prior models have used a similar system,

representing shaped pulses with the FWHM [9].

a. b.

Fig. 5. Pulse shapes as power (W) versus time (ns), with maximum normalized to 1.
(a) The required IR injected pulse prior to beamline amplification to produce the
ESG UV pulse shown in (b). (b) The corresponding UV pulse after beamline
amplification and frequency conversion.

This model used a structure with 4 inputs, 2 hidden fully connected layers with

10 neurons each, and a single output node. A Leaky ReLU function, which, unlike a

traditional Rectified Linear Unit (ReLU), is capable of negative output, was used as an

activation function, and is applied to each layer

f(x) = max(x,x/10) (6)

which provides nonlinearity and combines computational simplicity with the ability to

output negative values. The MATLAB fitnet function was used to create and train the

function-fitting neural network.

The model performed accurately to within ±1% of PSOPS-generated ground



9

truth values across a broad range of ESG pulse lengths and energies. Validation and

test data were randomly selected from the initial training data, with 70% of the pulses

as training values, 15% as validation, and 15% as test. Validation data are used

between model updates during training to prevent an ANN from overfitting by

terminating training when error values for the validation data begin to increase rather

than decrease. As the neural network is using training data to map to the validation

data, test data that are separate from the training process are used after training to

determine the quality and accuracy of the neural network. Overfitting occurs when a

network adapts too precisely to noise in the training data and its ability to generalize

to data it was not trained on decreases.

4. Predictions for Complex Pulse Shapes

For more complicated pulse shapes, such as the ESS (EP Stepped Square)

and ERM (EP Ramp) pulses shown in Fig. 6, the FWHM was found to insufficiently

sample the pulses. Thus, a new feature set to describe the input pulse shape was

developed that consisted of piecewise integrals of the pulse in time. Each pulse was

divided into a given number of sections, or bins, and the integral of the pulse section

over its width was taken as a pulse shape feature.

Excess zeros were removed from the beginning and end of each pulse, after

which the pulse was normalized to a maximum of 1 and divided into 20 concatenated

pulse sections.



10

a.

b.

Fig. 6. As in Fig. 5, but showing (a) ESS (stepped square) and (b) ERM (ramp)
pulses before (left) and after (right) amplification.

This number of pulse shape features was determined by balancing the model’s

accuracy against training time. Each section was then summed separately, resulting

in 20 numerical values to be used as input features to the neural network. Additional

input features included a manually input integer modifier (a discussion of which is

beyond the scope of this paper), beamline number, number of active amplifier discs,

and total UV energy. The output of the network is a single node, the total predicted

input energy, which is returned as a scalar value. To account for the increased input

complexity, the size of the neural network was increased to two hidden leaky ReLU

layers with 30 neurons each. Fig. 7 shows the structure of this model.



11

Fig. 7. A graphical depiction of the neural network used for backward
prediction
Compared to the earlier, FWHM-based neural network, this model was significantly
more complex, with 24 inputs and 2 hidden Leaky ReLU layers with 30 neurons.

This ANN was found to be extremely accurate when tested on ESS, ERM, and

ESG pulses similar to those it had trained on, using the same randomly selected 70%

training, 15% validation, and 15% test data from 16,000 PSOPS simulations. Fig. 8

shows the error distribution across the test data set, with a mean error of 𝜇 =

-2.77*10-5% (defined as the average of the difference between true and predicted

data, and used here as a measure of skew), and a standard deviation 𝝈=1.2*10-3%.

There is an increased percentage error for low injected energy values. This is

due to the ANN training to minimize mean squared error (MSE), which incentivizes

reducing percent error in higher energy pulses. This could be avoided by

backpropagating in a manner that minimizes the mean squared percentage error

rather than MSE.



12

Fig. 8. Visual representations of errors in ANN predictions.
(a) A histogram of prediction percent error for the test data set. There is no significant
skew in either the positive or negative direction. (b) A graph showing percent error
versus injected energy (in Joules). Notably, low-energy pulses have a significantly
greater percent error, as described in the text.

5. Processing Speed and Transfer Learning

Training and predictions were run on a GPU node at the University of

Rochester’s Laboratory for Laser Energetics Computing Facility with the Storm High

Performance Computing system. The average training time across several models

was approximately 3 hours, and prediction time on test data was an average of 5.4

ms. The current PSOPS system has an average prediction time of 4-6 seconds,

marking a nearly thousandfold increase in prediction speed for the ANN.

Transfer learning is the process by which a pre-trained neural network is

retrained with new data in order to decrease the amount of computation required to

predict new types of data. The ANN can be retrained easily to incorporate new data

with a high degree of accuracy, providing high agility.



13

Fig. 9. As in Fig. 5 but showing the normalized shapes of picket (EPM) pulses
before and after amplification and frequency conversion.

a. b.

Fig. 10. Percent error versus injected energy for picket pulses before and
after retraining.
(a) All provided picket pulses were input into the ANN without retraining, leading to
substantial errors. (b) After retraining with 70% of the picket pulses, the randomly
selected test data set has significantly less error across the range of injected
energies.

A new and dramatically different type of pulse, picket pulses (EPM), as shown

in fig. 9, were input into the ANN without retraining. Fig. 10 shows the error before

and after retraining the neural network for picket pulses. A comparatively small

number of new pulses (300 as opposed to 16,000) were used for retraining, leading to

decreased accuracy compared to previous training.



14

The retraining of the neural network started with the already-trained network,

on both the picket pulses and the previous pulse shapes. The ANN took an average

of 00:24:13 to retrain for picket pulses, and maintained high accuracy predictions on

ESS, ESG, and ERM pulse profiles. No significant change was observed in single

pulse prediction time. This transfer learning would likely improve retraining time

compared to the initial 3-hour training even with more picket pulse values, as the

majority of the computational intensity is due to maintaining accuracy on the larger

amount of previous (non-picket) data.

6. Conclusion

A fully connected, feed-forward neural network model was created and used to

predict the required OMEGA EP IR input energy for a given UV output energy, laser

pulse shape, and laser configuration. The difference between predicted energies

using the ANN and the physics-based PSOPS model was less than 0.05%, and

energy prediction using the neural network was approximately 1000 times faster than

the physics-based model. Accurate prediction was achieved across a broad range of

laser pulse shapes and output energies. Furthermore, transfer learning was found to

reduce training time for new pulse shapes by 88%. The prediction accuracy and

speed of the ANN model demonstrates the viability and potential advantage of using

neural networks for laser performance prediction.

ANNs have several other advantages. The ANN discussed here was trained

with noiseless, predicted data, but a neural network can be trained on actual pulses



15

and can account for several variables, such as humidity, that are difficult to predict

with high-energy physics models. On the other hand, it is challenging to maintain the

calibration of the model, and retraining might be required to account for changes in

the laser system over time. Further research is needed to determine the viability of

ANNs with greater predictive capability, for example forward energy calculations and

pulse shape predictions, as well as neural networks trained on raw data as opposed

to simulated noiseless data. With more diagnostic information and further

development, such models could replace the current physics-based predictive models

with neural networks that could considerably increase the operational efficiency of the

laser system.

7. Acknowledgements

I would like to thank those who assisted with the completion of my project.

First, I thank Dr. Craxton for giving me and the other interns in the LLE summer

internship program the opportunity to work in a research environment. I would also

like to thank my fellow student interns in the Annex Conference Room. Their

dedication and hard work created an environment that supported each of us in our

various projects, as well as making the summer much more enjoyable. Finally, I give

special thanks to my advisor, Mark Guardalben, for the amount of time and effort he

has devoted to my project, none of which would have been possible without his

guidance. I am extremely grateful for his efforts and advice.



16

References

1. L. Waxer, J. Kelly et al. "The OMEGA EP High-Energy, Short-Pulse Laser
System," in Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and
Metamaterials/Optical Fabrication and Testing, OSA Technical Digest (CD) (Optica
Publishing Group, 2008), paper FWQ2.
2. J. Kelly, R. Jungquist et al., "Optical Engineering of the OMEGA EP Laser
System," in Frontiers in Optics 2008/Laser Science XXIV/Plasmonics and
Metamaterials/Optical Fabrication and Testing, OSA Technical Digest (CD) (Optica
Publishing Group, 2008), paper OFB2.
3. D. Cao, T. R. Boehly, M. C. Gregor, D. N. Polsin, A. K. Davis, P. B. Radha, S.
P. Regan, and V. N. Goncharov, “Theoretical quantification of shock-timing
sensitivities for direct-drive inertial confinement fusion implosions on OMEGA,”
Physics of Plasmas, vol 25, 052705 (2018)
4. MATLAB®R2013b, The MathWorks Inc., Natick, MA 01760-2098
(http://www.mathworks.com)
5. M. Guardalben, M. Barczys, B. Kruschwitz, M. Spilatro, L. Waxer, & E. Hill,
“Laser-system model for enhanced operational performance and flexibility on OMEGA
EP,” High Power Laser Science and Engineering, 8, E8. doi:10.1017/hpl.2020.6
(2020)
6. G. Peyré (2020) “Mathematics of Neural Networks,” unpublished manuscript.
Retrieved from
https://mathematical-tours.github.io/book-basics-sources/neural-network
s-en/NeuralNetworksEN.pdf
7. J.J. Moré (1978). “The Levenberg-Marquardt algorithm: Implementation and
theory.” In: Watson, G.A. (eds) Numerical Analysis. Lecture Notes in Mathematics, vol
630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0067700
8. M.T. Hagan, and M. Menhaj, “Training feed-forward networks with the
Marquardt algorithm,” IEEE Transactions on Neural Networks, Vol. 5, No. 6, 1999, pp.
989–993, 1994.
9. L. Zou, Y. Geng, G. Liu, L. Liu, F. Chen, B. Liu, D. Hu, W. Zhou, and Z. Peng,
"Laser energy prediction with ensemble neural networks for high-power laser facility,"
Opt. Express 30, 4046-4057 (2022).

https://aip.scitation.org/author/Cao%2C%2BD
https://aip.scitation.org/author/Boehly%2C%2BT%2BR
https://aip.scitation.org/author/Gregor%2C%2BM%2BC
https://aip.scitation.org/author/Polsin%2C%2BD%2BN
https://aip.scitation.org/author/Davis%2C%2BA%2BK
https://aip.scitation.org/author/Radha%2C%2BP%2BB
https://aip.scitation.org/author/Regan%2C%2BS%2BP
https://aip.scitation.org/author/Regan%2C%2BS%2BP
https://aip.scitation.org/author/Regan%2C%2BS%2BP
https://aip.scitation.org/author/Goncharov%2C%2BV%2BN
http://www.mathworks.com/

