

Data Services to Improve

Access to Scientific Image Data

Leo Sciortino

School of the Arts

Rochester, New York

Advisor: Richard Kidder

University of Rochester Laboratory for Laser

Energetics

December 2023

1

1. Abstract

An investigation of methods to access image data stored from experimental campaigns

was conducted. The study found that there are several image data formats that have been

historically used by LLE. Images are currently stored on LLE file servers, with files indexed

through LLE’s relational Oracle database. This investigation explored technologies to provide

easy and secure access to image data, minimizing the need for direct database and file system

interactions by the user. The project focused on image parsing, storage, and retrieval mechanisms

for multiple formats including HDF4, HDF5, TIFF, and JSON (JavaScript Object Notation).

Services to provide data processing (e.g., background subtraction) were also investigated. Project

software was tested using Python, NodeJS, PL/SQL, and an Oracle database. Overall, the

research found that using Python and its associated libraries in conjunction with web services is a

viable option for presenting and processing image data.

2. Introduction

HDF (Hierarchical Data Format) file format is a type of file that is typically used to store

scientific data. At the Laboratory for Laser Energetics (LLE) an HDF file will typically store an

image and its corresponding attributes. Currently most HDF files at LLE are stored in HDF41

format, which is outdated for most applications compared to its successor HDF5.2

This investigation looked to improve the current pipeline that principal investigators (PIs)

use to retrieve image data from experiments on the OMEGA and OMEGA EP laser systems. It

was found that there are two methods that PIs use to access image data from OMEGA archives,

2

Fig. 1 Two ways PIs can retrieve images and their corresponding data. Both are slow and

cumbersome.

both of which were reviewed for process improvement (Fig. 1). The first method (Fig. 1(a)) uses

web access, which doesn’t require PIs to be on the LLE network but uses traditional early 2000s

web access technology through the OMEGA Shot Images and Reports page (Fig. 2). These pages

require user interaction to locate and download data, making data retrieval slow and

cumbersome.

These webpages are also difficult for LLE to maintain. They use outdated programming

practices such as inline SQL (structured query language) database calls, and inline called shell

scripts. This can easily introduce data security problems through SQL injection where a user can

add to the end of a SQL query compromising the security of the database. Additionally, these

webpages are written in PERL, which has become less popular for modern web development.

Poor documentation of this code also hinders its further development. For a developer to modify

these scripts one must spend hours searching through dozens of files.

3

The process to access data was found to be problematic as the user must navigate to the

correct shot number and then find the diagnostic and download the image onto their computer.

PIs also have an option to download the data package that contains all or part of the relevant

image data for that shot. Since multiple users work on these campaigns it is likely that these

images are copied an unnecessary number of times. After the PI obtains the image data they can

open the data for processing.

Fig. 2 OMEGA Shot Images and Reports Webpage. Data can be slow and hard to find

4

PIs with LLE network access can directly access the database and file systems (Fig. 1(b))

instead of going through the web interface. This isn’t available to external PIs. This process

requires the user to have an account in the database or use a common database account. Both

processes introduce security concerns. For a common database account, the password is shared

among users, so it isn’t known who is retrieving what data. This process is also cumbersome for

the user as the PI must learn to write SQL scripts for their analysis. A PI with network access

must use the SQL queries to first locate the files, and then must directly access the file on the file

server. If desired, the PI can directly implement post processing into their analysis code.

It is also clear that many LLE PIs do similar post processing to images to get them ready

for analysis. It seems unnecessary to have this post processing done on local machines a

redundant number of times. It seems that that some post processing could be done on LLE

servers prior to PI access. Specifically, many PIs subtract the background from images before

their scripts perform more post processing.

3. Image Storage and Retrieval

Development was first focused on the best way to store and retrieve images and image data.

One idea that was explored was storing HDF Images in an Oracle3 database. Three ways were

considered. The first way was storing them as BLOBs (binary large object files). In short, a

BLOB just stores the binary in the database as it would be in a file system, but the file address

can essentially be indexed relationally. Unfortunately, this doesn’t allow for easy post processing

within the database.

B-Files are another common way to store files in a database. These are essentially just links

to files that are stored on a file server (the data for the file isn’t stored in the table space).

Although these can be indexed very fast, it was concluded that this file type wasn’t the right fit

5

for the project since our goal was to do some post processing on images. A very similar

ARCHIVE_FILES table space also already exists, which helps map shot numbers to file system

locations. In the future these tables could be converted to use B-Files instead of just storing the

file path as VARCHARs (variable-length character strings).

We also explored storing image data directly in the database. This involved storing image

pixels in rows and columns in the database. We tested basic post processing of images stored in

table space with SQL. Specifically, we tried background subtraction, which was easily achieved.

This could also have been very easily added to a script through PL/SQL3, which is built into the

SQL developer software. The one downside of this method is that it wasn’t fast compared to

other methods. This is because data base tables are built on a key value relationship that is based

on hash functions. A hash function4 is a one-way and collision resistant function that makes

accessing a value from a key fast. A hash function isn’t needed when it is desired to access most

of the table, which is what we want to do when accessing an image. So, overall, it is inefficient

to use database tables to store and process images.

In all three of the above methods used to store and process images within a SQL database, a

Python5 data handler is still required. If fully implemented, a Python data handler script would be

used to insert images into the database. When a user requests image data, the Python data handler

then pulls data from the database. To originally populate this database, all the file paths of

images would have to be pulled off the ARCHIVE_FILES table mentioned above, and all that

data would have to be copied into the database using the specified method through the Python

script. Similar scripts could also be written in JavaScript.

6

4. Image Postprocessing

 Since the data handler script was written in Python it was an ideal place to also do post

processing in Python. Whether a PI is interested in high level or low-level processing, Python is

well supported in the scientific community. We started by converting images into Python arrays.

It was found that this was slow since Python does a lot of type checking. We then discovered the

NumPy7 library. While Python is a high-level and interpreted language, NumPy bridges the gap

between high-level programming and low-level performance, making it a powerful tool for

numerical computations and array manipulations. NumPy is implemented in C, whic h is a fast

low-level language. Images were converted to NumPy arrays for post processing. NumPy’s fast

array manipulation capability is ideal for image processing or transformation. F or our basic

background subtraction postprocessing we found NumPy to be four times faster than the SQL

table processing that was mentioned in section 3.

We wanted to add the ability for PIs to pull image data in any format. After post

processing was done, we implemented an on-the-fly image type converter in Python. The Python

library Pillow8 was used to allow data to be exported in various formats including PNG, JPEG,

and TIFF. The h5py9 Python library was used so that the image could also be returned in HDF5,

the new version of the HDF file format.

5. Proposed Solution

Figure 3 provides an overview of the proposed process whereby users can access images

from the data base and specify postprocessing that is to be performed before the image is

returned to the user.

7

Fig. 3 The new proposed process for PIs to access and process image data. Note that

Image Specification includes the diagnostic, shot number, post processing, and desired image

format. Authentication is done with the web token within the Node.JS server.

.

LLE’s RESTful (Representational State Transfer) API (application programming

interface), which pre-existed to return operations data to PIs, was leveraged, to provide new

routes for processed data. A RESTful API is an API that has numerous properties, the most

important being that it is stateless, and has a uniform interface10. Stateless means that each

request to a server is independent of other requests. This means that any request sent must

contain all information needed for the server to return the required data. The user cannot count

on the server saving information from past requests. Uniform interface means that meta data is

sent and requested in a common format. This means that a RESTful API should have a unique

URI (uniform resource identifier) for each resource. Generally, the client tells the server which

resource it would like to identify through a URL (Uniform Resource Locator). To identify what

the server needs to do with this resource, RESTful APIs typically implement HTTP (Hypertext

Transfer Protocol). Common HTTP requests are GET, PUT, POST, and DELETE.

8

Node.JS11 is an open-source, server-side JavaScript runtime environment that allows

developers to run JavaScript code outside of a web browser. It enables the execution of

JavaScript on the server, providing a powerful platform for building scalable, high-performance

web applications and network services. We used Node.js with the Express12 web application

framework to build these routes. To test and browse the API we used the Swagger13 API client.

This gives users an efficient way to test and graphically view API endpoints.

When implementing new API routes we break the code down into two parts: the route

and the controller. The same controller can be used multiple times if the same type of data is

being used for multiple routes. In this case the controller would call the Python script from

Typescript (Typescript is just a type enforced version of JavaScript which can be used with

Node.JS), which would then go and retrieve the data, do whatever post processing was specified

by the user, and then return the image for the user to view through Swagger. Swagger also

provides a URL that PIs can embed into their code. The corresponding HDF attributes can be

returned in JSON14 (JavaScript Object Notation). This is a very easy format to work with as

many programming languages easily support its manipulation. All the PI must do first is get an

authenticated web token. This doesn’t require them to be behind the LLE firewall. Fig. 3 shows

how the user interacts with the Swagger page and how Swagger works with each part of the

system.

There are many other opportunities for built-in image processing. Instead of one PI

having to go to another to get their data or code, this processing could be implemented directly in

Python. Scientists could get the image and data already processed through an API call by

specifying what type of processing they would want done directly as a query.

9

It was realized that a pre-existing REST API used to return operations data could be

leveraged to return processed data. We created HTTP GET routes for the processed data. A GET

route is an API call that can return stateless information. This could greatly reduce the amount of

processing that PIs do when they receive an image. Figure 4 shows how a user could access a

sample diagnostic from a specific shot number. It can be also seen in the Request URL that users

can specify the type of post processing; in this example background subtraction is shown with

the route /api/image/get/subtracted.

Fig 4. View of Swagger API client showing the interface for accessing P510 HDF images

10

6. Conclusion

This work focused on finding new ways to store, manipulate, and return image data for

PIs. It was found that processing image data directly in a database is not an ideal option. The

proposed solution of using a Python data handler that is called by a Typescript Node.js server

seems to be the best option for user experience, ease of processing, and speed.

7. Acknowledgments

I would like to start off by thanking Dr. Craxton for organizing this amazing summer

program. It has been an incredible opportunity for my academic growth. I would like to thank

Ms. Trubeger for doing the behind-the-scenes administrative work and organizing all of our

Zoom meetings. I would like to thank my advisor Mr. Kidder for the countless hours he spent on

Zoom with me helping figure bugs out and helping guide me through the project. I also wouldn’t

have been able to do this without the help from the tremendous web and database team: Andy

Zeller, Russ Edwards, Riley Adams, Barb Tate, and Tyler Coppenbarger. It was also great to

compare with the other students in the program about what we have done.

8. References

1. https://supprt.hdfgroup.org/products/hdf4

2. https://supprt.hdfgroup.org/products/hdf5

3. https://docs.oracle.com/cd/B19306_01/server.102/b14220/intro.htm

4. https://www.oracle.com/database/technologies/appdev/plsql.html

5. https://csrc.nist.gov/glossary/term/hash_function

6. https://python.org

7. https://numpy.org

11

https://supprt.hdfgroup.org/products/hdf4
https://supprt.hdfgroup.org/products/hdf5
https://www.oracle.com/database/technologies/appdev/plsql.html
https://csrc.nist.gov/glossary/term/hash_function
https://python.org/
https://numpy.org/
https://docs.oracle.com/cd/B19306_01/server.102/b14220/intro.htm

8. https://pillow.readthedocs.io/en/stable/

9. https://www.h5py.org

10. https://aws.amazon.com/what-is/restful-api

11. https://nodejs.org

12. https://expressjs.com

13. https://swagger.io

14. https://json.org

12

https://pillow.readthedocs.io/en/stable/
https://www.h5py.org/
https://aws.amazon.com/what-is/restful-api
https://nodejs.org/
https://expressjs.com/
https://swagger.io/
https://json.org/

