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Abstract

Cryogenic targets for nuclear fusion are cooled to produce solid deuterium-tritium

(DT) layers on their interiors. A new system, the fill tube, is being developed to

improve cryogenic target quality and thus plasma compression. Due to physical con-

straints on the OMEGA target chamber, the fill tube can only be fielded on the laser at

an angle not perpendicular to gravity. In this work, a new model, SPARROW, was de-

veloped to predict the final layer thickness of uncooled DT-liquid-filled targets viewed

from arbitrary angles. In previous work, x-ray micrographs of liquid-filled targets were

studied to obtain equations relating the size of the bubble above the liquid meniscus to

the target’s volume of fuel; this volume correlates with final DT layer thickness. With

these equations, this work’s newly developed model can automate cryogenic filling to

a desired thickness within ±2-µm accuracy. This will enable the final thickness to be

determined prior to solidification. Further, a machine learning model was created to

quantify the increase in neutron yield that can be attained if cryogenic target quality

is improved. Nineteen models were trained on OMEGA data. The models were then

compared for accuracy. Testing of the most accurate model revealed that target quality

has a 17% impact on yield.
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1 Introduction

Nuclear inertial confinement fusion (ICF) occurs between hydrogen atoms when the strong

nuclear forces concentrated in nuclei overcome the repulsive electrostatic forces of protons.

When enough atoms fuse, energetic neutrons are released that can be used for energy pro-

duction. At the Laboratory for Laser Energetics (LLE), fusion is achieved with the sixty

beam, 30 kJ OMEGA laser. LLE conducts ICF experiments with the OMEGA laser by

concentrating energy on a target of ∼860 µm diameter to uniformly compress the fuel in-

side. Targets are filled with a composite fuel of deuterium and tritium (DT) due to the high

nuclear cross-section of the fuel.1

Two indicators of progress toward ignition are the neutron yield (Y ), the number of

neutrons emitted by the fused DT in a target, and the areal density (ρR), a figure of merit

as to how much fuel has been compressed. Target and layer imperfections are known to

decrease Y and ρR.

Condensable hydrocarbons are created by the radioactive and high pressure environ-

ment in which targets are currently permeated with DT fuel. The tritium that dissolves

through the target wall during permeation results in β-electron damage, breaking bonds in

the polymer target and releasing short-chain hydrocarbons. These condense on the target

when it is cooled to liquid and solid hydrogen temperatures. These target imperfections

impact Y and ρR.2 A new “fill-tube” system seeks to increase Y and ρR by reducing these

imperfections such that targets are uniform enough to be pressurized to 100 Gbar. The

fill-tube system also decreases particulate contamination. Targets are currently transferred

to multiple locations before implosion. The fill tube will fill targets directly on OMEGA,

eliminating points of contamination. Liquid DT enters the target through the fill tube and

forms a liquid meniscus that is imaged by an x-ray camera. When the target is frozen, the

DT forms into a uniform solid layer. This works seeks to predict the thickness of that solid

layer based on x-ray images of the meniscus taken at any angle. A model was built for this

purpose and tested on targets imaged in the horizontal view. These tests show the model’s

predictions to be within the 2 µm accuracy specification of LLE’s experimental program.

This work also seeks to quantify the improvement to Y that these target and layer quality
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improvements will provide using a machine learning model. Nineteen machine learning

models were compared for accuracy against each other as well as two “control” models. The

most accurate model showed an accuracy improvement of 17% over previous models.

The outline of this report is as follows. Section 2 describes the importance of cryogenic

targets to nuclear fusion, how they are formed, how they are characterized, and the pur-

pose of the new cryogenic fill-tube system. Section 3 describes how this work’s first code,

SPARROW, was developed and tested to enable the formation of cryogenic targets on the

fill tube. Section 4 describes how this work’s machine learning model was developed and

tested to quantify the significance of the fill-tube to nuclear fusion.

2 Cryogenic Target Formation

2.1 Layering

Cryogenic targets contain frozen DT. As compared to targets filled with gaseous DT, cryo-

genic targets enable a higher density of fuel to be contained in the target3 which increases

Y and ρR. The current method for fielding cryogenic targets on OMEGA involves filling

targets over 18 hours; during this period, DT is gradually compressed to high pressure (up

to 1000 atm). A pressure gradient across the shell wall causes DT to diffuse through the

target’s polymer shell and fill the interior.

After permeation, the temperature is lowered to ∼20 K. This reduces the permeability

of the target walls; hence, the gaseous fuel cannot escape. Next, the target is transferred to

a “layering sphere” where its temperature is decreased (“ramped down”) further over several

hours until the fuel solidifies into a spherical layer, starting as a single crystal and becoming

uniform in a process known as β-layering.4 In β-layering, radioactive tritium in the DT emits

high-energy β particles that locally heat the region where they are produced. Thus, thicker

regions heat more than thinner regions. The result is a uniform solid layer on the interior

of the target.5 This layer is quantified by how radially thick it is. At present, it is yet to be

determined what layer thickness is ideal for plasma compression.
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2.2 Characterization

While targets are layered, a charged-coupled device (CCD) camera takes optical shadowg-

raphy images. The CCD camera captures images formed by light rays reflected by the inner

surface of the solid DT layer. These images show a narrow bright ring that is currently used

on OMEGA to measure target layer thickness and uniformity.6

The CCD also measures various target parameters (e.g., the initial location of the DT

crystal). The initial location of the crystal is described by the observed horizontal and vertical

offset of the crystal from the target center. This measurement is used in the machine learning

model in Section 4.

X-ray cameras are not currently in use for target characterization on the OMEGA laser.

However, they will be used on the new fill-tube system. X-ray images were used to develop

this work’s filling model. Images are formed by x rays that are emitted from a 60-kVp, 4-µm

spot size point source and pass through the target and into the camera, as shown in Figure

2.1. X rays 1 and 2 are deflected because they are nearly tangential to interfaces. Due to

this deflection, these x rays are not detected by the camera where they would be if they

traveled in a straight line from the point source. Dark regions are thus formed. These dark

regions form shapes (circles and ellipses).

Figure 2.1: Rays tangential to (1) the tar-
get and (2) the inner surface of the solid
DT. Although they are shown nearly par-
allel, they both originate from the same
x-ray point source. After propagating
through the target, they hit the camera.
Rays are refracted close to the interfaces.
As a result, the camera sees two dark cir-
cles (in the case of a uniform solid layer).

The dark areas in the images of Figure 2.2 indicate interfaces between different media.

The “bubble” in liquid fuel shows a dark circle (the target shell), and the contained region

of gas (the interface between gas and liquid DT). A good approximation of this meniscus

bubble can be represented as an ellipse. The final fuel layer shows the same target shell and

a concentric circle (the interface between gas and solid DT).
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Figure 2.2: X-ray images of a liquid-filled target before and after freez-
ing.7

2.3 New Cryogenic Fill-Tube System for OMEGA

The cryogenic fill-tube system is shown schematically in Figure 2.3. The target is filled with

liquid DT from the tritium glovebox through the fill tube. The fill-tube heater is used to

control the temperature at the interface between the layering sphere and the fill tube. When

the interface drops below the freezing point, a solid freeze-plug forms. This stops liquid DT

from moving into or out of the target. The target then begins to freeze. The target is viewed

with an x-ray camera and an optical shadowgraphy camera.

The new fill-tube filling process was previously automated using a proportional-integral-

derivative (PID) control loop that leverages the x-ray camera to adjust the temperature

according to the difference between the amount of fuel currently contained in the target and

the amount of fuel desired, such that the desired amount enters.7

The cryogenic fill-tube fixture to be fielded on OMEGA is shown in Figure 2.4a, and

a mounted prototype is shown in Figure 2.4b, viewed perpendicular to gravity. A viewing

angle perpendicular to gravity is not geometrically possible. Laser entrances, indicated by

blue cylinders, block the x-ray camera from lying horizontally. Thus, θ = 23.97◦ below
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Figure 2.3: Cryogenic fill-tube schematic. The target is filled with DT
through a 10-µm-diameter tube; DT is formed in the tritium glovebox
shown on the right.

horizontal (position 3) was selected as the optimal choice of the options available because it

is closest to horizontal. However, there is currently no experimental setup to image targets

at angles other than the horizontal. Ergo, it remains unknown if a greater viewing angle

impacts the accuracy of a fill level.

When the vertical angle θ is different from 0, the image of the elliptical meniscus changes

location and eccentricity. The reason for this is that x rays passing through the liquid project

different cross-sections of the meniscus bubble on the camera depending on the angle. This

is addressed in the following section.

3 Layer Thickness Control Model

3.1 Ray-Tracing Simulation

The target-filling automation software must function with x-ray images taken at any angle

to the horizontal because in the future the cryogenic fill-tube mechanism may be mounted

at angles other than 23.97◦. This work addresses this task by modifying a Matlab code to

simulate the images of targets at all angles. This simulation was run at an array of distinct

thicknesses and viewing angles in order to create a model for the predetermination of layer
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Figure 2.4: Cryo-
genic fill-tube fixture
to be fielded on port
H5 of OMEGA.
The x-ray camera is
located at the end
of a black carbon
fiber tube. The
three black tubes
in (a) represent
potential x-ray tube
mounting positions.
The selected tube
position will angle
down at θ = 23.97◦.

thickness as a function of viewing angle and the size of the gaseous bubble in an unfrozen

target.

In previous work, final thickness data from deuterium-filled targets had been used to

establish the relationship between three measurements of the meniscus bubble and the final

layer thickness. Note that these relationships only apply to OMEGA targets (r = 430 µm

in Figure 2.2). The vertical offset ∆y between the centers of the meniscus ellipse and target

circle as a function of thickness T is

∆y(T ) = 1.17T + 21.72 (1)

where ∆y and T are in µm. The semi-major axis of the ellipse a as a function of T is

a(T ) = −1.27T + 437.14 (2)

where a is in µm. The semi-minor axis of the ellipse c as a function of T is

c(T ) = −1.27T + 432.79 (3)

where c is in µm. Note that these equations were developed using only OMEGA targets

8



Simon Narang November 2019

over the range 19.6 ≤ t ≤ 115.8 µm. This work used Equations (1), (2) and (3) to de-

velop a thickness predetermination ray-tracing code, SPARROW. For a given thickness T ,

SPARROW forms an elliptical meniscus given by Equations (1), (2) and (3).

To predetermine thickness, SPARROW simulates the x-ray images of targets taken at

arbitrary angles for a number of thicknesses T . It simulates the target sphere and x-ray

point source as objects in 3D space (see Figure 3.1). Then, the ”orthogonal plane” is drawn.

This goes through the target center and is orthogonal to the line of sight between the x-ray

camera and point source. When SPARROW is run, the intersection circle between the target

and this orthogonal plane is calculated. Iterating around this circle, the code calculates the

locus of points where x rays are tangential to the outer target shell (depicted in Figure 2.1).

The points are calculated by minimizing the dot product between the x rays from

the source and lines drawn normal to the target surface using the fmincon function in

Matlab. While the tangent points to the outer circle can be calculated from Figure 3.1

using elementary trigonometry, fmincon was used to test the algorithm. The dot-product-

minimization routine is subsequently re-executed on the ellipsoidal region of space above the

liquid fuel, defined by Equations (1), (2) and (3). The simulation does not factor in the

small deflection experienced by the rays passing through the target. However, it meets the

accuracy specification of LLE’s experimental program regardless.

fmincon is required because the meniscus bubble is vertically offset from the center of

the target (about which the x-ray camera is angled). It is also not spherically symmetric.

Therefore, each x ray needs to be traced to calculate a locus of points to form the simulated

image. fmincon locates the point of tangency between each ray and the bubble.

For certain random x rays, fmincon fails to calculate their point of tangency to the

target. It thus outputs a point of tangency very far away from the target. SPARROW

removes these by discarding tangency points whose perpendicular distance to the orthogonal

plane is greater than 50 µm. After outlier point removal, the two loci represent the x-ray

image of a target for a specified thickness, viewing angle and target diameter.

Cryogenic targets on OMEGA have been shot with solid layer thicknesses between 40

and 60 µm. The simulation was run at distinct thicknesses of 5, 20, 40, 60, 80 and 100 µm.
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Figure 3.1: Cryogenic x-ray tar-
get characterization simulated by
SPARROW. The dark blue menis-
cus in the target represents liquid
DT fuel that has entered from the fill
tube. The light blue region above in-
dicates the bubble. The x-ray cam-
era is represented as viewing from
θ = 42◦. The red lines (each 8.66◦

apart) show the angles that the sim-
ulation was run at for each of the
distinct thicknesses.

However, the 5 µm run was outside the range of thicknesses over which Equations (1), (2) and

(3) were developed. For each thickness, the simulation was run with the point source placed

every 8.66◦ (see Figure 3.1) with θ going from −90◦ to 90◦, with 0◦ being perpendicular to

gravity and level with the target center.

3.2 Analysis of Simulated Data

The data collected from running SPARROW simulations are shown in Figure 3.2. c′ is the

semi-minor axis of the elliptical meniscus bubble; r = 430 µm is the radius of the target.

Thus, c′

r
represents the normalized semi-minor axis. c′

r
was calculated for an array of viewing

angles and thicknesses. Figures 3.2a and 3.2b show different regressions of the same data.

The vertical black line in both plots signifies the viewing angle, -23.97◦, from which the x-ray

camera will view the target on OMEGA.

The linear fit in Figure 3.2a provides a complete solution to the problem of how to

predetermine the final layer thickness of an OMEGA fill tube target where θ will be −23.97◦.

Based on the c′

r
obtained from fitting an ellipse to a target x-ray image, the vertical black

line will be interpolated along to calculate the final thickness.

The collected data revealed a sinusoidal relationship between viewing angle and the

normalized semi-minor axis. Results also showed that the amplitude of the sinusoidal rela-
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tionship correlates directly with thickness. The data was fitted to the form

c′

r
(T, θ) =

[
P (T )

]
cos(Aθ) −BT +D (4)

where T represents the final thickness of the frozen ice layer; θ represents the viewing angle;

and A,B, and D represent constants to be fit. P (T ) represents a polynomial of thickness.

The Cryogenic Fill-tube Test Facility (CFTF) was previously built at LLE to test the

possibility of using a fill tube. The CFTF includes x-ray and shadowgraphy cameras for

characterization. Unlike the prototype shown in Figure 2.4, the x-ray camera on the CFTF

views the target from the horizontal. Previous experiments conducted on the CFTF verified

the linear relationship between semi-minor axis and thickness for θ = 0 only. However, it is

unknown what kind of association exists between P (T ) and thickness at other angles. To

investigate this, the data was fit using both linear and quadratic polynomials to see if one

fit better than the other.

(a) (b)

Figure 3.2: Simulated c′

r as a function of θ for each of six distinct
ice thicknesses. θ = 0 represents viewing the target directly from
horizontal. The simulated data were fit using both (a) first- and (b)
second-degree polynomials.

Regression was used to fit Equation (4) using first- and then second-degree polynomi-

als to determine which (linear or quadratic) fit better. The results depicted in Figure 3.2
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produced the fits

c′

r
(T, θ) =

[
(3.99e-4)T − 1.04e-2)

]
cos(2θ) − 0.0033T + 1.02 (5)

c′

r
(T, θ) =

[
(4.66e-6)T 2 − (9.09e-5)T − (2.21e-3)

]
cos(2θ) − 0.0033T + 1.02 (6)

where T is measured in µm. Both equations fit with a coefficient of determination of 0.997.

Figure 3.2 shows that below a certain thickness threshold, the semi-minor axis of the bubble

viewed switches from appearing largest when viewed horizontally to appearing largest when

viewed from 90◦ to horizontal. Note how the sinusoidal relationship between viewing angle

and normalized semi-minor axis inverts between T = 20 µm and T = 40 µm.

To calculate the threshold, Equations (5) and (6) were solved for T such that the

expression P (T ) = 0. P (T ) is the bracketed expression that cos(2θ) is scaled by. From

Equation (5), the threshold is T = 25.92 µm in the linear model. However, it is T = 33.62

µm in the quadratic model in Equation (6). To determine where the actual inversion was,

the simulation was rerun at closer thicknesses of 25.92, 29.77, and 33.62 µm. The results

from this were then fit both linearly and quadratically with Equation (4). The linear fit

produced an inflection point at 30.346 µm; the quadratic fit produced 30.75 µm. The mean

of these two was 30.55 µm. Therefore, 30.55 µm was assumed to be the inflection point.

To gain some insight into the threshold behavior, the simulation was run at θ = 90◦

and θ = 0 for thicknesses below, at, and above the threshold, shown in Figure 3.3. In the

simulated x-ray images, the midpoint of the bubble does not fall on the midpoint of the

target. However, the bubble transitions from having a horizontal major axis when viewed at

θ = 0 in (a) to having it vertically in (c). So, the bubble transitions from being wider than

it is tall to taller than it is wide.

3.3 Model Testing

The linear and quadratic models each performed more accurately for different viewing angles

and thicknesses. Below the threshold of T = 30.55 µm, the linear model made more accurate

predictions within 45◦ of perpendicular to gravity. For angles greater than 45◦, the quadratic
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(a) T = 5 µm. c < c′ = a. (b) T = 30.55 µm. c = c′ = a. (c) T = 50 µm. c > c′ = a.

Figure 3.3: Simulated uncooled targets of final ice layer thicknesses
(a) less than the modeled relationship inversion threshold, (b) at the
threshold and (c) greater than the threshold. Targets are viewed
from 90◦above horizontal (top) and at horizontal (bottom). Below the
threshold, the meniscus bubble (blue) is larger when viewed 90◦above
horizontal. Above the threshold, the meniscus bubble is larger when
viewed directly at horizontal.

model made more accurate predictions. Above the threshold, the opposite was observed.

The thickness predetermination model was tested against 19 CFTF fills of cryogenic

DT targets with θ = 0. Experiments in which ice layers exhibited more than 10% of surface

area being at least 16 µm outside the mean radius of the ice layer were considered poor

quality targets. The testing dataset size was reduced to 14 after poor quality targets were

excluded. For these 14, thickness predictions were compared against x-ray measurements

for accuracy because shadowgraphy measurements exhibited more variability. X-ray images

are also known to provide more accurate thickness measurements. The predicted thickness

was on average within 2 µm of the measured average layer thickness, as shown in Figure 3.4.

This satisfies the 2-µm accuracy requirement of LLE’s experimental program.
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Figure 3.4: (a) Thickness prediction vs. measurements; (b) difference
between prediction and x-ray measurement. The difference represents
the distance between the black diamond and the blue circle for a given
target.

Having satisfied the experimental program accuracy requirement, the developed thick-

ness prediction formulas in Equations (5) and (6) will be implemented into the automated

control loop of Ref. 7. Thus, cryogenic target filling can now be automated for OMEGA

fill tube targets when viewed from 23.97◦. It can also be automated for any other arbitrary

angle.

4 Machine Learning Model

The second goal of this work was (1) to quantify the improvement that a new cryogenic

filling mechanism can deliver to the neutron yield of a cryogenic DT implosion and (2) to

use this measure to improve yield predictions.

4.1 Feature Selection

In order to quantify the yield increase that a new cryogenic filling mechanism can deliver,

a group of features relating to cryogenic targets was selected from a dataset of implosion

experiments conducted on the OMEGA laser within the past two years. Older shots were

omitted to avoid externalities (e.g., new modules that would skew the data). These data

were augmented with features that had been used to develop a previous model.8
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The features collected from the dataset are listed in Table 1. The previously used

features (those that are unrelated to target quality) are the last six entries. IRMS represents

the root mean square (RMS) nonuniformity of the ice layer of frozen targets. This estimate

is calculated from the nonuniformity of the optical shadowgraphy bright ring. The same

process is applied to the target shell ring to calculate SRMS.

AS, AM , CE, AD, and CD are measurements of the quality of the exterior polymer target

that holds DT inside a target. Increases in all these values negatively impact implosion yield.

Large CE and CD decrease implosion yield more than large A values because they indicate

that target imperfections are skewed toward either the top or bottom. For LLE experiments,

this skew is generally toward the top of the target. Elliptical and dendrite defects are two

types of target imperfections that result from the current diffusion-filling process. Dendrite

defects have a more negative impact on yield than elliptical defects.

Exploratory Data Analysis (EDA) of these features revealed that the initial horizontal

offset of the crystal seed held no relationship with neutron yield nor implosion velocity.

Figure 4.1: Density Plot of B-band
RMS by Layer Thickness. At higher
thicknesses, IRMS is approximately nor-
mal and centered at ∼ 0.75 µm. At
lower thicknesses, IRMS is bimodal and
generally greater, with centers at ∼ 1.3
µm and ∼ 2.6 µm.

EDA also revealed (1) a negative correlation

between between Y and T and (2) an unex-

pected positive correlation between Y and

IRMS. However, high-RMS ice layers are

known to reduce implosion velocity and neu-

tron yield.9 The data’s positive correlation

between B-band RMS and yield contradicts

a physical property. Thus, this trend was as-

sumed to reduce the accuracy of a model’s

predictions. This was investigated by plot-

ting the density of IRMS for relatively low

as well as relatively high thicknesses T be-

cause layer thickness has been shown to sig-

nificantly influence Y (see Figure 4.1). The

density plot in Figure 4.1 shows that as T

increases, IRMS decreases. This is why Y exhibits a positive correlation with IRMS when
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Inputs

Symbol Name

IRMS Estimated thickness nonuniformity of solid DT layer (µm)

T Final ice layer thickness (µm)

τ Age of DT fuel (s)

dX Initial crystal seed horizontal offset (µm)

dY Initial crystal seed vertical offset (µm)

SRMS RMS of target shell (µm)

AS Area of small-sized elliptical defects on target (µm2)

AM Area of medium-sized elliptical defects on target (µm2)

CE Centroid of elliptical defects on target (µm)

AD Area of dendrite defects on target (µm2)

CD Centroid of dendrite defects on target (µm)

δSSD Application of SSD (binary)

RT Range of ion temperature measurements (K)

Vsim Simulated implosion velocity (m/s)

Msim Simulated target mass at stagnation (µg)

ρRsim Simulated areal density (kg/µm2)

R0 Outer radius of target (µm)

Output

Symbol Name

Ŷ exp Predicted neutron yield

Table 1: Symbols and descriptions of the initial feature space and
output of the model developed to predict neutron yield.

considered independent of T . T impacts yield more than IRMS. So, for low-IRMS targets

(large T ), yield was lower than high-IRMS targets not because of IRMS itself, but because of

T . To account for this in training the model, a second-order feature

QI = (IRMS)(T ) (7)

was added to the dataset to describe the quality of the solid layer more generally. QI

accounts for both layer uniformity and thickness. This eliminated the incorrect trend that
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was occurring between IRMS and Y . QI correlates negatively with Y . Ultimately, the

dimensionality of the model dataset was reduced by omitting the horizontal offset of the

initial crystal seed, the bright ring RMS, and the layer thickness from training data; the

latter two were replaced with layer quality QI .

4.2 Model Development

After dimensionality reduction, an investigation into the possibility of using a neural network

to analyze the data was conducted on the entirety of the experimental dataset of cryogenic

target shots at LLE within the past two years. This dataset contains 400 distinct features

but only 215 data points. Each feature is either a simulated or observed measurement (e.g.,

those in Table 1). Each data point is a set of feature values corresponding to an imploded

target (a “shot”). Having more features than data points suggested a neural network would

have a low probability of successfully predicting neutron yields in this context. One of the

more commonly used configurations for training neural networks was used. This was a 12-

layer neural network with rectified linear unit (ReLU) activation. This was also configured

with Sigmoid activation functions on deeper neurons. This performed with an accuracy of

0.12%, verifying that neural networks are currently not applicable for yield prediction in the

context of cryogenic shots.

Subsequently, various predictive models were trained on the cryogenic target shot data

using five-fold cross-validation, wherein 5 distinct 20% portions of the dataset were used as

holdout testing data to be used for model evaluation after the model was trained on the

other 80%. The metrics calculated from evaluating the different models on these 5 groups

were the mean absolute error (MAE) and root mean square error (RMSE). For each model,

these two metrics were averaged across the 5 runs and subsequently used for evaluation.

Figure 4.2 shows a comparison of various models, ranked based on these metrics. The MAE

and RMSE were compared against those of (a) a naive model that exclusively predicts the

median yield and against (b) a developed model that does not factor in target data.8 Both

(a) and (b), the control models, are shown in black in Figure 4.2. (a) is labeled “Median”;

(b) is labeled “Omitting Target Data.”
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Figure 4.2: Mean absolute error (MAE) and root-mean-squared error
(RMSE) compared across various yield prediction models.

4.3 Analysis of Model Output

Two models showed improvement when trained on data augmented with target parameters.

The medium-grained regression tree showed the smallest MAE from experimental data. At

1.08 × 1013 neutrons, this demonstrated a 5.46% decrease from the model trained without

target data (1.14×1013 neutrons). The ensemble of boosted trees showed the smallest RMSE.

At 1.43×1013 neutrons, this demonstrated a 17.17% decrease from the model trained without

target data (1.73 · 1013 neutrons). Having lower error values demonstrates that these two

models performed better than the others.10

The best performing models were decision trees, which generally “overfit” data (fit noise

in the data rather than physical trends).11 Models that overfit data are observed to perform

better on training data at the cost of performance on testing data; this performance can be

be compared using MAE and RMSE. Overfitted models tend to mistake noise in data for

physical relationships. As shown in Figure 4.3, the two best performing models had lower

MAE and RMSE values on their training data. With the ensemble model, RMSE increased

142% between training and testing data; MAE increased 138%. The medium regression

tree RMSE increased 21% between training and testing data; MAE increased 25%. These

results indicate that the ensemble model overfit the data significantly more than the medium

regression tree. This overfitting was mitigated through cross-validation but still present. By
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separating the dataset into 5 groups of data, each model is iteratively trained on the first

four randomly selected samples (“folds”) of data. Then, the final fold is used to test the

accuracy of the model. Because the model is trained on all four folds iteratively, it is less

likely to overfit noise in a single fold. This thus mitigates overfitting.

Neutron yields for experiments conducted on OMEGA are generally on the order of 1013

or 1014 neutrons. Because the RMSE of the models were also on the order of 1013, none of

these machine learning models are suitable for real-time high-precision predictions; however,

they quantifiy the impact of target quality on neutron yield.

Figure 4.3: Comparison of the RMSE and MAE values of the boosted
ensemble and medium regression decision tree machine learning mod-
els on testing and training datasets.

The decision tree models in Figure 4.3 were computed by the following process for each

of the five folds of the cross-validation.12 Twelve different numeric yield outcomes (evenly

spaced based on the distribution of yields) were algorithmically established. An array of

rules were then automatically fit to the training data (e.g., if δSSD is disabled, then Y will

not exceed 1.2 × 1014 neutrons). For testing, a distinct tree would, given a data point with

the input parameters in Table 1, assign a certainty (percent confidence) to each outcome.

The final prediction for the data point was the weighted average of these outcomes.

Decision trees are inherently different from other models tested such as linear regression
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(where the relationship between the prediction Ŷ exp is assumed to be linear with the input

variables) and gaussian regression (where all input variables are assumed to be normally dis-

tributed).13 The other models are less optimal for highly complex datasets but they generally

do not overfit to the extent that decision trees do.

This verified that the neutron yield of implosions is multivariate and nonlinear. This

also showed that cryogenic target quality highly correlates with neutron yield. Finally, the

increased accuracy of the model resulting from training with target data shows the material

importance of target quality in the goal of achieving nuclear ignition and burn.

5 Conclusion

In this work, two models were created. The first, a ray-tracing model SPARROW, is for use

in filling cryogenic targets on the new fill-tube system on the OMEGA laser. The second

leverages machine learning to predict neutron yield and quantify the significance of target

quality on that yield.

SPARROW was developed to predetermine the final solid layer thickness of cryogenic

targets filled using the fill-tube fixture. This was previously not possible for targets viewed

from any angle. SPARROW was created using relationships previously learned from x-ray

images of liquid fills viewed in the horizontal plane. Results from this model were fit to

linear and quadratic polynomials. These give analytic expressions that allow the thickness

to be determined for any viewing angle. For the angle at which the fill tube will be fielded on

OMEGA, the linear model is optimal. The model will be implemented to fill cryogenic targets

automatically to a desired thickness. Preexisting target fills imaged perpendicular to gravity

were used as testing data. The model performed within the 2 µm accuracy specification of

LLE’s experimental program on these data.

The machine learning model was created to quantify the significance of target quality

to fusion yield. Cryogenic shot data from OMEGA was first compiled for training. Then,

nineteen types of predictive models were trained and compared for performance. The ensem-

ble of boosted trees model was the most accurate. Testing of this model showed that target
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quality data improved neutron yield predictions by 17%. This indicates that target quality

improvements using the cryogenic fill-tube fixture have a material impact on experimental

yields.

When the cryogenic fill-tube is fielded on OMEGA and used for implosions, data from

the fill-tube fixture can be used in the yield prediction machine learning model. Data such

as the range in temperature from the start to the end of the filling process, and the length

of time required for filling could be included. Including these might provide insight into

physical properties and further improve yield prediction accuracy.
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