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1. Abstract 

Laser imprint, when laser non-uniformities are imprinted onto the capsule at the 

beginning of the implosion, is a limiting factor in direct-drive inertial confinement fusion. One 

method to reduce imprint is x-ray pre-illumination, in which an additional x-ray source is used to 

“puff up” the outermost layer of the capsule before it is illuminated by the main laser pulse. 

Positioning metal foils around the capsule and using lasers to heat the foils so they produce x 

rays is one way to implement this technique. The optimal placement of x-ray prepulse foils was 

investigated. MATLAB functions were developed to generate foil geometries that correspond to 

the faces of a tetrahedron, cube, and octahedron, and verify that they satisfy beam clearance 

requirements. VisRad (J. J. MacFarlane, Journal of Quantitative Spectroscopy and Radiative 

Transfer ​81​, 287 (2003)) models were constructed for selected foil configurations, and 

viewfactor simulations were run to optimize foil orientation. Three optimized foil configurations 

were examined: the first configuration optimized uniformity of x-ray distribution on the capsule, 

the second maximized incident flux by decreasing the foil radius, and the third maximized 

incident flux by breaking polyhedral symmetry. It was determined that the four-foil geometry 

would be the most convenient to implement, the six-foil geometry produces the highest mean 

incident flux with nonuniformity below 10%, and the eight-foil geometry provides the lowest 

nonuniformity (<8%). 

2. Introduction 

Because non-renewable energy sources such as coal release carbon dioxide into the 

atmosphere, a major contributor to global warming, and are projected to run out in only a few 

centuries, people have been turning to renewable energy sources. The idea of using lasers to 

initiate a nuclear fusion reaction in a controlled environment was first thought of in the 1960s 

and first published in 1972 [1, 2]. Since nuclear fusion is both safe and clean (compared to 
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nuclear fission), much effort has been put into making this idea a reality. Direct-drive inertial 

confinement fusion [1, 2], studied on the 60-beam OMEGA laser at the Laboratory for Laser 

Energetics, is one way to achieve it. In this approach, a spherical capsule, which typically has a 

plastic shell surrounding a layer of frozen deuterium and tritium, is irradiated using high-power 

laser beams. The capsule implodes, causing extreme temperatures and pressures to be 

reached. These extreme conditions cause the deuterium and tritium to combine, forming a 

helium atom and a neutron. If there is enough fusion to further heat the fuel, a chain reaction will 

occur, known as ignition.  

For the best results, the capsule must be irradiated as uniformly as possible. However, 

uniformity is hard to achieve due to several factors that can worsen over time due to 

Rayleigh-Taylor instability [3]. One of these factors is laser imprint, in which laser 

non-uniformities are imprinted onto the surface of the capsule at the beginning of the implosion. 

As the capsule implodes, the perturbation gets worse, as can be seen in Fig. 1 (taken from Ref. 

4). This can destroy the shell of the capsule, reducing capsule performance and the amount of 

fusion generated. X-ray pre-illumination is one way to reduce laser imprint [5]. In this technique, 

an additional x-ray source is used to “puff-up” the outermost layer of the capsule before the 

main laser beams are turned on. This increases the distance between the capsule surface and 

the region where the laser is initially absorbed, smoothing out the imprint. One way to produce 

the x-ray prepulse is to position foils around the capsule and hit the foils with laser beams. The 

foils will then radiate x rays onto the capsule. Figures 2 and 3 support this claim. Figure 2a 

shows the  experimental design when the laser beam directly hits the target, and Fig. 3a shows 

the result of the laser imprint on the surface of the target when there is no x-ray prepulse. Figure 

2b shows the experimental design when the laser beam first goes through a sheet of gold 

before hitting the target, and Fig. 3b shows the resulting laser imprint on the surface of the 
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target when there is an x-ray prepulse. When the surface is first pre-illuminated by x rays, a 

plasma layer is formed that smoothes out the small imprint speckles that are seen in Fig 3a.  

In this work, ​foils will be driven by an OMEGA EP beam transported into the OMEGA 

target chamber, using a custom optic to split the OMEGA EP beam to focus onto multiple 

targets, as can be seen in Fig. 4a. ​Foil configurations made up of four, six, and eight foils were 

analyzed for optimized uniformity of x rays on the capsule and incident flux. Foil sets will be 

configured so that the faces of the polyhedra as shown in Fig. 4b correspond to a foil. ​Section 3 

discusses how foil positions were found, including foil constraints, how sets of foils were 

defined, and how foil geometries and orientations were optimized. Section 4 analyzes the three 

optimized foil configurations.  

 
Image from Ref. 4 

Figure 1: Series of images showing the effect of laser imprint on an imploding capsule. As 
time goes on, the perturbations get worse due to Rayleigh-Taylor instabilities. 
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                                         a                                                                               b 

Figure 2: Experimental setups to show how laser imprint can be reduced. In (a), the laser 
beam directly hits the target whereas in (b), the laser beam first goes through a thin gold foil 
before hitting the target. 

 

 

a                                               b 
Image from Ref. 6 

Figure 3: Time resolved x-ray radiography of density modulations from laser imprint from the 
experiment described in Fig. 2. Color represents mass, with blue showing more mass and red 
showing less. Where density is greater, more x rays are absorbed. Image (a) shows the 
imprint left on a surface when the laser hits the surface directly. Image (b) shows the imprint 
left on a surface when the laser first goes through a thin layer of gold before hitting it. The 
imprint in image (b) is much smoother because the x-ray prepulse created a layer of plasma 
near the surface that served as a “buffer” for when the laser hit the surface directly.  
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                                                                   a                                                  b 
 

Figure 4: Schematic of foil arrangements. Figure (a) shows the OMEGA EP beam (blue) split 
up into four beams, each focused on a foil (yellow), and one of the 60 OMEGA laser beams 
(red) focused onto the capsule (gold). Unit vector, is also shown. Figure (b) shows theB

︿

EP  
polyhedral geometry of the foils - the 4-foil geometry will correspond to the faces of the 
tetrahedron on the top, the 6-foil geometry will correspond to the faces of the cube in the 
middle, and the 8-foil geometry will correspond to the faces of the octahedron on the bottom. 

 

3. Finding foil positions and orientations 

In order to find potential locations where the foils could be placed, constraints on the foils 

were defined. Then mechanisms were set up to find sets of foils in tetrahedral, cubic, and 

octahedral geometries, and the most suitable sets of foil geometries were found. The best foil 

sets were then further analyzed by adjusting the tilt on the foils. 

3.1 Foil constraints 

Throughout this work, bold indicates vector notation, and the hat symbol, , indicates a ̂  

unit vector. For example, the vector ​A​ = < > points in the direction  = .x y A z Ax 
︿ + Ay 

︿ +  z 
︿ A

︿ A
| A |  
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Constraints on the foils must be satisfied in order for the foils and capsule stalk to not be 

in the way of any of the OMEGA laser beams and to minimize the risk associated with scattered 

laser energy. Below are three of these constraints. 

 
                                   ​a                                                                              b 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                            ​c 

Figure 5: Constraints on the foils. Figure (a) shows an example of when a foil does not clear 
one of the OMEGA laser beams. Figure (b) shows an example of the target stalk being 
positioned between an OMEGA EP beam and a foil. Figure (c) shows a large OMEGA EP 
beam incidence angle.  

 

1) The foils must be clear of all 60 OMEGA laser beams. If the foil is clear of the closest 

OMEGA beam, then it is clear of all of the beams. An example of a foil not clearing one of the 

OMEGA laser beams can be seen in Fig. 5a. So, a MATLAB function was generated to loop 

through all of the OMEGA laser beams and return the Beam ID of the closest beam. The 

half-angular size is defined as the angle formed by the center of the foil (or beam), the center of 
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the capsule, and the edge of the foil (or beam). ​The foil was defined to be clear of the closest 

beam if the sum of the half-angular sizes of the foil and the beam was less than the angular 

distance between the center of the foil and the beam. Rotation of the foil will reduce the angular 

size of the foil, so this condition is an overestimate of the limit which will serve as a safety buffer. 

The half-angular size of the foil is arctan( ) where is the radius of the foil and r is ther
F r F r  

distance of the foil from the capsule, assuming that the foil is oriented to face the capsule (the 

worst case). OMEGA beams typically have an f/#, which is the focal length divided by the lens 

diameter, of 6.65 and a radius at best focus of 360 . The radius of the OMEGA beamRspot ≈ mμ  

at a distance of r from the focus is approximately . Then the half-angular size √R ( )  spot
2 + 4

1 r
6.65

2  

of the beam at a distance of r from the capsule is approximately arctan( ).2
1  √( ) ( )  r

Rspot
2

+ 4
1 1

6.65
2  

So, 

 arctan( ) + arctan( ),                        [1](F , )Δ B ≥  r
F r

2
1  √( ) ( )  r

C Rspot
2

+ 4
1 1

6.65
2  

where  is the angular distance between the center of the foil and the beam and C ( )(F , )Δ B ≥ 1  

is some safety constant, must be satisfied in order for none of the lasers to hit the foil.  

2) The capsule stalk cannot be positioned between an OMEGA EP beam and a foil. For 

this constraint to be satisfied, the foil must be in front of the stalk from the perspective of the 

beam, the point of closest approach from the beam to the Z (vertical) axis must have a positive 

Z value (we can assume that the condition that the OMEGA EP beam doesn’t hit the capsule 

has been satisfied), or the beam radius must be smaller than the distance to the stalk at the 

point on the beam that is closest to the stalk. Fig. 5b shows an example of a foil placed behind 

the capsule from the perspective of the OMEGA EP beam and as a result, the beam hits the 

capsule and stalk before it reaches the foil. The points on the beam axis directed at the center 
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of foil ​F ​can be defined parametrically as ​B​(t) = ​F​ + t , where is the unit vector in theB
︿

EP B
︿

EP  

direction the beam comes from (see Fig. 4 for a visual representation). The distance from the 

beam to the stalk is D(t) = . To find the point of closest approach, = 0 is √B (t)  B (t)
︿

x 
2 +  

︿

y 
2

dt
d(D )2

 

solved for t, resulting in = . The radius of the beam here is , ​where ​f​ is thetc −
B + B
︿

x
2 ︿

y
2

F B + F Bx 
︿

x y 
︿

y

2f
 |t |c  

f-number of the OMEGA-EP beam (f = 6.65).​ So, the foil is in front of the stalk from the 

perspective of the beam when 

< 0.tc  

The point of closest approach from the beam to the Z axis has a positive Z value when 

+ > 0.F z  Btc
︿

z  

The beam radius is smaller than the closest distance to the stalk when  

< .2f
 |t |c  √(F  B )  x + tc

︿

EP ,x
2

+ (F  B )y + tc 
︿

EP ,y
2

[2] 

The condition is satisfied if any of these are true.  

3) The angle of incidence between the OMEGA EP beam and the foil cannot exceed 

65°. The laser energy is absorbed best by the foils when they are hit head-on by the laser, so as 

the angle of incidence increases, less laser energy is absorbed and more scatters, potentially 

hitting and damaging other equipment in the chamber. This constraint is controlled by the tilt of 

the foils with respect to the incident laser. A beam-foil coordinate system defined by unit vectors 

) was created in which the z-axis ( ) is parallel to the direction of the laser beam,B ,( 1 ,B2
 B॥  B॥  

the x-axis ( ) is perpendicular to both the position of the foil with respect to the capsule andB1  

the beam direction, and the y-axis ( ) is perpendicular to the x- and z-axes (see Fig. 6).B2   
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Figure 6: Schematic of OMEGA EP beam (blue), foil (black), and capsule (orange), showing 
vectors and angles. The unit vector is directed out of the page.B1  

 

The orientation angles of the beam with respect to the target chamber axes are polar angle = 

116.6° and azimuthal angle = 18°. Let ​F ​be the position of the foil in cartesian coordinates. Then 

the new axes can be defined by 

= , B॥ B
︿

EP  [3a] 

= ,B1
F  × B॥
 F  × B  | ॥ | [3b] 

and  

=   ,B2
 B॥ × B1 [3c] 

where  is the vector cross product.×   

Let ​p​ and ​a​ be the polar and azimuthal angles of the normal to the foil  with respect to then︿  

target chamber. Define = <x, y, z> to be the cartesian coordinates in the chamber coordinaten︿  

system when converted from the spherical coordinates <1, ​p​, ​a​>. Then the normal  is givenn︿  

with respect to the new axes by  

(α, ) = cos  - ( sin + cos ) sinn︿ β  B॥ α B1 β B2 β α      [4] 

 
10 



 

where α is the angle between  and  and  is the angle between the projection of  inton︿ ,  B॥ β n︿  

the ( ) plane and the (- ) axis. The tilt of the foil can be defined by two angles,B1, B2 B2  

    α = arccos( )n︿ ·  B॥                [5a] 

and  

           = arctan( ),β n · B︿

2

n · B︿

1           [5b] 

where α is the in-plane angle (the angle of incidence), is the out-of-plane angle, and  is theβ ·  

vector dot product. The case where = 0 ( = 0) corresponds to the normal  lying in theβ n︿ · B1 n︿  

plane of Fig. 6. In order for the angle of incidence between the OMEGA EP beam and the foil to 

not exceed 65°, α must not exceed 65°. There is no constraint on Fig. 5c shows how the α.β  

limit makes it difficult to direct the x rays onto the capsule when it has a small  (from Fig.BF∠  

6). 

3.2 Defining and Generating Sets of Foils 

Each set of foil locations can be defined by four parameters, r, , , and , where r, ,θ  ϕ η θ  

and define the position of the first foil, ,  in spherical coordinates, and defines the rotation ϕ F 1 η  

of the remaining foils about the axis. To determine the positions of the other foils from theseF 1  

four parameters, an axis parallel ( ) and axes perpendicular ( , ) to must be defined.Z
︿

′ X
︿

′ Y
︿

′ F 1  

 is a unit vector parallel to , which is defined byZ
︿

′ F 1   

               ​= ,Z
︿

′ F 1r

<F , F , F >1x, 1y 1z              [6] 

where =  is the distance of the first foil from the capsule.F 1r  √F  F  F2
1x +  2

1y +  2
1z   

To get the perpendicular vectors, a reference vector must be chosen. If <0, 0, 1> is the 

reference vector, then the perpendicular vectors can be defined as 

              ​= X
︿

′ <0, 0, 1> × Z
︿

′
 <0, 0, 1> × Z   |

︿

′ |               [7] 
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And 

  ​=  ​× .Y
︿

′ Z
︿

′ X
︿

′                ​[8] 

If is parallel to <0, 0, 1>, then  ​= <1, 0 ,0>, and  ​= <0, 1, 0>.F 1 X
︿

′ Y
︿

′  

The position of foil ​j​ in the tetrahedral, cubic, and octahedral geometries with a rotation 

about the axis can be written asη F 1  

               = [( cos  + sin  )  + ( cos  - sin  )  ​+ ].F j F 1r T jx η T jy η X
︿

′ T jy η T jx η Y
︿

′ T jz Z
︿

′           [9] 

The coefficients  are defined in Table 1.T ji   
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Geometry  j T jx  T jy  T jz  

Tetrahedron 1 0 0 1 

2 √8/9  0 -1/3 

3 - √2/9  √2/3  -1/3 

4 - √2/9  - √2/3  -1/3 

Cube 1 0 0 1 

2 1 0 0 

3 0 1 0 

4 -1 0 0 

5 0 -1 0 

6 0 0 -1 

Octahedron 1 0 0 1 

2 √2/3  √2/9  1/3 

3 - √2/3  √2/9  1/3 

4 0 - √8/9  1/3 

5 0 √8/9  -1/3 

6 √2/3  - √2/9  -1/3 

7 - √2/3  - √2/9  -1/3 

8 0 0 -1 

Table 1: Locations of vertices for unit polyhedrons where = (0,0,1).F 1  
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3.3 Process to find optimal foil geometries 

The goal of this study was to find a foil geometry that maximizes mean x-ray intensity on 

the capsule as well as uniformity. VisRad [7], a view factor code, was used to simulate the 

radiation flux onto a capsule for each foil geometry. The x-ray uniformity was assessed by 

calculating the ratio of the incident flux standard deviation to the mean incident flux. Ease of 

implementation should also be taken into account in the future. So, even though an 8-foil 

geometry will yield higher uniformity than a 4-foil geometry, it is possible that the 4-foil geometry 

will be chosen over an 8-foil geometry because it is more practical to field 4 foils than 8. Some 

actions improved one of these parameters while worsening others, so foil geometries were 

sought that had a balance between these parameters. 

For example, putting the foils closer to the capsule generally increased their x-ray 

intensity and uniformity. However, this wasn’t always the case. For the tetrahedron, since there 

were only four foils to irradiate the capsule, if the foils got too close, uniformity decreased, 

contrary to what happened with the cubic and octahedral geometries.  

At a given foil-to-capsule distance, the maximum flux was limited by the smallest value of 

the angle ∠BF (see Fig.6 for these angles) within each set of foils.  Since there is an upper limit 

on ∠Bn (65°), the foil with the smallest ∠BF necessarily has the largest ∠nF, and therefore 

limits the incident flux on the capsule.  The minimum value of ∠BF was found for each set of 

foils, and the set with the largest minimum value was expected to produce the largest x-ray flux. 

The largest possible ∠BF was constrained by geometry, and was 70.5° for the tetrahedron and 

54.7° for the cube and octahedron. However, due to the constraints described in Section 3.1, 

these largest possible minimum ∠BF ’s could not be achieved in practice. The largest minimum 

∠BF that were found were in the 50°s for the tetrahedron and in the 40°s for the cube and 

octahedron. 
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A MATLAB function was written to randomly generate sets of foils for each foil geometry 

given a distance between the foils and the capsule. So, a distance between the foils and the 

capsule and the number of generated sets of foils that was to be returned would be input into 

the function, and foil sets with the θ, ​Φ​, and η values along with the smallest ​∠BF​ were 

returned. In general, the goal was to minimize the distance between the foils and the capsule 

while also retaining a large, smallest ​∠BF​. The best sets of foils found for each foil geometry by 

this random generator were then put into VisRad.  

To maximize the smallest ​∠BF​, an iterative MATLAB function was written to return the 

range of θ, ​Φ​, or η values (defined in Section 3.2) for a specific foil geometry that satisfied all of 

the constraints given a foil-to-capsule distance and two of the three parameters, θ, ​Φ​, and η . 

For example, r, θ, and ​Φ​ would be input and ranges, to the nearest hundredths place, of η 

values that satisfied all of the constraints were output. The previous η value would then be 

replaced by the value in that output range that produced the largest, smallest ​∠BF​. This was 

then done with the other two parameters, θ and ​Φ: r,​ ​Φ​, and η would be input and ranges, to the 

nearest hundredths place, of θ ​that satisfied all of the constraints were output, and ​the previous 

θ value would then be replaced by the value in that output range that produced the largest, 

smallest ​∠BF. Likewise, r, ​θ, and η would be input and ranges, to the nearest hundredths 

place, of ​Φ that satisfied all of the constraints were output, and ​the previous ​Φ ​value would then 

be replaced by the value in that output range that produced the largest, smallest ​∠BF. ​Starting 

from a randomly selected foil configuration defined by the four parameters (r, θ, ​Φ​, η) that 

satisfied the conditions, ranges for θ, ​Φ​, and η were found, and the previous θ, ​Φ​, and η values 

were replaced by the values in that range that produced the largest, smallest ​∠BF​. Then the 

distance between the foils and the capsule would be increased, and this process would be 
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repeated until the smallest ​∠BF​ was as large as possible while still fulfilling the clearance 

conditions described in Section 3.1.  

3.4 Normal vector optimization 

The tilts on the foils were varied in VisRad to optimize intensity and uniformity. The same 

beam-foil coordinate system was used as in Section 3.1. The normal vector (α, ) defined inn︿ β  

Eq. (4) can be used in VisRad by converting  shown in Fig. 6 to spherical coordinates, (r,n︿  

polar, azimuthal) with respect to the target chamber axes and inputting the polar and azimuthal 

angles. A MATLAB function was written that returns the polar and azimuthal angles given the 

coordinates of the foil and its α and .β  

For foils with a small​ ​angle , it is harder for x rays to reach the capsule. So to start,BF∠  

the foil with the smallest  had its tilt set. α was set to 65°, the maximum tilt allowed in theBF∠  

target chamber, and was set to 0°. This would maximize the amount of x rays generated byβ  

that foil that would be directed towards the capsule since this foil was the limiting factor for the 

foil set in terms of x-ray intensity.  

The alphas and betas of the other foils were determined by manual iteration. The α and 

of the other foils were initially set to 65° and 0°, respectively. Then the α and/or of one of theβ β  

foils was changed by a small amount. The simulation was then run. If nonuniformity, which was 

calculated by dividing the standard deviation by the mean incident flux, decreased, the tilt was 

moving in the right direction and it was further changed in that same direction. If nonuniformity 

increased, the tilt was changed in the opposite direction. The tilt on each foil was altered a little 

bit before moving onto the next foil. The foils’ tilts were optimized in a rotating pattern, excluding 

the foil with the smallest . No foil was altered too much at once. In the end, each foil’s tiltBF∠  

was altered multiple times with the goal of maximizing uniformity. This procedure did not 

guarantee that an optimal radiation intensity and uniformity was reached for each foil geometry. 
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However, by inspection, reasonable illumination symmetry was achieved for all geometries, as 

described in the next section. 

4. Optimized foil geometries 

Three approaches were taken to optimize foil geometries. The first approach optimized 

x-ray uniformity on the capsule. The other two approaches maximized incident flux by 

decreasing the distance between the foils and the capsule, either by decreasing the radius of 

the foils or by breaking the polyhedral symmetry. 

4.1 Optimized Uniformity with Foil Radius of 0.8 mm 

This approach worked on decreasing the nonuniformity of the x-ray distribution on the 

capsule by finding good foil geometries as described in section 3.3 and then optimizing the 

normal vector  through the process described in section 3.4. The results can be found in Table 

2. Incident flux and uniformity can be visually compared between the three foil geometries in Fig 

7. (The same total beam power, which is energy per unit time of a beam, was used for the 4-foil, 

6-foil, and 8-foil geometry in all three scenarios. In this simulation, 1 TW of total beam power 

was used ​and a conversion efficiency of 60% into x rays was assumed.​) The cubic geometry 

produced the highest mean incident flux, while the octahedral geometry produced the most 

uniform distribution of x rays onto the capsule. The octahedral geometry had the lowest mean 

incident flux because this geometry utilized the highest number of foils so in order to satisfy all 

of the constraints, it needed a bigger r value, decreasing x-ray intensity. However, this geometry 

had the best uniformity because its large number of foils allowed it to irradiate the capsule the 

most evenly. 
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 (r, theta, phi, eta) 
(r in mm and θ, ​Φ​, and η in °) 

Mean incident flux 
(TW/ )cm2  

mean
standard deviation  

Tetrahedron (9.2, 64.4, 340.6, 97.9) 0.036 0.096 

Cube (6.6, 56.8, 336.6, 96.3) 0.047 0.095 

Octahedron (11.4, 117.5, -125.8, 69.9) 0.014 0.08 

Table 2: Location, mean incident flux, and uniformity measure for the most uniform 
tetrahedral, cubic, and octahedral foil geometries found. Of these three, the cubic geometry 
had the highest mean incident flux, and the octahedral geometry had the lowest. The 
octahedral geometry was also the most uniform, although all had uniformity better than 10%. 

 

                         
                                                  ​a                                                                b 

                                                       
                                  ​                                               c 

Figure 7: Incident flux plots (TW/cm^2) versus location on the capsule surface for the (a) 
tetrahedral, (b) cubic, and (c) octahedral foil geometries with θ on the horizontal axis (in 
degrees) and ​Φ on the vertical axis. 
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4.2 Maximized Incident Flux by Decreasing Radius 

This approach used the foil positions found in Section 4.1​ ​as the baseline. The radii of 

the foils were decreased, allowing them to sit closer to the capsule. Since uniformity decreased 

as the foils got closer to the capsule for the tetrahedral foil geometry, the cubic and octahedral 

foil geometries were the only polyhedra analyzed using this technique. The radii of the foils were 

decreased from 0.8 mm to 0.5 mm, although it is unknown how small the foils can actually get. 

(Ease of implementation and practicality must be taken into account.) Then the same approach 

as used in Section 4.1 was used to maximize uniformity. The results can be found in Table 3. 

The increase in incident flux intensity can be seen visually in Fig. 8, with a 61% increase for the 

cubic geometry and a 74% increase for the octahedral geometry. Uniformity improved as well 

but not by much. 

 (r, theta, phi, eta) 
(r in mm and θ, ​Φ​, and η in °) 

Mean incident flux 
(TW/ )cm2  

mean
standard deviation  

Cube (5.2, 56.8, 336.6, 96.3) 0.076 0.092 

Octahedron (8.7, 1, 354, 82) 0.025 0.079 

Table 3: Location, mean incident flux, and uniformity measure for the cubic and octahedral foil 
geometries found that maximized incident flux by decreasing the foil radius from 0.8 mm to 
0.5 mm. The mean incident flux increased greatly for both geometries with a 61% increase in 
the cubic geometry and a 74% increase in the octahedral geometry while maintaining almost 
the same uniformity. The cubic geometry still had the highest mean incident flux, and the 
octahedral geometry was still the most uniform. 
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                                                       ​a                                                             b 

Figure 8: Incident flux plots (TW/cm^2) versus location on the capsule surface for the (a) cubic 
geometry and (b) octahedral geometry with θ on the horizontal axis and ​Φ on the vertical axis 
after the foil radius was decreased from 0.8 mm to 0.5 mm. 

 

4.3 Maximized Incident Flux by Breaking Symmetry 

This approach also used the foil positions found in Section 4.1​ ​as a baseline. The radii of 

the foils was held at 0.8 mm in this approach, the same as in Section 4.1. From there, the 

position of any foil that was so close to any of the OMEGA beams that the distance between the 

foil and capsule couldn’t be decreased any more was moved slightly away from whichever 

beam it was closest to. This allowed for the distances between the foils and the capsule to be 

decreased even more, increasing the incident flux but also increasing nonuniformity. The 

process of breaking polyhedral symmetry and decreasing the distance between the foils and the 

capsule was continued until  equalled 0.1. The results can be found in Table 4.mean
standard deviation  

The change in incident flux intensity and uniformity can be seen visually in Fig. 9. When 

Sections 4.1 and 4.3 are compared, a dramatic increase in incident flux intensity can be seen 

for both geometries. The foils for the cubic geometry were able to get slightly closer to the 

capsule (the r value decreased from 6.6 mm to 5.7 mm), while the foils for the octahedral 

geometry were able to get much closer to the capsule (the r value decreased from 11.4 mm to 

6.5 mm). This allowed for the cubic geometry to experience a 34% increase in incident flux and 
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the octahedral geometry to experience a large, 273% increase. Nonuniformity increased slightly 

for both, with a 5% increase for the cubic geometry and a 25% increase for the octahedral 

geometry. 

 
 

(r, theta, phi, eta) 
(r in mm and θ, ​Φ​, and η in °) 

Mean incident flux 
(TW/ )cm2  

mean
standard deviation  

Cube (5.7, 56.8, 336.6, 96.3) 0.063 0.1 

Octahedron (6.5, 1, 354, 82) 0.053 0.1 

Table 4: Location, mean incident flux, and uniformity measure for the cubic and octahedral foil 
geometries found that maximized incident flux by breaking the symmetry of the foils while 
keeping below 0.1. (The (x, y, z) coordinates for each foil don’t match exactlymean

standard deviation  
with the given (r, theta, phi, eta) values because their positions were moved in order to avoid 
the beams.) This approach increased the incident flux by 34% for the cube and 273% for the 
octahedron.  

 

                        
                                                      ​a                                                             b 

Figure 9: Incident flux plots (TW/cm^2) versus location on capsule surface for the (a) cubic 
geometry and (b) octahedral geometry with θ on horizontal axis and ​Φ on vertical axis​ after 
polyhedral symmetry was broken.  

 

5. Conclusion 

In direct-drive inertial confinement fusion, it is important that the capsule be irradiated as 

uniformly as possible in order to maximize the amount of fusion generated during the implosion. 
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Laser imprint is one cause of capsule nonuniformities. This project explored the x-ray 

pre-illumination technique in which metal foils are heated to produce x rays onto the capsule 

before the main lasers are turned on. MATLAB functions were written to find optimal foil 

locations; these foils were then put into VisRad where foil locations and tilts were analyzed in 

order to optimize the incident flux and uniformity on the capsule. Foil positions were found three 

different ways: the first optimized uniformity, the second maximized incident flux by decreasing 

the radii of the foils to allow the distance between the foils and the capsule to be decreased, and 

the third allowed the foils to come closer to the capsule by breaking polyhedral symmetry. T​he 

six-foil geometry produced the highest mean incident flux in all three cases with nonuniformity 

below 10%. The eight-foil geometry provided the lowest asymmetry (<8%) at the expense of a 

greatly reduced incident flux. However, the four-foil geometry would be easiest to implement. 

Future work includes realistic mounting for the foils, calculations of absorbed flux using real 

x-ray spectra, and ultimately experimental tests. 
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