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ABSTRACT 

 A ray-tracing code was developed that propagates laser beams by representing them as 

bundles of rays and then evolving the rays in time according to a set of differential equations. 

These equations account for the dispersion relation of the electromagnetic waves and the density 

profile of the background plasma. The energy deposited by the beams, as well as the beam 

intensities and electric fields, can be calculated and plotted onto a grid. Cross-beam energy 

transfer (CBET) occurs when laser beams overlap in a plasma and was implemented into the 

program for two interacting beams. This new program performs the CBET calculation faster than 

current programs in use. Furthermore, an alternative ray-tracing method was investigated, 

namely, complex ray tracing, which represents a laser beam with only five rays. The results are 

identical to those of the standard ray tracing but are achieved faster and can model additional 

effects such as diffraction and interference. In the future, this work will be implemented into the 

3-D hybrid fluid-kinetic code TriForce. 
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I. INTRODUCTION 

 Current experiments being done on OMEGA involve shooting up to 60 laser beams at a 

target in an attempt to achieve nuclear fusion. This method is called direct-drive inertial 

confinement fusion (ICF).1 The target is an ~l-mm-diam cryogenic capsule that contains a 

mixture of deuterium and tritium fuel. The energy from the laser beam ablates the outer shell of 

the capsule, causing the inner fuel to implode by Newton’s third law; because of its extremely 

high temperature and pressure, the ablating material becomes a very hot ionized gas known as 

plasma.1 Light propagation in plasma is quite complex since electromagnetic waves can interact 

with the freely floating electrons of a plasma. Accordingly, many phenomena related to laser–

plasma interactions are not well understood.  

 Ray-tracing algorithms are important in designing and interpreting ICF experiments 

because they can predict the quantity and location of energy deposited by the laser beam. Based 

on these simulations, the optimal pointing of laser beams, as well as their respective intensities, 

can be determined and tested. Ray-tracing models are currently used at the Laboratory for Laser 

Energetics (LLE) in the hydrodynamic codes LILAC and DRACO. LILAC is a 1-D code that 

assumes spherical symmetry and consequently cannot take nonuniformities into account. 

DRACO is a 2-D code that assumes azimuthal symmetry and can model some types of 

perturbations. Both LILAC and DRACO are fluid-based models, which means that particle 

velocity distributions are assumed to follow a Maxwell–Boltzmann distribution at each point in 

the plasma and can be described by a single temperature. Therefore, the fluid model does not 

follow individual particles to determine the general behavior of the plasma. 

 TriForce is a 3-D hybrid fluid-kinetic code for ICF and high-energy-density physics 

research. A pure kinetic model does follow individual particles and does not assume a form for 
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the particle velocity distribution; therefore, it can more accurately model a plasma that is not in 

equilibrium (e.g., when a laser beam creates hot electrons and waves). In exchange for greater 

accuracy, however, kinetic models use more computation time. TriForce is a hybrid code in the 

sense that it uses kinetic algorithms where necessary and fluid algorithms everywhere else.  

 In this work, preliminary algorithms were developed for use in TriForce. These 

algorithms include a standard ray-tracing code, in which rays simply propagate through plasma; 

a cross-beam energy transfer code, which models the interaction of two laser beams in resonance 

with the plasma; and a complex ray-tracing code, which may be a powerful alternative to 

standard ray tracing because it includes extra physics while requiring fewer rays to model a laser 

beam.  

 

II. STANDARD RAY TRACING 

 Light acts as both a particle and a wave. The dispersion relation describes the relation 

between a wave’s angular frequency and wavevector while traveling through a given medium. In 

this case, the medium is plasma, and the dispersion relation for high-frequency electromagnetic 

waves can be expressed as follows:2 

 

 
2 2 2 2

p ,c k    (1) 

 

where  is the wave frequency, c is the speed of light, k is the wave number, and p is the 

plasma frequency defined by 
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where ne is the electron density, ec is the elementary charge, me is the mass of an electron, and 0 

is the permittivity of free space. The plasma frequency describes the rate of electron oscillations 

in the plasma. 

 An electron density gradient in the plasma 

will cause a ray to refract toward a region of lower 

electron density. The critical density [see Eq. (6)] 

is the density at which the laser light frequency is 

equal to the plasma frequency; when this happens, 

the k value in the dispersion equation must equal 

zero. Therefore, a ray cannot freely propagate in a 

region with a density above the critical density. 

 In standard ray tracing, a laser beam is 

statistically represented by a finite bundle of rays, 

as shown in Fig. 1. Each ray is traced individually and propagates according to the following 

differential equations:3 
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FIG. 1. A bundle of rays propagating 

through a plasma. Note that the rays 

refract toward a region of lower electron 

density (shown in blue). Fewer rays have 

been traced for clarity; for best results, 

hundreds or thousands of rays must be 

used. 
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where x is the position vector, t is time, and vg is the group velocity vector, defined by 
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where  is the angular frequency, k is the wave number vector, and nc is the critical density, 

defined by 
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Note that, by Eq. (1), the phase velocity /k is 

greater than the speed of light. By Eq. (5), 

however, the group velocity, which is the rate 

at which energy propagates, is less than c. 

 Because these equations have no 

closed analytic solution for arbitrary electron 

density, one must numerically evolve each ray 

in time using small discrete steps, while 

updating the position and velocity vectors at 

each time step. An example of tracing ten rays 

is shown in Fig. 2. The smaller the time step, 

the more accurate the solution.  

FIG. 2. The numerical trajectories of ten rays 

traced in a plasma with a linear density 

gradient. Note that the rays turn at the critical 

density and follow parabolic paths, as 

expected by theory. 
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 As the rays travel through the plasma, they deposit energy in the plasma. The amount of 

energy deposited by a ray in an interval dt is given by the following relation:4 
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where Einc is the energy of the ray incident on the interval, dt is the time step, and vei is the 

electron–ion collision rate given by 
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where  is the plasma resistivity.  

 We deposit energy using a first-order linear 

interpolation method, which is shown in Fig. 3. For each 

time step, we determine the location of the ray and find its 

nearest node. We calculate the distances dl and dm as 

shown in the figure, therefore dividing the cell into four 

quadrants. We split the energy deposited into the four 

surrounding cells based on the fractional area of each 

quadrant. This is more effective than zeroth-order interpolation, the so-called nearest neighbor 

method, because a ray that barely passes through a cell will not deposit all of its energy in that 

cell. 

FIG. 3. First-order interpolation 

method for one grid cell. 
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 Figure 4 shows results from this ray-tracing code when applied to an OMEGA capsule 

electron density distribution, as calculated by LILAC. The plot in Fig. 4(a) is from the ray-tracing 

code developed in this project; the plot in Fig. 4(b) is from a different ray-tracing code in use at 

LLE that has already been validated. The density profiles are the same but represented with 

different color maps. The ray trajectories match very closely.  

 

III. CROSS-BEAM ENERGY TRANSFER 

Figure 5 shows two laser beams overlapping without any mutual interaction or energy 

deposition in the plasma. The electric-field contours are expressed in terms of a0, a 

dimensionless quantity defined by  

 

  0 c e ,a e E m c  (9) 

 

FIG. 4. (a) Results from the ray-tracing code developed in this work and (b) another ray-tracing 

code in use at LLE, both using an OMEGA capsule electron density profile. Notice the close 

similarities. 
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where E is the electric field. In this figure, the 

chosen width of the laser beam is arbitrary. To 

obtain the electric field on the grid, we let each 

ray carry electric field information, which is 

then “deposited” (using the first-order linear 

interpolation method shown in Fig. 3) in each 

cell along its trajectory.  

 In reality, however, many complex 

effects occur when laser beams overlap with 

each other within a plasma. One of these effects 

is cross-beam energy transfer (CBET), which is 

driven by ion-acoustic waves, one of many collective modes that a plasma can exhibit. The 

plasma flow velocity causes a Doppler shift; therefore, two interacting beams will have slightly 

different frequencies relative to each other. Beat waves will result, and the acoustic waves will 

act as a grating to divert energy from one beam to another. Generally speaking, the beam 

traveling more “against” the bulk plasma flow will lose energy. In OMEGA implosions, the 

plasma flows radially outward and the rays are shot inward, so incoming rays will lose energy to 

outgoing rays, significantly decreasing energy deposition in the desired areas around the capsule. 

CBET may be responsible for up to a 50% decrease in hydrodynamic efficiency in OMEGA 

implosions.5 

 A simulation program was developed that models CBET for the simple case of two 

intersecting beams. To properly model CBET, a five-step process was used: (1) obtain electric 

fields at each point on the grid; (2) map the ray trajectories to the grid; (3) find all the 

FIG. 5. Electric field of two intersecting 

laser beams that do not transfer energy 

between each other. One beam travels from 

bottom to top, and the other beam travels 

from left to right. 
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interactions (i.e., where the rays intersect); (4) calculate the gain coefficients for the interactions; 

and (5) solve by iteration. 

 As mentioned, we have already determined the electric field on the grid. Now let us take 

a closer look at the following steps: 

 

A. Mapping ray trajectories and finding interactions 

 The determination of ray intersections requires finding and saving the locations where 

individual rays cross the half-grid, as shown in Fig. 6, which has a reduced grid size of 10  10 

for clarity. 

FIG. 6. Keeping track of ray intersections with the grid. The solid lines define the normal grid, 

and the dashed lines define the half-grid. The half-grid has been used because it allows a node 

(the place where two normal grid lines intersect; also, where we store electric field and electron 

density information) to be at the center of each cell. The rays are the white lines and their 

intersections with the half-grid are the black dots. 
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 For each ray, we store an array of the ray’s coordinates along its trajectory. At each time 

step, we check if the ray has crossed a grid line. For example, if there is a grid line at x = 0.100 

cm and the ray’s x coordinate changes from 0.098 to 0.101, then the ray would have crossed a 

grid line. We interpolate to find the coordinates of the crossing and save them as well; these 

coordinates will be used later in the calculation of energy transfer. A multidimensional array 

keeps track of the cells passed through by each ray.  

 Two rays are said to intersect if they both pass through the same grid cell, even if they do 

not physically intersect. For each intersection between rays from different beams, we calculate 

the amount of energy transfer, which is explained below.  

 

B. Calculating gain coefficients for interactions and updating energies 

For each interaction, we calculate the gain coefficient from the following formula:6 
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where s
ijklL  is the laser absorption length (ij refers to the ith ray at the jth location on its path, and 

likewise for kl), e is the elementary charge, Ek0 is the initial electric field of the pump ray, me is 

the electron mass, c is the speed of light, ij and kl are the frequencies of the seed beam and the 

pump beam, respectively, kB is the Boltzmann constant, Te is the electron temperature, Ti is the 

ion temperature, Z is the ionization state, ne is the electron density, nc is the critical density, via is 

the ion-acoustic wave energy damping rate, kij and kkl are the seed and pump ray vectors, 

respectively, u is the plasma flow velocity, and s is the acoustic frequency given by 

 

 s= kiaw cs, (13) 

 

where cs is the ion-acoustic wave speed given by 
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where mi is the ion mass, and 

 

 iaw .kl ijk  k k  (15) 

 

 We have access to the electric field value in the current cell because we saved it to the 

grid at an earlier step. The vectors kij and kkl can be deduced simply from the coordinates of 

each ray’s intersection with the two grid lines of the cell, as shown in Fig. 7. 
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 Finally, the energy transfer is determined by the following formula:6 

 

 

, +1
s

exp ,
ij kl

i j ij ijkl
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where Wij is the seed ray’s energy 

(normalized to the incident energy) in the 

current cell, Wi,j+1 is the seed ray’s energy 

in the next cell, sij is the distance traveled 

by the seed ray in the current cell, Wkl is 

the pump ray’s energy in the current cell, 

s
ijklL  is the gain coefficient for the 

interaction in the current cell, and 

e c1 n n   . 

 Once we determine the energy 

transfer for a single intersection, we must 

propagate the energy change to all downstream cells. After doing this for all possible ray 

intersections, we iterate the process if necessary, a step that is discussed in more detail below. In 

the case where a ray from one beam intersects multiple rays from another beam in a given cell, 

we calculate the energy transfer using the vector of only one of the crossing rays while using the 

total intensity of all the crossing rays. 

 

FIG. 7. The kij and kkl vectors. One grid cell is 

shown. 
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C. Results 

 After writing this program, we compared our results to those from a CBET program 

developed by R. K. Follett6 that uses the same equations [Eqs. (10)–(12)] but different numerical 

algorithms. The comparison is shown below in Fig. 8.  

 The ray-tracing code developed matches Follett’s CBET results very closely; in addition, 

the calculations are performed 10 faster. At higher intensities, however, our results differ 

significantly from Follett’s. This is most likely because we have not yet implemented the final 

step in the CBET process which is solving by iteration. Each energy update affects CBET 

interactions downstream, so it is critical that we calculate the interactions in the correct order that 

would occur physically. This is not always possible, however, especially in more-complicated 

cases, so we perform iteration; that is, we recalculate all the CBET interactions with our newly 

modified values and repeat this until the change in values becomes very small. Essentially, we 

get closer and closer to the true answer. Future work will implement iteration into this process. 

 

IV. COMPLEX RAY TRACING 

 Complex ray tracing, as described by Harvey et al.,7 is a powerful alternative to standard 

ray tracing. In complex ray tracing, a beam is represented by only five rays (in 2-D): a chief ray 

(a.k.a., base ray), two waist rays, and two divergence rays, as shown in Fig. 9. 

 The electric field or intensity at any point can be calculated by finding the distance 

between the point and three of the rays along a line perpendicular to the chief ray, as shown in 

Fig. 10.8 The method therefore assumes a functional relation between the rays themselves, 

whereas all rays are independent in standard ray tracing. To find the (normalized) electric field at  
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FIG. 8. [(a),(b)] Comparison of Follett’s code with the developed code: (a) Our results and (b) 

Follett’s results. Energy from the upward-traveling beam has been transferred to the rightward-

traveling beam (cf., Fig. 5). [(c),(d)] Our results are shown as solid lines and Follett’s results 

are shown as dotted lines. The blue, green, and red lines show the electric-field profiles taken 

at the minimum z (or x) value, midpoint value, and maximum value, respectively.  
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P0, we simply calculate the distances from P3 to P0, P1, and P2 along the orange line (which we 

denote as p0, p1, and p2, respectively) and then use the following formula:8  
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where 

 

 2 2
4 1 2 .p p p   (18) 

 

The intensity can then be calculated by squaring the electric field. 

 

A. Gaussian Beams in the Diffraction Limit 

 Consider the case where the power distribution of a laser can be described using the 

Gaussian function. Such a beam remains Gaussian throughout its path, and the Gaussian function 

FIG. 9. The rays needed for complex ray 

tracing. The solid blue line is the 

transverse profile of the beam intensity. 

 

FIG. 10. Determining the intensity at an 

arbitrary point. Adapted from [8]. 
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solves the wave equation, making it an ideal candidate for modeling purposes. The transverse 

profile of the intensity of a Gaussian beam can be described as follows, using r–z coordinate 

axes:7 
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I0 is the initial beam intensity and w0 is the initial beam waist, and 
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where zR is the Rayleigh range defined by 
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The intensity function is plotted in Fig. 11(a).  
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 To model a Gaussian beam via standard ray tracing, we must statistically weight the 

powers of each ray, with the rays closest to the center receiving the highest powers, in the case 

that the rays are spaced equally apart (however, standard ray tracing does not properly model the 

behavior near the focal plane, as it does not include diffraction). The power distribution is 

Gaussian and is given by the following, where 𝑥 is the ray position relative to the beam center:  

 

 

2
2

exp .

n

x
P



         
    

 (23) 

 

 A standard Gaussian beam has n = 2, whereas the OMEGA laser uses n = 4 to 5, 

a super-Gaussian.  

FIG. 11. Analytic formula versus complex ray tracing for a diffraction-limited Gaussian beam 

in vacuum. The white lines are three of the complex rays (chief, waist, and divergence) and 

the red lines denote the beam waist. 
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 Equations (17) and (18) were used to create a complex ray-tracing program. The test case 

of a Gaussian beam in vacuum is shown in Fig. 11; this plot was easy to create because all the 

perpendicular lines were vertical and lined up with the grid.  

 When a beam refracts (such as in plasma), however, or its propagation direction does not 

line up with the grid axes, then a different method must be used. Two methods were attempted, 

and the results are discussed below. 

 

B. Cell-by-Cell Approach 

 In this method of complex ray 

tracing, we trace all five rays at the 

beginning and then go cell by cell 

along the trajectories to calculate the 

intensity for all the cells. To do this, 

we must trace the perpendiculars from 

each cell (P0) to the chief ray so that 

we may determine distances along this 

perpendicular. Figure 12 shows the 

perpendiculars drawn in red. Note that 

in this figure, P0 is taken to be at the 

corner of each cell, rather than the 

center; as the number of cells increases, this discrepancy is negligible.  

 The following method is used to find the perpendiculars. Our first task is to determine the 

point on the chief ray P3 that defines the perpendicular line. To do this, we move along the time 

FIG. 12. Perpendicular lines (shown in red) drawn 

from each cell to the chief ray. The yellow lines 

show the five complex rays; at this scale, the chief 

ray and divergent rays are extremely close together. 

The colors of the density profile have been removed 

for clarity. 
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steps of the chief ray and for each point P on the chief ray’s trajectory, we calculate the chief 

ray’s directional vector k as well as the vector connecting P0 to P. We take the dot product of 

these two vectors and save it to compare with the next point P. Two vectors are perpendicular if 

their dot product is zero; since the two vectors in question are never truly perpendicular, we wish 

to find the P that makes them closest to perpendicular; that is, the P that produces a dot product 

closest to zero. We stop the search when the dot product changes from negative to positive or 

vice versa (i.e., “crosses” zero) and then choose the one with the smaller absolute value.  

 While this method is very accurate, it is very slow when the number of cells becomes 

large. In addition, it requires us to move along each of the rays for each cell calculation. To fix 

these issues, we chose a new approach. 

 

C. Update Outward Along the Chief Ray 

 This improved algorithm starts by tracing the waist and divergence rays; then, while the 

chief ray is traced, we update the intensities outward from the chief ray and use the energy 

deposition method again to “deposit” intensity. For each point on the chief ray, we find the 

equation of the line perpendicular to the chief ray’s k vector and determine where it intersects the 

waist and divergence rays. To do this, we find the waist/divergence ray’s k vector at each time, 

thereby creating another linear equation (the equation of the line tangent to the ray’s trajectory), 

which we solve in tandem with the equation of the line perpendicular to the chief ray. If the 

solution to this system of equations is located on the waist/divergence ray, we have found the 

correct point of intersection and simply determine its distance from the chief ray. To speed up 

the process, we start with the point at the same time step as the current chief ray’s time step and 

then move outward.  
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 Once the distances p1 and p2 are determined, we return to the chief ray and move 

outward along the perpendicular line. At each point, we calculate the intensity using Eq. (17), 

and then deposit that intensity using the energy deposition algorithm from above. Therefore, 

each cell may receive multiple intensity contributions which are summed at the end. For the case 

of a Gaussian beam refracting in plasma, as shown in Fig. 13, this method worked quickly and 

accurately. It ran 4 faster than the standard ray-tracing method and produced a smoother plot, 

which is also important for simulation accuracy. If we were to make a comparison based on the 

quality of the solution, we would have to use many more rays in the standard case, so the 

difference in speed would be even greater.   

 With these tools in hand, we attempted to reproduce a famous interference pattern in 

order to demonstrate the advanced capability of complex ray tracing. 

 

FIG. 13. (a) Standard ray tracing versus (b) complex ray tracing. 
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D. The Double-Slit Experiment 

 In 1801, Thomas Young performed the first double-slit experiment, in which he passed 

light through two small apertures, producing interference patterns on the viewing board. This 

showed that light has both particle and wave characteristics. Standard ray tracing cannot 

reproduce this phenomenon because it does not account for the wave nature of light and 

therefore does not include its phase. 

 With complex ray tracing, it is possible to include the phase of a laser beam by adding a 

phase term to Eq. (17):2 
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 We modeled Young’s experiment by shooting two point sources spaced a small distance 

apart. Each point source was composed of 17 complex “beamlets,” each of which was shot in a 

different direction to span a given angle. We time-averaged the intensities over a period to obtain 

an accurate cycle-averaged plot, shown in Fig. 14. 
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V. CONCLUSION 

 In this work, several programs were developed for implementation into the 3-D hybrid-

fluid kinetic code TriForce. These programs include a standard ray-tracing program that traces 

bundles of rays to represent beams and can determine energy deposition, intensity, and electric 

field; a CBET feature that accurately models energy transfer between two beams in plasma; and 

a complex ray-tracing program that can perform the same tasks as standard ray tracing (but 

faster) as well as model interference. Attention was paid to speed and efficiency in the 

algorithms since they must run in TriForce without slowing it down. TriForce will be used in the 

future to design and interpret ICF experiments and other high-energy-density physics research 

experiments. 

 

 

FIG. 14. Interference pattern for Young’s double-slit experiment with complex ray tracing. (a) 

The point sources contain no phase information; therefore, there is no interference. (b) The 

inclusion of phase information makes the interference clearly visible. (c) The intensity profile 

taken at the maximum z value. The beam waist is 0.025 cm and the wavelength is 0.01 cm. 
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