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1. Abstract 

High-intensity flash lamps are used to excite laser glass amplifiers on the OMEGA and 

OMEGA EP lasers. These flash lamps are driven by high-energy current pulses created by pulse-

forming networks in power-conditioning units (PCUs). The electrical current waveforms directly 

correlate to the laser output energy and hence can adversely affect the beamline gain. Analyzing 

and correlating flash-lamp current data can highlight trends that can help locate failures, predict 

potential failures, and provide information for preventive maintenance. In this work, Python 

programs were developed to analyze PCU diagnostic current data. The first program – a 

diagnostic information tool – calculates summary metrics from the current data stored for each 

laser system shot in the power conditioning database and compiles them into Excel files. With 

the files created by this program, the second program – a PCU health program – can display 

useful information for each PCU on a per-shot basis and summary metric trends over time. 

2. Introduction 

Currently, maintenance on the flash-lamp systems of the OMEGA and the OMEGA EP 

lasers is done in reaction to part failures. This approach is inefficient and requires extensive 

labor. This also results in failed laser shots and downtime on the laser. Developing software tools 

that use available data to predict part failures or determine when parts should be serviced is 

valuable because such software will decrease the downtime of the laser by indicating when 

maintenance for the flash-lamp systems is needed. Although most of the data analysis for this 

project was devoted to the OMEGA EP (extended performance) laser system, similar analysis 

routines can be easily applied to the OMEGA laser system. 
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The OMEGA EP laser system produces light pulses of kilojoule energies at picosecond 

widths, resulting in ultrahigh petawatt (10
15

 W) powers. The Omega EP beam lines consist of 

neodymium-doped glass excited by xenon flash lamps. The power conditioning system provides 

the high-energy pulses required to power the flash lamps. This involves converting ac power to 

high voltage dc, storing the energy in charge-storage capacitor banks, and delivering precisely 

timed high-current pulses to the flash lamps. The amplified laser beams can be delivered to 

targets within the OMEGA target chamber as well as an independent chamber within the 

OMEGA EP target area.
1
 Each beamline includes a main amplifier containing 11 laser disk 

modules (shown in Figure 1) and a booster amplifier containing 7 laser disk modules. Since each 

laser disk module requires one power-conditioning unit (PCU), each beamline requires 18  

PCUs, each of which powers the 36 flash lamps required for one laser disk module. 

 

Figure 1: OMEGA EP main-amplifier configuration.  

 

Figure 2 depicts a block diagram of a PCU, including the PCU control module (PCM), 

the waveform digitizer module (WDM), and charging, trigger, and switching circuits. There are 

two trigger generator modules: one for the pre–ionization and lamp check (PILC) and another to 

trigger the main pulse. Each PCU includes 12 pulse-forming networks (PFNs) that create the 

electrical pulse shape used to drive the flash lamps. 
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Figure 2: Power-conditioning unit (PCU) block diagram. Red represents power transfer, while 

grey represents control signals. ac power from the power grid enters the PCU and is converted 

to high voltage dc power, which charges the capacitors that provide the power for the pulse-

forming networks (PFNs) and the trigger circuits used to initiate the pulses. A short time after 

a timing signal is received from the power control executive, the trigger circuits initiate the 

PILC (pre-ionization and lamp check) pulse, and then shortly thereafter the main pulse. The 

current through the PFNs is recorded by current monitors and sent to the Waveform Digitizer 

Module (WDM) for later analysis.  

 

Once the PFNs are charged and a shot is about to occur, the power conditioning executive 

sends a timing signal to each PCU’s PCM to synchronize their firings. Once the timing signal is 

received, the pre-ionization and lamp check (PILC) circuits discharge. This low intensity pulse 

determines if there have been any lamp failures and reduces the mechanical shock of the main 

pulse and x ray production from the rapid ionization of xenon. Approximately 250 microseconds 

after the PILC trigger is received, the main PFNs discharge as well. The primary purpose of the 

WDM is to digitize and store PFN current waveforms during the shot sequence (Figure 3). The 

WDM records the current for each of 15 assigned channels twice per microsecond. The 16
th

 

(WDM) 
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channel is reserved as a space for future development. After this, the residual stored energy is 

discharged through dump circuits, and the current data recorded by the WDM is sent to the 

power conditioning executive control program and exported to an Excel file. The data quantity 

per shot per PCU is very large and stored in a spreadsheet format. These large Excel 

spreadsheets typically comprise 16 columns, one for each of the 12 PFNs, the ground buss bar, 

and several other diagnostic signals. Each file has 6000 rows, one for each 500 ns spaced sample. 

The magnitude of these spreadsheets makes analyzing the data by hand an insurmountable task. 

The current work involved the development of two computer programs. The first, a 

diagnostic information program, calculates useful summary metrics from the raw data recorded 

in the database. The second, a PCU health program, displays these metrics in a format that can be 

used to determine which PCUs or PFNs need servicing. 

 

Figure 3: Waveform Digitizer Module (WDM) block diagram. The WDM uses analog-to-

digital converters to sample the current from the 12 PFNs and several other parts in the PCU. 

This information is sent through digital signal processing (DSP) and travels to the PCM 

through a fiber interface. After each shot, the PCU control module (PCM) communicates the 

information with the power conditioning executive, and later stores the data acquired in Excel 

files. 
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3. Program Development 

Python was selected as the primary programming language for its flexible packages and 

strong data analysis capabilities. The main packages used for data analysis were Pandas, NumPy, 

and Matplotlib. Pandas is a well-rounded data manipulation package, and interfaces well with the 

other two packages used for data analysis. NumPy supports large, multidimensional arrays and 

matrices, and hosts a suite of high-level mathematical functions to operate on these structures. 

Matplotlib produces quality graphs that are easily embedded in the graphical user interface 

(GUI). Tkinter was selected for its simplicity and functionality and was used to make the GUIs 

for the two programs. 

 

4. Data Analysis 

Every time a shot is performed on OMEGA or OMEGA EP, the records of all the 

gathered data are stored in LLE’s databases which can then be accessed for analysis. The Excel 

files produced from the WDMs’ data are stored on the LLE network drive Redwood. While these 

files are typically 16 columns by 6000 rows, their length depends on whether the shot was 

successful or not. Lamp failures or other circuit components breaking can result in shortened 

data recording or atypical waveforms. Some shots are PILC only and are used for diagnostics of 

the systems. These shots also result in atypical pulse shapes. Such shots are ignored by the 

diagnostic information program. Figure 4 is a plot produced by the PCU health program for a 

successful shot, showing a typical PFN current waveform with definitions of the summary 

metrics (the time from the trigger firing to the peak current, the magnitude of the peak current, 

and the width of the peak when it is at one-third of its maximum current). 
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Figure 4: Typical shot waveform. The small green peak is the PILC (pre-ionization and lamp 

check) pulse, while the large blue one is the main pulse. The two dotted black lines show the 

times of the triggers for the PILC and the main pulse, while the two dotted red lines show the 

time of the peaks for each pulse. The time to peak is the distance between these two values for 

each pulse. The peak current is the highest value for each pulse. The solid horizontal purple 

lines show the 1/3 width measurement, which is the width of the curve at 1/3 of its peak 

current. 

 

5. Programs developed 

When launched, the diagnostic information program GUI prompts the user to select the 

PCUs to calculate summary metrics for. The diagnostic information program then retrieves the 

requested data from the Redwood database and calculates the summary metrics for every 

successful shot in that PCU. The calculated metrics are stored in an Excel file, which contains 

the peak current, time from the trigger to the peak, and width of the curve at a third of its peak 

current for each PFN. Failed shots are left out of the final output and are reported in an error log 

text file. 
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 When launched, the PCU health program prompts the user to input the Redwood folder 

(for single-shot information), and the folder containing the files produced by the diagnostic 

information program (for long-term trends). The single-shot metrics page allows the user to see 

waveforms and summary metrics for specific shots, and to see how each PFN performed 

compared to the PCU’s average (Figure 5). This comparison is useful because the most 

underperforming PFN is likely the one that needs servicing. While the single-shot page can 

graph failed or PILC-only shots as well, it does not enable metrics to be calculated for those 

shots.  

 

Figure 5: Single shot metrics. The user inputs the PCU, shot number, and PFN number, and the 

program graphs the waveform. For the selected shot, it also displays each PFN’s percent deviation from 

the PCU’s average peak current. 
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 The PCU health program also features long-term trend plotting to show how pulse 

metrics are changing over time for PCUs or PFNs. As shown in Figure 6, using the summary 

metrics calculated by the diagnostic information program, the GUI can display trends in any of 

the three summary metrics for either specific PFNs or PCU averages. This information can be 

plotted over any date range or shot number range the user selects and can be used to give a good 

overview of how PFN health is changing over time. This can be used to help technicians choose 

when to perform maintenance on PCUs and trends can be studied to mitigate future degradation.  

 

 

Figure 6: Long-term trend panel. The graph is interactive, and can be plotted for different PFNs, 

PCUs, date ranges, and statistics. 

 

 

 

(A
) 



10 

 

6. Conclusion 

Python programs were developed that analyze PCU diagnostic data to help technicians 

determine when preventative maintenance is required. Using the current data stored after each 

shot in the power conditioning database, the diagnostic information program calculates summary 

metrics and compiles them into Excel files. The PCU health program reads these files and 

displays useful information on a per-shot basis and summary metric trends for multiple shots 

over time. Its easy-to-use GUI can help technicians decide which PFNs need to be serviced. 

Future development could expand on this functionality by allowing the program to automatically 

predict when critical failures could occur. With more diagnostic information and further 

development, such programs could replace the current reactive maintenance approach with a 

predictive preventative maintenance approach that would greatly increase the operational 

efficiency of the laser system.  
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