Creating an Open Source LLE-based Ethernet to LonTalk adapter

Jeremy Weed
Victor Senior High School

LLE Advisors: Dave Hassett, Robert Peck, Dustin Axman

Laboratory for Laser Energetics
University of Rochester
Summer High School Research Program 2014

November 2014

1. Abstract

The OMEGA Laser System is currently controlled by a LonWorks distributed control
system that includes over 1,600 Neuron 3150 chips running at 10 MHz. Communicating on more
than 20 twisted pair channels, the Neurons control over 3,000 A/D channels, 2,000 DC servo
motors and 4,000 digital I/O channels. All communications entering or exiting the network travel
through LENA servers across an RS-232 serial bus to a Serial to LonTalk adapter and onto the
LonTalk network. Creating a direct Ethernet to LonTalk adapter would allow for the retirement
of the LENA computers used, provide physical connections to the LonTalk network, allow the
servers to reside on virtual machines, and minimize any errors caused by high traffic volumes
through the current RS-232 interface. Using a Netburner board and a Neuron card, a
proof-of-concept Ethernet to LonTalk adapter was attempted. Using Neuron-to-Neuron network
variables, data communication from the current firmware to an updated system was
demonstrated. However, SPI data communication between the Netburner and Neuron was not
achieved due to hardware limitations, so different protocols will be explored.
2. Introduction

The OMEGA Laser System currently operates over 10,000 control and acquisition points,
consisting of over 3,000 A/D Channels, 2,000 DC servo motors and 4,000 digital I/O channels.
A LonWorks distributed control system operates these points, and allows them to communicate
across the network. The system consists of more than 1,600 Neuron 3150 chips, running at 10
MHz and communicating on over 20 twisted pair channels. To enter the LonWorks control

network, data must travel through LENA servers and then across an RS-232 serial bus to a Serial

to LonTalk adapter, which then propagates the data across the LonWorks network, as shown in

figure 1.
!]
‘ RS.232
. ——
Ethertiet —— .
Client Software LENA Server ¢ Serial/LonTalk
Adapter
20 Channels —a Lon Channels

Meuron Network
Mgron < >

T

Typical channel has roughly 100
Meurons

Fig 1. Diagram of current LonTalk network system.

Each Neuron on the network, commonly referred to as a node, communicates to other
nodes using the LonTalk communication protocol. The LonTalk protocol was designed for
building automation and industrial control, and it allows the various nodes on the network to
communicate in a decentralized fashion. Neuron chips can be programmed in Neuron C, an
event-driven ANSI C based language that allows automated variable communication and
synchronization using the LonTalk protocol. Neuron C allows for multiple modes of
communication between nodes, anywhere from explicitly created and propagated messages to
autonomously propagated network variables.

The current LonTalk control system on the OMEGA Laser has hardware limitations that
can lead to data bottlenecks. To pass from the LonTalk system to external clients, the data must

pass through one of twenty RS-232 serial connections. The RS-232 serial bus on the system can

currently transmit data at about 38,400 bits per second, much slower than the over 100 million
bits per second transfer rate possible on current Ethernet systems. Data from the system and
commands going to the control cards can become “backed up” at the RS-232 serial bus, causing
data to be either lost or delayed.
3. Setup

The original proposed solution to the data bottlenecks in the LonTalk system involved the
use of a Netburner web server to create the messages that would then be propagated across the
LonTalk network, shown in figure 2. This would eliminate the existing bottleneck in the system,
but would require all data going across the network to be translated by Netburner to a form that
the Neuron cards could understand, and would require that the Netburner translate all data
coming out of the network. There is currently no software written for a Netburner to interpret
LonTalk communication, and with the multitude of ways the Neuron cards communicate over

the LonTalk network, extensive work would be necessary to create a working prototype.

Explicitly Created
Ethernet LonTalk Messages
Netburner Web Server “

N
< Meuron MNetwork > Meuron

Fig 2. Diagram of Original Proposed Solution

As aresult of these challenges, other solutions were explored. The use of a Neuron card
to translate messages to and from the LonTalk network was proposed. The Neuron C language,
used to program the Neuron chips, includes implicit handling of all communication across the
LonTalk network and would allow for simple and easy translation between the Ethernet and
LonTalk networks. Neuron cards cannot interpret data from the Ethernet network, so it was
proposed that a Netburner web server be used to collect and send data over Ethernet. This setup
requires the data going between the two networks be transferred between the Netburner and
Neuron card, so a data communication protocol had to be chosen to facilitate the transmission.
SPI, or serial peripheral interface, was chosen as the protocol for transmission between the
Neuron and Netburner. SPI was chosen because both devices support the protocol, and SPI data
transfer is relatively easy to implement in a short amount of time. The final testing setup can

seen in figure 3.

Ethernet SP|
Netburner Web Server ({u— Meuran

< Meuran Metwork > Meurans

Fig 3. Diagram of Final Testing Setup

4. Data Communication

There are multiple ways to transmit information over the LonTalk network. Two
different methods were explored, explicit messages and network variables. Both forms of
communication require a form of binding between the recipient and the sender. Explicit
messages can be bound in code, but it is recommended that network variables be bound with an
external tool, such as the LonMaker Integration Tool." For this reason, explicit messages were
explored first for LonTalk data communication. Although easier to implement, explicit messages
are not autonomously propagated like network variables and are more resource intensive.

Explicit messages were sent between two different Neuron cards in a test setup. Before
sending the message, the destination must be bound. First, the type of message must be defined
(i.e., is it domain-wide or directed for one specific node) and then the destination for the message
is defined. For subnet-node type addressing, which was used in this demonstration, the domain,
subnet, and node location of the message recipient must be defined. An example of a
subnet-node addressed message can be found in figure 4. Further exploration of explicit
messages in Neuron C showed that messages could request responses, and respond directly to
messages received without defining a recipient explicitly. Neuron C also provides the ability to
check whether a message has been received. Both of these abilities were successfully

demonstrated.

msg_out.tag = test_message;

msg_out.data[@] = o,
msg_out.dest_addr.snode.type = SUBNET_NODE;
msg_out.dest_addr.snode.domain = 9;
msg_out.dest_addr.snode.subnet
msg_out.dest_addr.snode.node = 3;

1}
~
“e

Fig 4. Example of Subnet-Node Type Addressing in Neuron. This example shows a message called test_message
that is destined for a Neuron Card located at domain 0, subnet 1, and node 3, containing the value 0. The structure
definitions and typedefs can be found in the Neuron C header files ADDRDEFS.H and MSG_ADDR.H.

After exploring explicit messages, Neuron C network variables were investigated. While
faster and more powerful than explicit messaging, network variables require more setup than
messages. It is recommended that network variables be bound with a separate tool, so as to leave
the specific addresses and locations of other network variables ambiguous to the software on a
Neuron chip. This tool was not available, so an operation called “self-binding” had to be
performed on the variables. Shown in figure 5, binding a network variable requires two things:
an address and a selector. Addresses work similarly to explicit messages, with multiple types
defining where and to how many network variables the variable is synced with. Unlike explicit
messages, multiple network variables can exist on one Neuron at a time. The selector allows
network variables to specify the specific variable they are bound to, allowing multiple variables

to coexist on one Neuron.

Network Output Variable

Address Data Selector
A
¥ Y L
Device Input Selector
Address

Network Input Variable

Fig 5. Example of Properly Configured Network Variable. In order for two network variables to communicate, two
criteria must be met: that the address of the output variable matches that of the device with the input variable, and
that their selector IDs match. If these two requirements are met, automatic data transmission can take place.

There are multiple types of network variables, and all require a slightly different binding
process. At their most basic, there are two types of network variables: input and output. To bind
an output variable to an input, the selector value for each variable must be the same, they must be
of the same type, and the address of the output variable must match the address of the device that
contains the input variable. Once these criteria are met, the value of the output variable can be
changed, and the Neuron will automatically update the input variable on the other chip. Other
types of network variables exist, such as propagated, which must be explicitly told to update, and
polled, where the roles of the output and input variables are reversed, and the input variable must
ask for the value of the output variable. On the test setup, basic, polled, and propagated network
variable communication was demonstrated. Communication with a Neuron running firmware

currently deployed on the OMEGA Laser system using network variables was also

demonstrated, which is not possible with explicit messages. Disregarding the initial bind,
network variables were both faster and easier to implement than explicit messages, and were
chosen as the communication protocol for this project.

For communication from Ethernet to the Neuron card, a Netburner web server?> was used.
A Netburner was chosen because it offered an easy and simple web interface and data output. A
web interface was first created and tested on the Netburner. It allowed for simple, byte-sized
data transfer from the web to the Netburner. The Neuron card and the Netburner were then
connected to transmit data over an SPI bus. SPI, or Serial Peripheral Interface, was designed for
simple, serial data transmission between one master and many slaves. SPI uses four wires, one
to signal that a data transmission is occurring, two for data transmission, and one, called the
clock, to specify the rate at which data will be transferred. Unfortunately, data communication
between the Neuron and Netburner over SPI was not possible. The first issue that arose was that
the Neuron operated with a 5V signal as high, and the Netburner interpreted 3V as high. This
issue was resolved using level shifters integrated into the Netburner board, to allow it to
communicate with 5V as high. After this was fixed, it was discovered that the lowest possible
clock speed for SPI data communication for the Netburner was multiple magnitudes faster than
the fastest clock speed available on the Neuron chip, and during the data transfer, both boards
wished to be masters. To resolve these issues, bit-banging code, or code that explicitly created
and interpreted SPI signals, was written for the Netburner web server. Unfortunately, this code
was not successful in solving the issue in communication between the two devices. In the future,
the SPI bus could easily be replaced with another communication protocol that is compatible

with both the Netburner and Neuron.

10

5. Conclusion

To solve the current issues with the OMEGA Laser LonTalk system, an LLE-based
Ethernet to LonTalk adapter was explored. Research into various methods of LonTalk
communication protocols showed that network variables show the most promise for a future
adapter. Several proof-of-concept ideas were also demonstrated, including integration with the
current firmware on the laser. Due to incompatible hardware, a full Ethernet to LonTalk adapter
was not possible, but with a few small changes, a proof-of-concept adapter could now be easily
created.
Acknowledgements

I would like to thank Dr. Craxton for giving me this opportunity to participate in the
internship program. I would also like to thank Dustin Axman for providing me with guidance
and debugging help with the early stages of this project, Dave Hassett for helping me to
understand the LonTalk system at the facility and providing me with the resources I needed to
work on my project, and Robert Peck for overseeing my project and guiding me throughout the
summer. Lastly, [would like to thank all of the teachers, mentors, and friends who have inspired
me over the years, and provided me with the knowledge I needed to work on this project.
6. References

1. "Neuron C Programmer's Guide."

"http://www.echelon.com/assets/blte1a7d6a3b37598bf/078-0002-02H_Neuron_C_Progra

mmers_Guide.pdf "1990. PDF file.
2. "Netburner MOD5441X Datasheet.""http://www.netburner.com/mod54415/255-1-7/file "

File last modified on 25 July 2014. PDF file.

http://www.echelon.com/assets/blte1a7d6a3b37598bf/078-0002-02H_Neuron_C_Programmers_Guide.pdf
http://www.echelon.com/assets/blte1a7d6a3b37598bf/078-0002-02H_Neuron_C_Programmers_Guide.pdf
http://www.netburner.com/mod54415/255-1-7/file

