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Abstract 

  

Opacity quantifies how strongly radiation is absorbed while passing through a material. 

Hydrocodes at LLE and elsewhere use opacity values averaged over large intervals of the 

radiation spectrum to calculate radiation energy diffusion transport within plasmas. This work 

compares two-opacity modeling, where Planck averages are used for emission and absorption 

and Rosseland averages are used for transport, with the treatment in LLE hydrocodes where a 

single opacity (typically the Planck average) is used. Planck and Rosseland interval-averaged 

opacities for Si were obtained by running the Prism detailed atomic model PROPACEOS. An 

analytic solution was then derived for the radiation diffusion equation in a slab-source problem 

in which separate opacities were used for absorption and transport.  Results for the emitted 

spectral flux were compared for the preferred two-opacity case and for the case where a single, 

Planck opacity was used. Even when the Planck and Rosseland averages differed, the differences 

in flux were minimal except for spectral intervals where the optical depth was approximately 1. 
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1.   Introduction 

  

At the University of Rochester’s Laboratory for Laser Energetics (LLE) and the National 

Ignition Facility (NIF),1 research is done on laser fusion where laser energy is used to compress a 

capsule, bringing its fuel contents to thermonuclear fusion conditions.2 There are two main types 

of laser fusion: direct drive and indirect drive. The Laboratory for Laser Energetics deals mainly 

with direct drive. In direct drive, a capsule’s outer surface is irradiated directly by the laser 

beams, as opposed to indirect drive, where the inner surface of a small container enclosing the 

capsule is irradiated by laser beams entering the enclosure through laser entrance holes, 

generating thermal radiation that implodes the capsule. 

The target is a spherical cryogenic capsule approximately 10 μm thick with a diameter of 

~860 μm, coated on the inside with approximately 65 μm of deuterium-tritium (DT) ice, and 

filled with three atmospheres of DT. 3 The laser is the 60 beam OMEGA laser system, 4 one of 

the most powerful in the world. During direct-drive inertial confinement fusion, the laser pulses 

partially ablate the surface of the capsule, causing it to rocket off, and compress the capsule, 

along with its DT contents, to conditions of high temperature and density. At a sufficiently high 

temperature, the deuterium and tritium undergo fusion reactions to form helium, a neutron, and 

large amounts of energy.  A large amount of thermal energy is needed to give the colliding nuclei 

the large thermal velocities needed to overcome their large electrostatic repulsion.  

The amount of energy produced by the inertial confinement fusion process can be 

inferred from the measured neutron yield. LLE uses simulation programs, such as the one-

dimensional hydrodynamics code LILAC,5 to predict the outcome of these experiments. A 

significant factor affecting the outcome of inertial confinement fusion experiments is the x-ray 

opacity of the imploding capsule. Opacity is a measure of impenetrability of electromagnetic or 
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other kinds of radiation.6,7 The current hydrodynamic codes use one type of averaged spectral-

interval opacity, the Planck-averaged opacity. This work explores whether Rosseland-averaged 

opacity should also be used in the computational codes.8 

 

2.      Equations of Radiative Transfer 

The hydrodynamic simulation code LILAC5 is one of several used at the Laboratory for 

Laser Energetics that includes a radiation diffusion transport model.  The codes are all similar, in 

that they all compute several important quantities such as radiation energy density Uν, the 

spectral flux Fν, scale length λν, and optical depth τν. These quantities are functions of the 

spectral frequency ν of the radiation and the local temperature T and material density.  LILAC is 

unique in that it models plasma flow with spherical, cylindrical, or planar symmetry and spatial 

variation in only one dimension.  Consequently, in this work, where we consider how radiation 

transport might be done differently, 1D radiation transport, as LILAC does it, is a logical point of 

reference.  Other simulation codes at LLE use radiative opacity in similar ways, so the lessons 

learned in this work will have relevance to them as well.  

Opacity is defined as the quantitative measure of how strongly radiation is absorbed 

while passing through a material. Optical depth is a dimensionless quantity defined as the 

integral of opacity with respect to distance. If the optical depth is much greater than 1, the source 

is considered to be optically thick, and, conversely, if the optical depth of the source is much less 

than 1, the source is considered to be optically thin. The following equation expresses the optical 

depth at the spectral frequency ν: 

     𝜏𝜈 = ∫𝜅𝜈𝑑𝑑,      (2.1) 
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where κν is the opacity at frequency ν and s is the distance along a path through the source.  The 

value of the optical depth depends on the choice of this path.6,7  The quantities of spectral flux Fν 

and radiation energy density Uν are closely related in the time-independent diffusion 

approximation by the following equations,   

     𝐹𝜈 =  − 𝑐
3𝜅𝜈

𝑑𝑈𝜈
𝑑𝑑

     (2.2a) 

    
𝑑𝐹𝜈
𝑑𝑑

= 𝜀𝜈 − 𝑐𝜅𝜈𝑈𝜈,     (2.2b) 

where c is the speed of light and εν is emissivity (emitted spectral power per unit volume) at 

frequency ν.8  Equations (2.2) are written for 1D plane-parallel geometry where the path length 

parameter s is the spatial coordinate in the one spatial dimension. The diffusion approximation 

arises from the assumption that radiation is defined as a locally isotropic spectral energy density 

of photons plus a small flux in a single direction along the gradient of Uν.  Equation (2.2a) gives 

the magnitude of this radiation flux in terms of this gradient of the radiation energy density, and 

Eq. (2.2b) equates the divergence of this radiation flux to the total radiation emission-minus-

absorption at a given point.  Equations (2.2a) and (2.2b) can be solved simultaneously for Uν and 

Fν .  These two equations can be combined into one by eliminating Fν, leaving the more familiar 

diffusion equation, a 2nd-order differential equation for Uν,8  

    0 = − 𝑑
𝑑𝑑
� 𝑐
3𝜅𝜈

𝑑𝑈𝜈
𝑑𝑑
�+𝜀𝜈 − 𝑐𝜅𝜈𝑈𝜈.  (2.3) 

When calculating radiation transport numerically over the whole spectrum, the spectrum 

is divided into a finite number of frequency intervals or “groups,” where the spectral frequency 

group index k refers to the frequency interval from νk to νk+1.  This frequency grouping should 
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be as fine as necessary to resolve the spectrum, but there should also be as few groups as 

possible to minimize the time and other computational resources required to complete the 

calculation.  This “multigroup” formulation is constructed by replacing the frequency-dependent 

flux, energy density, emissivity, and opacity quantities in Eqs. 2.2a, 2.2b, and 2.3 with group-

averaged quantities:  

    𝐹𝑘 = − 𝑐
3𝜅𝑅,𝑘

𝑑𝑈𝑘
𝑑𝑑

        (2.4a) 

𝑑𝐹𝑘
𝑑𝑑

= 𝜀𝑘 − 𝑐𝜅𝑃,𝑘𝑈𝑘.    (2.4b) 

The group-averaged emissivity is obtained using 

𝜀𝑘 =
∫ 𝜀𝜐𝑑𝑑
𝜐𝑘+1
𝜐𝑘
𝑑𝑘+1−𝑑𝑘

,     (2.5) 

and the flux Fk and energy density Uk averages are obtained by the same method. 6,8     

For Eq. (2.4a) to be consistent with Eq. (2.2a), the group-average opacity κR,k must be  

    
1

𝜅𝑅,𝑘
=

∫ 1
𝜅𝜈

𝑑𝑈𝜈
𝑑𝑑 𝑑𝜈

𝜈𝑘+1
𝜈𝑘

∫ 𝑑𝑈𝜈
𝑑𝑑 𝑑𝜈

𝜈𝑘+1
𝜈𝑘

 ,    (2.6a) 

and for Eq. (2.4b) to be consistent with Eq. (2.2b), the group-average opacity κP,k must be  

    𝜅𝑃,𝑘 =
∫ 𝑈𝜈𝜅𝜈𝑑𝜈
𝜈𝑘+1
𝜈𝑘
∫ 𝑈𝜈𝑑𝜈
𝜈𝑘+1
𝜈𝑘

.     (2.6b) 

Equations (2.6) show that calculating the multigroup average opacity quantities requires that the 

radiation energy density Uν frequency dependence be known in sub-group detail, i.e.,  in finer 
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spectral detail than the multigroup spectral resolution can provide.  We can proceed with the 

multigroup method by approximating the weighting functions in Eqs. (2.6) with the radiation 

energy density known to exist under conditions of local thermodynamic equilibrium,8 

𝑈𝜈 = 4𝜋
𝑐
𝐵𝜈(𝑇),     (2.7a) 

where Bν(T) is the Planck function  

    𝐵𝜈(𝑇) = 2ℎ𝜈3

𝑐2
1

𝑒ℎ𝜈/𝑘𝐵𝑇−1
,    (2.8) 

and where h is the Planck constant and kB is the Boltzmann constant.  This approximation was 

originally devised for the deep interior of stars, where it is an excellent approximation.7  Other 

than this precedent, we have no well-developed justification for using this approximation in laser 

fusion.  We can also write 

𝑑𝑈𝜈
𝑑𝑑

= 4𝜋
𝑐
𝑑𝐵𝜈(𝑇)
𝑑𝑇

𝑑𝑇
𝑑𝑑

.     (2.7b) 

The two kinds of opacity average which we will explore are the Planck-averaged opacity, 

obtained from Eqs. (2.6b) and (2.7a), computed as an arithmetic mean weighted by the Planck 

function,  

𝜅𝑃,𝑘 ≡
∫ 𝐵𝜈𝜅𝜈𝑑𝜈
𝜈𝑘+1
𝜈𝑘
∫ 𝐵𝜈𝑑𝜈
𝜈𝑘+1
𝜈𝑘

,     (2.9a) 

and the Rosseland-averaged opacity, obtained from Eqs. (2.6a) and (2.7b), computed as a 

harmonic mean weighted by the derivative of the Planck function with respect to temperature,8 



8 
 

1
𝜅𝑅,𝑘

≡
∫ 1

𝜅𝜈
𝑑𝐵𝜈
𝑑𝑇 𝑑𝜈

𝜈𝑘+1
𝜈𝑘

∫ 𝑑𝐵𝜈
𝑑𝑇 𝑑𝜈

𝜈𝑘+1
𝜈𝑘

 .    (2.9b) 

The temperature gradient dT/ds in Eq. (2.7b) cancels out of the quotient in Eq. (2.6a). 

Just as the arithmetic mean of a set of data is always greater than or equal to the harmonic 

mean, the Planck-averaged opacity is generally greater than or equal to the Rosseland-averaged 

opacity, assuming that the weighting functions do not greatly impact the averages.  As the 

number of groups increases and as the individual groups narrow to the point where the spectral 

features of the opacity begin to be resolved by the frequency groups, the differences between the 

Planck and Rosseland averages become less important, and the choice of the weighting functions 

becomes less critical.  Unfortunately, computational limits on spectral resolution may not allow a 

number of frequency groups large enough to achieve this. 

The tabulated group-averaged emissivity εk is generally obtained as part of the same 

atomic-physics calculation used to obtain the group-averaged opacity or opacities.  Under 

conditions of local thermodynamic equilibrium, which is assumed here, the emissivity is related 

to the opacity by the Kirchoff relationship9 

𝜀𝜈 = 4𝜋𝜅𝜈𝐵𝜈(𝑇).     (2.10) 

Equation (2.7a) is, in part, a consequence of Eq. (2.10).  Using Eq. (2.10) in Eq. (2.5) and 

applying Eq. (2.9a) gives the expression 

𝜀𝑘 =
4𝜋𝜅𝑃,𝑘 ∫ 𝐵𝜈(𝑇)𝑑𝜈𝜈𝑘+1

𝜈𝑘
𝜈𝑘+1−𝜈𝑘

,    (2.11) 
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which relates the group-averaged emissivity εk to the Planck-averaged opacity κP,k.  

Consequently, εk will not be changed by varying κR,k, as long as κP,k is left constant. 

 

Fig. 1: A graph of the opacity (κν) of silicon and the Planck (κP) and Rosseland (κR)  group-
averaged opacities as functions of photon energy, for a density ni of 1.68x1023 ions/cm3 and a 
temperature of 1.93 keV. 
  

Figure 1 shows the opacity κν of silicon,10 which is a possible target material, for typical 

laser-fusion values of ion density and temperature.  The Planck and Rosseland-averaged 

opacities are in the form of step functions in Fig. 1 where the horizontal segments represent the 

opacity averaged over a photon energy interval.  Photon energy and frequency are essentially 

equivalent terms, related through the Planck equation E = hν.  In the regions where the opacity 

varies smoothly, the Planck and Rosseland-averaged opacities are roughly equal. However, when 

there is a spectral line, as is seen in the highest energy group at the right end of the ordinate 

where the opacity value spikes markedly, the Planck-averaged opacity is significantly larger than 

the Rosseland-averaged opacity.  
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 In this work, two-opacity modeling, where the Planck average is used for emission 

(through Eq. (2.11)) and absorption in Eq. (2.4b) and the Rosseland average is used for transport 

in Eq. (2.4a), is compared with the single-opacity treatment in LLE hydrocodes where a single 

opacity (typically the Planck average) is used for all purposes. 

3.  The Slab Source Problem 

The slab source problem is a common illustrative example in radiation transport 

literature. The slab source problem assumes a uniform slab of thickness L under conditions of 

uniform composition, temperature, and density.  This provides a slab with spatially uniform 

opacity and emissivity where the general solution to Eqs. (2.4a) and (2.4b) is 

  𝑈𝑘(𝑥) = 𝐶0 − 𝐶1𝑒�3𝜅𝑃,𝑘𝜅𝑅,𝑘𝑥 − 𝐶2𝑒−�3𝜅𝑃,𝑘𝜅𝑅,𝑘𝑥,   (3.1a) 

and, by Eq. (2.4a), 

 𝐹𝑘(𝑥) = 𝑐�
𝜅𝑃,𝑘

3𝜅𝑅,𝑘
�𝐶1𝑒�3𝜅𝑃,𝑘𝜅𝑅,𝑘𝑥 − 𝐶2𝑒−�3𝜅𝑃,𝑘𝜅𝑅,𝑘𝑥�,   (3.1b) 

where x is the spatial coordinate in the direction normal to the slab.  The constant C0  is 

determined by substitution into Eqs (2.4a) and (2.4b), 

𝐶0 = 𝜀𝑘
𝑐𝜅𝑃,𝑘

,       (3.1c) 

and the constants C1 and C2 are set by a zero-flux condition at the center plane of the slab and by 

a surface flux boundary condition.  At the center plane of the slab, x=0, there is no net flux in 

either direction because the positive and negative x directions are equivalent, so C1 =  C2 from 

Eq. (3.1b).  At the outer surfaces of the slab, x = ± L/2 , the only flux is that of the radiation 

energy density at the surface escaping freely at the speed of light along all possible directions, 

distributed uniformly into the outgoing hemisphere of directions.  This is expressed as 
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𝐹𝑘 �± 𝐿
2
� = ± 𝑐

2
𝑈𝑘 �± 𝐿

2
�,    (3.1d) 

which, using Eqs. (3.1a), (3.1b), and (3.1c), completes the solution with 

𝐶1 = 𝐶2 = 𝐶0
1

� 2
√3�

𝜅𝑃,𝑘
𝜅𝑅,𝑘

+1�𝑒�3𝜅𝑃,𝑘𝜅𝑅,𝑘
𝐿
2−� 2

√3�
𝜅𝑃,𝑘
𝜅𝑅,𝑘

−1�𝑒−�3𝜅𝑃,𝑘𝜅𝑅,𝑘
𝐿
2
. (3.1e) 

Examination of Eqs. (3.1a) and (3.1b) reveals that the spatial dependence of the flux and 

energy density in one photon energy group is entirely exponential of the form 𝑒±𝑥 𝜆𝑃𝑅,𝑘⁄  with 

a single scale length λPR,k where 

𝜆𝑃𝑃,𝑘 ≡ 1/�3𝜅𝑃,𝑘𝜅𝑃,𝑘,     (3.2) 

and an optical thickness  

𝜏𝑃𝑃,𝑘 ≡ 𝐿/𝜆𝑃𝑃,𝑘.      (3.3) 

For sources that are optically thick, Eq. (3.1e) shows that the coefficients C1 and C2 vanish 

exponentially, relative to C0, for large τPR,k.  This means that Uk is very nearly equal to C0 

everywhere, except within a distance less than about one scale length inside of each of the outer 

surfaces of the slab.  This is consistent with the interpretation that the energy density deep 

(optically) within a slab is determined almost completely by the balance of absorption and 

emission, leaving a flat energy density profile and, locally, a negligible flux, according to Eq. 

(2.4a), and, therefore, a negligible divergence of flux on the left-hand side of Eq. (2.4b) to 

modify the balance of absorption and emission expressed by the right-hand side of this equation. 

By applying Eqs. (3.1) to the slab source problem, we can determine the spectral flux and 

energy density at various points in the source, most importantly at the outer surfaces. The 

material that we have chosen to explore as part of the slab source problem is silicon. This is 
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because other elements commonly used in laser fusion capsule shells such as hydrogen and 

carbon do not have spectral lines at typical temperatures because their electrons have already 

been freed and no longer undergo frequent transitions between discrete bound states. The sample 

temperature and ionic density which we have chosen to use is a temperature of 1.93 keV and an 

ionic density of 2.67x1023 ions/cm3 as these values correspond to typical conditions in which the 

silicon spectrum contains interesting features, including some spectral lines. 10 

The majority of the simulation codes at the Laboratory for Laser Energetics do not 

simultaneously use both the Rosseland-averaged and Planck-averaged opacities, a relic from the 

days of limited storage and processing capacity.  One simulation code, Helios, by Prism 

Computational Sciences, Inc.,11 uses both Planck-averaged and Rosseland-averaged opacities in 

its multigroup radiation transport model.  The modeling of the radiation diffusion equations 

typically uses the Planck-averaged opacity in place of the Rosseland-averaged opacity for flux.  

The effect of the resulting inaccuracy on the results of radiation simulation can be assessed by 

repeating the simulation with successively finer frequency groupings until the results are no 

longer changed by further refinement.  This process will eventually converge, since the 

Rosseland and Planck averages are equal in the limit of fine spectral resolution.   

To demonstrate the impact of using a single-opacity (or one-opacity) Planck-averaged 

opacity instead of the more correct two-opacity model on the calculated radiation energy density 

and spectral flux, we explored two cases of a single energy group with Planck optical thicknesses 

τP,k = 3 and 1, where 

𝜏𝑃,𝑘 ≡ 𝐿/𝜆𝑃,𝑘,      (3.4) 

expressed in terms of a Planck scale length 

𝜆𝑃,𝑘 ≡ 1/�√3𝜅𝑃,𝑘�,     (3.5) 
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to illustrate what happens when the slab is of moderate optical thickness.  Results are shown in 

Fig. 2 for various ratios of the Rosseland-averaged opacity to the Planck-averaged opacity.  In 

these figures, x represents the position across the thickness of the slab, plotted as the 

dimensionless quantity x/L, energy density is plotted in units of C0, and flux is plotted in units of 

cC0. 

Figure 2(a) shows energy density profiles, and Fig. 2(b) shows radiation flux profiles of a 

slab of Planck optical thickness 3 for different values of the Rosseland-to-Planck opacity ratio.  It 

is seen that there is little change in either graph when the Rosseland-averaged opacity is reduced 

to only half of the Planck-averaged opacity.  Figure 2(c) shows the corresponding energy density 

profiles, and Fig. 2(d) shows the corresponding radiation flux profiles of a slab of Planck optical 

thickness 1.  It is seen that by having reduced the optical thickness from 3 to 1, significantly less 

energy is bottled up in the slab, and the changes in the energy density and radiation flux with the 

reduction in the Rosseland opacity are still small.  The more optically thin slab confines the 

escaping radiation less than in the more optically thick case, so the flux in Fig. 2(d) is more 

uniformly diverging and less affected by the Rosseland opacity value than in Fig. 2(b).  In the 

examples studied thus far, no stronger or more dramatic effects than these of varying the 

Rosseland-to-Planck average opacity ratio have been found.  
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Fig. 2a:  Energy density, in units of C0, plotted as a function of position across the slab in units of 
the slab thickness L, within a slab of Planck optical thickness 3, for various ratios of κR/κP. 

 
Fig. 2b:  As Fig. 2a, but for spectral flux, plotted in units of cC0. 
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Fig. 2c:  As Fig. 2a, but for a slab of Planck optical thickness 1. 

 

 

Fig. 2d:  As Fig. 2c, but for spectral flux, plotted in units of cC0. 
 

 

4.      Determining the Impact of the Rosseland-Averaged vs. Planck-Averaged 

Opacity 

We will now analyze the impact of replacing the Rosseland-averaged opacity with the 

Planck-averaged opacity in a multigroup solution to the slab-source problem. We will set the 



16 
 

thickness of the slab to be 40 microns. The opacity, temperature, and ionic density are the same 

as those used to create Figure 1. 

Figure 3 shows the ratio of the two-opacity to the one-opacity scale lengths λPR/λP 

obtained using Eqs. (3.2) and (3.5), plotted as a function of photon energy.  The opacities are 

group-averaged, which accounts for the step-function appearance.  The variation in the scale 

length stays at around 10% until the final group where it rises to 20%. This is because the final 

group has a silicon spectral line, causing the Planck-averaged opacity to be significantly larger, 

thereby causing the scale length computed using solely the Planck-averaged opacity to be 

significantly smaller.  

 

 

Figure 3: A graph of the ratios of the scale lengths λPR/λP computed using a 1-opacity vs. a 2-
opacity model.  

 

We now evaluate Eqs. (3.1) for the radiation spectral flux for the same slab and the same 

conditions for each of the energy groups shown in Fig. 3, first with distinct κP and κR, and then 
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substituting κP for κR. The difference in the two flux spectra plotted in Figure 4(a) shows the 

impact of using the Planck-averaged opacity in both Eqs. (2.4), rather than both the Planck and 

Rosseland averages, where indicated.    

The spectral fluxes, plotted in Fig. 4(a) in arbitrary units, do not appear as step functions, 

as they would if Eqs. (3.1) had been evaluated entirely in terms of group-averaged quantities, as 

has been described thus far.  The actual calculation was performed using a frequency-dependent 

emissivity ε(ν)k , 

𝜀(𝜈)𝑘 = 4𝜋𝜅𝑃,𝑘𝐵𝜈(𝑇),    (4.1) 

where the frequency ν  lies within the group boundaries νk+1 and νk.  This is an attempt to 

restore some of the frequency dependence of the emissivity lost in the group-averaging process 

by using the Planck function itself, rather than its group average, as in Eq. (2.11).  This does not 

recover all the spectral detail of the opacity within the frequency groups, particularly the strong 

spectral line seen in Fig. 1 in the highest energy group near 2000 eV. 

The ratio of the one-opacity flux to the two-opacity flux plotted in Fig. 4(a) is plotted in 

Fig. 4(b).  The sub-group frequency dependence of the emissivity, given by Eq. (4.1), cancels out 

of this flux ratio, restoring the step-function result that would have been obtained had Eq. (2.5) 

been used.  It can be seen that the spectral flux computed by using solely the Planck-averaged 

opacity is greater by a small percentage for the smaller photon energy groups. However, for the 

higher energies, the flux computed using solely the Planck-averaged opacities is significantly, 

15-25%, lower. This is due to the spectral lines of silicon appearing in this photon energy range 
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Figure 4a:  Graphs of fluxes, expressed in arbitrary units, as functions of photon energy, 
comparing 1-opacity (blue curve) and 2-opacity (red curve) models. 

 
Figure 4b: Graph of the ratio of the fluxes computed by the one-opacity and two-opacity models 
as a function of photon energy. 
 

lowering the Rosseland-averaged opacity, resulting in a longer scale length with less of the 

emitted photons being absorbed before they escape. 

A 15-25% error is clearly too large to be ignored and calls into question the accuracy of 

one-opacity calculations in general, particularly if there is concern that an insufficient number of 
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photon energy groups are being used.  Our preliminary results suggest that upgrading a one-

opacity calculation to a two-opacity calculation may be an efficient complement to increasing the 

accuracy of calculations by increasing the number of energy groups.  This conclusion is based 

only on our experience with the one example shown above.  Before recommending that a 

simulation code be upgraded to include a two-opacity model, other examples will have to be 

studied, including realistic simulations of relevant experiments, as well as idealized 

configurations in addition to the slab model considered here. 

 

 

 

5. Conclusions 

In conclusion, we have demonstrated, by example, the possible benefit of upgrading from 

a one-opacity to a two-opacity model.  Planck and interval-averaged opacities for Si were 

obtained by running the Prism detailed atomic model in the code PROPACEOS. An analytic 

solution was then derived for the radiation diffusion equation in a slab-source problem in which 

either the same or separate opacities were used for absorption and transport, and the calculated 

emitted spectral fluxes were compared.  Even when the Planck and Rosseland averages differed, 

the differences in flux were minimal except for spectral intervals where the optical depth was 

approximately 1.  There, it was shown that the values for flux can differ by ~10% - 20%.  A 

broad range of conditions with a larger set of test cases will be necessary to establish the 

importance of changing from one-opacity to two-opacity modeling, but this work has laid some 

of the groundwork for how this is to be done, particularly the solution to the slab problem 

expressed in terms of both the Rosseland- and Planck-averaged opacities, which will allow a 
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broad range of cases to be considered.  Thus far, it appears that upgrading to two-opacity 

modeling merits serious consideration. 
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