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1. Abstract

 Voltage pulses sent through x-ray framing cameras (XRFC’s) used on the Omega laser 

system act as shutters, creating rapid time-delayed snapshots of a target during implosion with 

sub-nanosecond resolution. The program TOAST (Transmission line Optimization And Studying 

Tool) was written to model the propagation of a voltage pulse through the micro-channel plate 

(MCP) of an x-ray framing camera, which was treated as a transmission line. The current 

produced by the x-rays hitting the MCP was found to affect the voltage pulse; the sensitivity of 

the framing camera is therefore dependent on the intensity of the x-rays illuminating the MCP. 

Voltage reflections occur due to the incident x-rays changing the impedance of the MCP, 

distorting the time resolution of the camera. Simulation of the velocity of the voltage pulse 

allows for a more accurate determination of the time between snapshots. TOAST allows for a 

potential method of correcting XRFC images for distortions that is more accurate than flat-

fielding.
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2. Introduction

 Nuclear fusion is a potential source of clean, sustainable energy that is under research and 

development in the United States and other countries. Energy is produced in nuclear fusion 

reactions by a process where lighter atomic nuclei fuse together to form a heavier nucleus. One 

such facility that is investigating the processes underlying nuclear fusion is the Laboratory of 

Laser Energetics (LLE) at the University of Rochester. Inertial confinement fusion is studied at 

LLE with the 60-beam OMEGA laser system by heating and imploding  cryogenic targets. The 

small spherical plastic targets are filled with DT gas, a mixture of deuterium and tritium 

(isotopes of hydrogen), and chilled to cryogenic temperatures to form a layer of DT ice inside the 

target shell [1]. 

 While heated uniformly with lasers, the outer plastic shell ablates outward as the contents 

of the target are imploded. The implosion of the deuterium and tritium results in conditions of 

high pressure and temperature. As a result of the high temperatures, positively charged nuclei of 

deuterium and tritium are able to overcome their repulsion forces and fuse together to form a 

helium nucleus and a high energy neutron. These neutrons comprise most of the energy released 

by the fusion reaction. High pressure conditions guarantee that a large number of fusion reactions 

occurs before the target explodes. Breakeven is achieved when the energy released by the fusion 

reactions is greater than the energy input of the lasers. Once high enough energy gain is 

achieved, laser fusion can be used as a viable source of energy [1].

 X-rays are produced during the implosion of the target, which lasts approximately one 

nanosecond. Imaging devices like streak cameras and x-ray framing cameras (XRFC’s) utilize 

this x-ray radiation to monitor the deformation of the target as it implodes. Streak cameras have a 
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time resolution that can be as short as one picosecond, which is much smaller than that of 

XRFC’s; however, they can only provide imaging in one dimension. This results in a great loss 

of information. The resolution of XRFC’s is limited by their frame rate to about 40 picoseconds, 

but XRFC’s produce two-dimensional images of the target during its implosion [2]. Uniform 

compression is essential for maximum energy output [1].  

 XRFC’s consist of a doped-glass micro-channel plate (MCP) sandwiched between two 

metal electrodes (top gold, bottom silver) and a phosphor screen (Fig. 1). Incoming x-rays from 

the imploding target strike the top electrode and kick off electrons that hit a phosphor screen, 

producing light. Collecting this light to form an image can be achieved with a film pack or a 

CCD camera. A negative voltage pulse sent through the MCP acts as a shutter. When the pulse 

passes through a section of the MCP, an electric field is generated that accelerates electrons down 

the channels of the MCP. 

 Without the voltage pulse, few electrons reach the phosphor and only a dim image is 

produced. The channels of the MCP are at an 8° tilt. As an electron travels down through the 

MCP, it will strike the walls of a channel. With the added energy picked up by the electron from 

accelerating through the electric field, more electrons can be kicked off the wall of the channel 

when it hits. This causes an avalanche of electrons as each new electron picks up energy from the  

electric field, knocking off more electrons. The cycle repeats down the length of the channel. 
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Fig. 1. Physical Diagram of an XRFC.
An XRFC consists of an MCP placed 
between two metal electrodes and a 
phosphor screen underneath. A negative 
voltage pulse is applied to two metal 
electrodes (gold and silver) and is 
propagated through the MCP. Positive 
voltage is applied to the surface of the 
phosphor screen.



Positive DC voltage is applied to the phosphor screen to pull electrons off of the bottom 

electrode to develop an image [2]. 

 An XRFC may be designed to take one or multiple images. Multiple images may be 

obtained by projecting several x-ray images across the MCP. However, only where the voltage 

pulse is currently passing through (and thus causing a gain in electrons) is the image strong 

enough to be captured by film or a CCD camera [2].

 XRFC images must undergo post-processing due to distortions introduced by the MCP. The 

current method of correcting framing images, know as flat-fielding, takes a data image and 

divides it by an image produced by a uniform x-ray exposure at the same intensity. This method 

makes the assumption that the relationship between x-ray intensity and the recorded signal of the 

XRFC is linear. However, at a certain threshold intensity of x-rays one may get a 10% reduction 

in signal compared with the linear assumption; at higher x-ray intensities this would be more 

pronounced. 

 In this work, mathematical formulas and a computer program (TOAST) were developed to 

simulate the propagation of a voltage pulse through an XRFC. The simulation calculates the 

changes in voltage and current over an adjustable number of nodes across the MCP of an XRFC 

as a voltage propagates in the presence of a distribution of x-rays. Results from the simulation 

indicate that the relationship between x-ray intensity and the signal received by the camera is in 

fact nonlinear, thus showing that the underlying assumption in flat-fielding XRFC images is 

incorrect. The computer program allows for a potentially more accurate determination of the 

speed of the pulse through the MCP as well as correction of distortions in the images introduced 

by the camera itself. 
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3. Mathematical Model
3.1 The XRFC

 For the purpose of simplicity, the model constructed in this project was one-dimensional, 

but it is sufficient to provide useful insight on the complex interactions that occur between the 

camera, incident x-rays, and propagated pulse. A transmission line was used to model an XRFC 

[3]. 

  

 Parallel sheets of metal will produce a capacitance in the presence of electric current. The 

sheets of metal will have an inductance in the presence of an alternating current source (AC), 

such as a pulse. As shown in Fig. 2, the capacitances and inductances of the metal electrodes are 

modeled as capacitor and inductor pairs connected in a series/parallel combination [3]. Incident 

x-rays strip electrons from the surface of the top metal electrode and the electrons are then 

accelerated down the channels of the MCP by the electric field produced from the negative 

voltage pulse. This produces currents in the MCP as modeled by variable resistances. A 

transmission line is a circuit that allows for the propagation of a pulse. The MCP of the XRFC 

functions as a modified transmission line with the added reduction in current induced by an x-ray 
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Fig. 2. Physical and Circuit Diagrams of an MCP.
There are two terminal resistances at the beginning and end of the MCP. 
As x-rays strike the MCP, a current is produced that is modeled by a 
variable resistance. Note that the circuit may have any number of nodes.
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source. Terminal resistances shown in the diagram are crucial, as shown later, for preventing 

large voltage reflections at the ends of the MCP. 

 For this model, equations relating voltage and current of the discrete components for an AC 

circuit are necessary to simulate the propagation of the voltage pulse [3]. The equations for a 

resistor, capacitor, and inductor are given as follows:

 

where V is voltage, I is current, R is resistance, Q is charge, C is capacitance, L is inductance, 

and t is time [3]. Solving equation 1 in terms of I yields:

For equation 2, one must first take the derivative of both sides,

linearizing the derivative, then solving for I gives the form:

Dividing L from both sides of equation 3 and then integrating with respect to t gives the form of:

Using a trapezoid approximation for the integral and rearranging terms gives the equation:

Note that the substitutions dI=∆I=(I-I’) and dt=∆t were made. All prime values in equations 

represent the previous time step. These equations are used to solve for current at each of the 
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nodes of the circuit modeling the XRFC. In the circuit diagram in Fig. 2, the nodes are given by 

the black dots. There are three type of nodes; the first node in between the terminal resistor R1 

and first inductor, all of the middle nodes (with units consisting of inductors, capacitors, and 

variable resistors), and the last node that is like a middle node with a terminal resistor RL.

 Applying Kirchoff’s continuity law at each of the nodes (Fig. 2), three sets of equations are 

produced:   

where I1 is the current through the first terminal resistor, I2 is the current through the first 

inductor, Ii is the current into node i from the previous inductor, Ig,i is the current from node i 

through the current capacitor and resistor pair, Ii+1 is the current from node i into the next 

inductor, IN is the current into node N from the last inductor, Ig,N is the current from node N into 

the last capacitor and resistor pair, and IN+1 is the current from node N into the last terminal 

resistor [3]. 

 Substituting equations 4, 6, and 8 into equations 9, 10, and 11 yields:

where V0(t) is the voltage from the pulse generator, R1 is the first terminal resistor, RL is the last 

terminal resistor, V1 is the voltage from the first terminal resistor, V2 is the voltage from the first 

inductor, Vi is the voltage at the current node, Vi-1 is the voltage at the previous node, Vi+1 is the 

Valinsky, Jack

8

(9)

(11)

(10)

(12)

(13)

(14)



voltage at the next node, VN-1 is the voltage at the second to last node, and VN is the voltage at 

the last node, which is also the voltage across the last terminal resistor [3]. At this stage the 

variable resistances of Fig. 2 used to model currents due to x-rays have not been included.

  Finally, solving for voltage and rearranging equations 12, 13, and 14 so that all the current 

values are on one side and previous time steps are on the other gives:

 In order to calculate the voltage for each node, Eqs. 15-17 show that the voltages and 

currents from the previous time step need to be known. At t=0, V’ and I’ are zero at each node. 

For the first step in the simulation, the only non-zero term on the right hand side of Eqs. 15-17 is 

V0(t)/R1. Solution of these equations provides the voltages at the end of this step. The currents at 

the end of this step are then obtained from Eq. 8. A bootstrap process occurs where these 

voltages and currents become the V’ and I’ values for the next time step.

 Equations 15, 16, and 17 are a linear system of equations that can be written as a matrix 

equation:

where A is a matrix containing all the coefficients on the left hand side of equations 15, 16, and 

17; k is a column vector containing all the unknown voltages; and D is a column vector of the 
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constants on the right hand side of equations 15, 16, and 17 (previous time step) for each node. 

The matrix equation is in the form:

 In the program TOAST, the fast and efficient tridiagonal matrix method was used to solve 

this equation. Tridiagonal matrices contain entries of 0 except for the main (b), super (c), and 

sub-diagonals (a). The matrix equation can be written in the form,

Except for the first and last entries of the a, b, and c diagonals, an entry ai contains 

the coefficient of Vi-1, an entry bi contains the coefficient of Vi, and an entry ci contains the 

coefficient of Vi+1. The entry b1 contains the coefficient of V1, c1 contains the coefficient of V2, 

aN-1 contains the coefficient of VN-1, and bN contains the coefficient of VN. This is due to the fact 

that the equations for the first and last nodes (Eqs. 15 and 17) have only two variables. 

 As mentioned previously, ∆t is the time step of numerical derivation for calculating the 

voltage values in the simulation of the XRFC for the program TOAST. Later on it will be shown 

to be the time step for numerical integration to calculate the raw XRFC image(s) of the 

simulation. It must be significantly smaller than the time delay constant (τ) of the transmission 

line (∆t ≪ τ). The time delay constant is the time at which the circuit will appear as it would at     

t = ∞. For example, at t = ∞ capacitors will appear to be breaks in the circuit and the voltage Vi 

will be seen across the last terminal resistor. The time delay constant is given by the equation:
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where L and C are inductances and capacitances per unit length Δx (distance between nodes) [4]. 

 The characteristic impedance of the transmission line (Z0) governs the velocity at which the 

voltage pulse can propagate through. Higher impedance results in a slower velocity, whereas 

lower impedance results in a faster velocity. For a stripline MCP, the experimentally derived 

equation is:

where 𝜂0 is the impedance of free space (about 120π Ω), 𝜀r is the relative permittivity constant of 

the MCP dielectric (3.8 for glass), a is half the width (w) of the stripline, and b is half the height 

or thickness (h) of the stripline [5]. The relationship between the terminal resistances and the 

characteristic impedance of a transmission line is very important because when they are matched 

a pulse consisting of a perfect sine wave will have all of its energy absorbed completely by a 

terminal resistor. More energy being absorbed at the end of the line means a less powerful 

voltage reflection when the pulse hits the back of the line and rebounds. Voltage reflections can 

cause great distortions in XRFC images. A perfect sine wave is impossible to create and more 

complex shapes are required for an XRFC; however, closely matching terminal resistances to the 

characteristic impedance minimizes voltage reflections [4]. 

 Capacitance (C0) and inductance (L0) of the transmission line (not per unit length) are 

related to the characteristic impedance by the equation:

Capacitance of the transmission line is given by the equation:
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where σ is the surface area of the MCP (width w multiplied by length λ of the MCP):

and 𝜀 is the absolute permittivity of the MCP dielectric calculated by the equation:

where 𝜀0 is the permittivity of free space. Substituting in equation 24 for C0 and solving equation 

23 for L0 yields the equation for finding the inductance of the line:

Thus, the inductance per unit length or the inductance per node (L) is simply:

 The induced currents from the incoming x-rays striking the MCP change the impedance of 

the line, thus continuously altering the velocity of the voltage pulse. Without the effects of the 

incoming x-rays, the velocity (v) of a voltage pulse propagating unhindered through a 

transmission line can be expressed as a relationship between the relative permittivity of the MCP 

dielectric (𝜀r) and the speed of light (c):

 Finally, the voltage pulse itself was modeled by a simple square wave, although more 

complex pulse shapes can be and often are used. A super-gaussian equation was used to 

approximate a perfect square wave:

where V0 is the maximum voltage of the pulse, t0 is the halfway time of the pulse, τw is the pulse 

width, and a determines how “flat” and “square-like” the pulse is (a high a value is desired). 
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High voltage pulses are required for a gain to occur on the MCP of the XRFC. A pulse width of 

50 ps and a time delay on the pulse of 50 ps from the start of the simulation were used.

3.2 X-ray Gain and Induced Current

 As mentioned previously, the propagating voltage pulse produces a gain in the MCP. This 

is due to a negative electric field produced by the pulse that accelerates electrons through the 

channels of the MCP. These electrons gain enough energy to knock off more electrons from the 

walls of the channels, which are at an 8° tilt so that electrons will strike the walls more 

frequently. Throughout the channels of the MCP, the cycle of electrons gaining energy and 

kicking off more electrons creates an avalanche of electrons which is the source of the gain. The 

gain (G) of the MCP, defined as the number of electrons produced per x-ray photon, is given by 

the voltage to a power (x) multiplied by a constant of proportionality (k) [2]:

 From the Photonis material data sheets on their XRFC’s, a power of 8.399 and 

a k value of 1.27064 ⋅ 10-22 were determined [6]. The power is roughly the average number of 

times an electron would strike the walls of a channel in its path through the MCP [2]. The 

number of electrons (Ne) in a section of the MCP increases due to the x-ray flux and decreases as 

a result of electrons created by the avalanche leaving through the bottom surface of the MCP. It 

is governed by the following equation:

where ϕx-ray is the number of x-ray photons incident per unit time, Ix-rays is the current 

leaving through the bottom of the MCP, and qe is the charge of an electron. The x-ray flux is 
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related to the intensity (ψ) in Watts/cm2 of incoming x-rays and the work function of the gold 

electrode (WAu):

where wΔx is the surface area of the node. Porosity (p) is included in the equation due to the fact 

that the top metal electrode is not solid gold, but it is perforated to allow electrons generated at 

the top of the electrode by incident x-rays to travel down into the channels of the MCP. 

 The current leaking through the node on the MCP is given by the equation:

where ne is the number of electrons per unit volume at the bottom of the MCP and v 

is their final velocity after acceleration through the MCP (calculated below). In this model ne is 

approximated by Ne/δ, where δ (equal to hwΔx) is the volume of the node. This gives

so that equation 32 becomes:

This is integrated over a time step Δt to give

 Equation 37 states that the current number of electrons at any time t is the number of 

electrons that were in the node at the previous time step plus the number of electrons generated 

by striking x-rays minus the number of electrons that have since left the node. Initially, Ne’ is 

equal to zero. In solving Eq. 37 care is taken to ensure that Δt is sufficiently small that Ne does 

not become negative.
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 The current Ix-rays is added to the current at a node from the propagating pulse. One 

consequence of this is that it steals energy from the voltage pulse. The voltage pulse under a 

section of the MCP that is illuminated by x-rays will be attenuated. To produce an image or 

signal (S) from the simulated XRFC, the Ix-rays currents at each node are simply integrated for the 

time interval [a,b] of the simulation:

 To calculate the velocity v of the electrons leaving the MCP, note that the strength of the 

electric field (E) from the voltage pulse is related to the voltage at a node i (Vi) and the 

separation between electrodes (in this case the thickness h of the MCP) by the equation:

The force on an electron (Fe) from the E-field is related to qe and the strength of the field:

Applying Newton’s second law of motion, one obtains the form:

where ae is the acceleration of the electron due to the E-field and me is the mass of the electron. 

The mass of one electron is approximately 9.10938 ⋅ 10-31 kg and the charge of one electron is 

1.602177 ⋅ 10-19 C. Solving for ae  yields the equation:

The distance traveled by a projectile is related to its initial velocity (v0), acceleration (ae), and 

time (t). The vertical distance traveled by an electron in a channel is thus given by:

After an electron has traveled down a portion of a channel, it is assumed that it will 
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lose all kinetic energy due to collisions with the wall so that the previous velocity v0 is always 

zero. The average distance traveled by the electron is the quotient of the thickness h of the MCP 

divided by the average number of hits against the wall. From equation 31 the average number of 

hits is x, which is approximately 8.399. Substituting in for dy:

Now the equation can be solved for t:

The final velocity can be calculated from the initial velocity, acceleration, and time:

Substituting in equation 45 for t yields:

Equation 47 gives the velocity of an electron as it accelerates through the E-field created by the 

voltage pulse propagating through the MCP. This velocity is crucial for calculating the current 

through a node Ix-rays induced by x-rays as mentioned above. The current feeds back into the 

transmission line equations (Eqs. 15-17) and the detected signal on the CCD camera depends on 

the total charge provided by this current. 
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Results 

 

 

 Utilizing equation 38, graphs were calculated of  the signal that a phosphor screen would 

see from a simulated XRFC in TOAST with the portion of the MCP from 1 cm to 3 cm 

uniformly illuminated by x-rays. Figure 3 shows two such graphs for different x-ray intensities, 

illustrating that attenuation of the voltage pulse occurred as it traveled through the portion of the 

MCP illuminated by x-rays. Experimental data taken from shot #64187 conducted on the 

OMEGA laser system [7] and shown in Fig. 4 agrees qualitatively with the simulation results. 

Two different exposures of an XRFC were done, both with a uniform source of x-rays. The first 

exposure was done with a normal flat-fielding exposure of x-rays. The second XRFC had a mask 

that only allowed a small sliver of x-rays to reach the MCP. This showed a much less attenuated 

signal as the pulse swept across the XRFC compared with the one with full exposure. 
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Fig. 3. 
Time-integrated signal as a function of distance along an MCP calculated by TOAST, run at 
two different x-ray intensity levels, 700 and 117 W/cm2. Notice the attenuation of the voltage 
pulse as it traveled through a portion of the MCP (1 cm to 3 cm) illuminated by x-rays. 
Higher intensity resulted in more attenuation.



 

 

 Voltage reflections were also shown to occur in the simulation as seen in Fig. 5. TOAST 

has the ability to draw an animation of the propagating pulse as it moves through the XRFC. 

Voltage reflections occurred at the terminal ends of the transmission line as well as at boundaries 

of illuminated and non-illuminated portions of the XRFC. Higher intensity x-rays and voltage 

pulses produced greater reflections. The closer the terminal resistances matched the impedance 

of the line, the smaller the reflections were. However, reflections will always occur at boundaries 

between two different x-ray intensities. Figure 5 also shows significant distortion of the initial 

voltage pulse.
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Fig. 5. TOAST Animation
These are snapshots of an animation generated by TOAST of the propagation of a voltage 
pulse through an XRFC. The red region is illuminated by x-rays of intensity 700 W/cm2. 
Note the attenuation of the voltage pulse under the illuminated section of the MCP. 

Time

Fig. 4. Normalized X-ray Intensity vs. Position for two XRFCs on OMEGA Shot 64187
The first exposure (blue) was from a normal uniform x-ray source used in flat-fielding images. The second 
image (red) had a mask that only allowed a small sliver of x-ray light through (width about 1 mm reduced 
from 6 mm). Average x-ray intensity on the OMEGA system is approximately 700 W/cm2. 



4. Conclusion

 A one-dimensional mathematical model was produced to characterize an XRFC. The 

propagation of a pulse through the MCP of an XRFC was simulated using a computer program. 

Results indicate that the relationship between the intensity of x-rays hitting the XRFC and the 

signal recorded is not linear as assumed while using flat-fielding correction methods for raw 

XRFC images. 

 XRFC images are used to monitor the deformations of the shell during implosion, so one 

major consequence of the current method of correcting images is that the shell thickness would 

be inaccurately portrayed. Being able to accurately measure the shell thickness is vital in 

analyzing how successful certain beam configurations are for inertial confinement fusion on laser 

systems such as OMEGA. A potential solution for this problem would be to utilize a simulation 

of the XRFC such as TOAST and use as input the raw XRFC image. The outputted image would 

then be fed back into the program iteratively until the changes between images are minimal. 

Through each generation, the image will be closer to the original x-ray source.

 Further research will aid in the development of the code. The goal is to incorporate other 

effects such as crosstalk between different sections of the XRFC itself as well as improving and 

adjusting models for the MCP and incoming x-rays. Running multiple instances of TOAST in 

parallel would potentially allow for the generation of two-dimensional images, which would 

provide a much more effective visualization of the interaction of the pulse with the XRFC 

system.
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