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Abstract 

High target density is an important condition for achieving ignition in direct-drive fusion 

experiments. High densities are momentarily created during a successful implosion. The 

OMEGA laser’s 60 beams heat the target, causing the surface to ablate and compress the fusion 

fuel.1 X-ray radiography is used to analyze the compressed target’s optical thickness, which in 

turn describes the target's density. The higher the optical thickness, the darker the shadow cast. 

By recording the intensity of the backlighter x rays across the radiograph, the radiograph gives 

an attenuation profile. In a simple model of the shell, the changing attenuation across the 

radiograph depends on three parameters: inner radius, outer radius, and central radial optical 

thickness. A FORTRAN program was created to calculate the variances of the estimates of these 

three parameters in the presence of measurement error and a finite number of attenuation 

measurements limited by the finite resolution of the imaging device. Choosing the optimum 

optical thickness for the target by adjusting the backlighter photon energy minimizes the 

uncertainties of these estimates. 

 

Introduction 

 The Laboratory for Laser Energetics uses two laser systems, OMEGA and OMEGA EP, 

to irradiate target capsules in inertial confinement fusion (ICF) experiments.1 If the target reaches 

temperatures and densities high enough, it can achieve ignition, a condition during which fusion 

produces enough energy to sustain itself. The target does not always compress properly, 

however, due to imperfections in the spherical shell. To analyze and improve upon future direct-

drive experiments, it is important to have diagnostics that can track the target capsule 

compression. X-ray radiography is one such diagnostic. 
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 The density of the target can be measured indirectly by measuring the target’s optical 

thickness τ, a description of the target’s ability to absorb x-ray radiation. When the target absorbs 

x rays, a shadow is formed on the radiograph. By analyzing the shadow it is possible to estimate 

the optical thickness of the target. Estimation however always possesses some uncertainty. 

Measurement precision is limited, the x-ray framing camera has finite resolution, and other 

uncertainties may exist in the source of the backlighter, such as nonuniformity. For free-free 

radiography, the target’s optical thickness varies with the photon energy of the penetrating x 

rays. This allows one to select the backlighter photon energy that provides the optimum shell 

optimal thickness, which creates a radiograph with a contrast profile that will allow the most 

precise model parameter estimates to be obtained. The central radial optical thickness τ0, which 

is half the optical thickness of the imploded target viewed through its center, was chosen as the 

measure of the target’s optical thickness. The value τ0 = 0.5 provides a unit central optical 

thickness that is the optimal value for a uniformly thick slab. To find the optimal optical 

thickness of a spherical capsule, whose optical thickness varies over the radiograph plane, a 

FORTRAN program was designed to calculate the parameter estimate uncertainties of a simple 

spherical shell capsule using covariance analysis based on hypothetical data. The dependence of 

the parameter estimate uncertainties on the central optical thickness was found and is shown 

below. 

 

Parameter Estimation Uncertainty 

The backlighter energy must be carefully selected to produce a useful radiograph. 

Information is lost if the backlighter produces too high or low an optical thickness. A high 

optical thickness (saturation) creates a dark shadow that allows only the outer edge of the shell to 
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be seen, while a low optical thickness (transparency) lets nearly all the x rays pass through, 

offering too low a contrast for the actual transmission contrast to be distinguished from the noise 

level ��. By modifying the target’s optical thickness to produce shadows with distinct edges at 

both the inner and outer shell radii, it is possible to reduce the uncertainty in the parameter 

estimates. 

 

The Radiograph Model and Optical Thickness 

 The radiograph model is a simplified representation of an imploded target shell and the x-

ray intensity attenuation profile seen in its radiograph. Figure 1 shows a simple schematic of the 

radiography setup for a target shell that is assumed to be perfectly spherical and homogenous. 

Parallel x rays of intensity I0 pass through the hollow target at various distances r from the 

capsule center and strike the radiograph plate with diminished intensity I. An actual radiography 

configuration of an experiment is more complicated because the target may not be uniform, 

homogenous, and spherical, and the backlighter rays selected by the imaging device may not be 

parallel. Nevertheless, this model provides a simple and relatively accurate representation that 

suffices for the purposes of this analysis.  

The x-ray attenuation through the target is captured as the shadow on the radiograph and 

can be compared to the theoretical attenuation given by  

 ���� � 	 �	
����	, (1.1) 

where τ(r) is the optical thickness,2 defined as the integral of the opacity κ, a function of 

spherical radius ρ, along the path s 

 ���� � 	����� ��	. (1.2) 
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Equation (1.1) ignores the effects of self-emission, the radiation emitted by the target, effectively 

assuming that the backlighter intensity I0 is large in comparison to the self-emission. When the 

initial x-ray intensity I0 and final intensity I are known, Eq. (1.1) can yield ����. The optical 

thickness can be calculated for every planar radial distance r to create an optical thickness profile 

����. It is important to distinguish between the radii r and ρ in Eq. (1.2). The variable r is the 

radial coordinate in the plane of the radiograph, and ρ is the target-centered spherical radial 

coordinate at a point along the x-ray path. The variable r is planar while ρ is in 3-D space (see 

Fig. 1).  

If the target’s opacity is assumed to be uniform and if the x-ray path is assumed to be a 

straight line, Eq. (1.2) simplifies to the product of opacity and x-ray path length through the 

target: 

 ���� � 	�	����	, (1.3) 

where s is the straight-line x-ray path length as a function of radius r in the image plane. The 

path length function can be expressed as three separate path length functions for three sections of 

the radiograph: where the x-ray travels through the shell and hollow, travels through the shell 

only, and misses the capsule entirely (see Fig. 1). Substituting the appropriate expressions for 

each condition of s yields the piece-wise function 

 

���� �
��
�
��2� ����� � �� ��� � � ��! if	0	%	r	%	� 
2� ����� � ��! if	� 	%	r	%	��0 if		r	'	��

	, (1.4) 

for a target capsule with inner radius � and outer radius ��. 
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Methodology 

Parameter estimate uncertainties were found using the weighted least-squares method. In 

this method, measurement errors are assumed to fall in a normal distribution, and the model, Eq. 

(1.4), is assumed to predict the correct values of ���� for the correct values of the parameters �, 

��, and � . The most likely values of these parameters, based on a set of N measurements �()*,+  
at radius �+ with a random error ��, are those that minimize ,�, the weighted sum of the 

measurement errors, which is given by  

 ,� � 	-��()*,+ � ���+���	�+�
.
+/ 	, (1.5) 

where i is one of N measurements with random measurement error known as “variance” 	�+�. The 

observed measurements �()*,+  are readings from the experiment, and the predicted measurements 

���+� are the corresponding theoretical values obtained from the model.3 For a model with M 

unknown parameters, collectively described as {01; j = 1, M}, the minimization of Eq. (1.5) is 

obtained when the partial derivative equations with respect to each parameter 01 equal zero: 

  2,�201 � 	0	. (1.6) 

The intensity model from Eq. (1.1), with � replaced by its subcomponents given in Eq. 

(1.4), attempts to fit, using M = 3 parameters, �, ��, and � , an intensity model to a set of N 

intensity readings from a radiograph experiment with an uncertainty	�+ � 	�� for each intensity 

measurement. The model has three partial derivative equations that must be set to zero to 

minimize ,�: 
 2,�20 � 	2,�2� � 0	, (1.7) 
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 2,�20� 	� 	 2,�2�� � 0	, (1.8) 

 2,�203 	� 	 2,�2� � 0	. (1.9) 

This set of equations can be written in matrix notation as  

 -4∆6 � 78
+/ 	, (1.10) 

where the coefficient matrix J is a square matrix of length and width M, and ∆6 and 7 are both 

vectors of length M. The coefficient matrix J is given by 

 91: � 	- 1	���
.
+/ 	2���+�201 2���+�20: 	. (1.11) 

The residual vector r is found in a similar manner by  

 �1 �	- 1	���
.
+/ 	2���+�201 <�()*,+ � ���+�=	. (1.12) 

The residual vector r is multiplied with the inverse of J to produce the set of corrections ∆x? that, 

when added to the set of parameter estimates 01, give a better set of parameter estimates. The 

improved parameter estimates are then used to calculate a new ,�, and the process is repeated to 

find a new set of corrections. The process is iterated until the corrections become negligible, at 

which point ,� may be considered to have been minimized. 

 In planning an experiment in the absence of actual experimental measurements, the 

weighted least-squares method still provides formal estimates of the uncertainties of the 

parameter estimates.3 It can be shown that the variances of the parameter estimates, σκ
2, σR2

2, and 

σR1
2, defined as the expected value of the squared difference between the parameter estimates 
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and their true values, are given by the diagonal elements of the inverse of the coefficient matrix 

J, 

 �+� 	� 	 9� ++	. (1.13) 

This new matrix is referred to as the covariance matrix J-1. 3  

 The covariance matrix yields the uncertainty of the parameter estimates as the variances 

σκ
2, σR2

2, and σR1
2, which describe the uniqueness of the model’s fit to the data. The variances 

scale directly with the factor 	���/B and roughly inversely with the square of the model’s 

sensitivity to their respective parameters, as given by Eqs. (1.7) - (1.9) and suggested by Eq. 

(1.11).3 Low uncertainty estimates indicated by small values of σ	R1, σ	R2, and σκ suggest that the 

parameter estimates can be accepted with greater confidence, while high uncertainty estimates 

suggest that the fit of the model to the data does not have a unique solution and that different sets 

of values of the parameters may fit the data comparably well. When σ	R1, σ	R2, and σκ are high, it 

is difficult to claim that the exact values of R1, R2, and κ have been estimated correctly. 

  

Difficulties in Partial Differentiation 

 The weighted least-squares method relies extensively on partial derivatives of the 

intensity model to obtain J from Eq. (1.11). Due to the circularly symmetric nature of the 

radiograph data, it is not necessary to sum the partial derivative of every individual data point in 

assembling the coefficient matrix. Instead, a radial line of points from r = 0 to r = R2 can give a 

close approximation for the summation by weighting each point to account for all other points of 

similar radial distance from the center. If each point is thought of as an arc segment, the circular 

radiograph can be partitioned into thin rings of width Δr such that any given ring will consist of a 

number of congruent segments given by 
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 B �	2D�∆� 	, (1.14) 

where � is the ring’s radial distance from the center, and B is the number of slices that 

“weights” the partial derivative of a single slice in the ring. The total number of measurements, 

N, is the sum of Nr over all the rings. 

The finite-segment approximation of each data point also helps resolve conflicts in 

differentiation that arise when the radiograph readings are assumed to occupy an infinitesimal 

area. Taking the partial derivative of Eq. (1.1) with respect to each parameter yields 

 2�2� �	�2�E� � E �
��F�GH�GI��		, (1.15) 

 2�2�� � 	�2���E� 
��F�GH�GI��		, (1.16) 

 2�2� � 	�2�� E 
��F�GH�GI��		, (1.17) 

where 

 E 	� 	J�� � � �� if	0	%	r	%	� 0 if	r	'	� 									, (1.18) 

 E� 	� 	J���� � �� if	0	%	r	%	��0 if	r	'	��									. 
(1.19) 

The partial derivatives given by Eq. (1.16) and Eq. (1.17) contain L1 and L2 in the denominator, 

which cause predicted partial derivative values near r = R1 and r = R2 to approach negative 

infinity. This is due to the piecewise nature of optical thickness in Eq. (1.4) which is embedded 

in the intensity model from Eq. (1.1) (see Figure 1). Trapezoidal approximations were used to 

estimate the partial derivatives at non-differentiable points. 
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 The trapezoidal method assumes that the partial derivative of the intensity model changes 

at a constant rate across the width of a data point. The partial derivative can be approximated by 

averaging the partial derivatives of two neighboring points around the non-differentiable point. 

This method was used to calculate the partial derivative of Eq. (1.1) with respect to R1 at r = R1, 

where the partial derivative encounters a vertical asymptote. The approximation works because 

the data points are discrete with finite differences in their intensity values. By measuring the 

average partial derivative, one obtains a reliable estimate that may be used in Eq. (1.11). 

 

Parameter Estimation from Radiograph Model 

The FORTRAN program uses covariance analysis to calculate the uncertainty of the 

estimates of the three parameters R1, R2 and � from the uncertainty of the hypothetical intensity 

measurements, which is equal to the intensity noise σΙ , and the spatial resolution, as expressed 

by the number of data points N. The variance calculation for each parameter was scaled to 

account for differences in resolutions and intensity variances of radiographs. The scaled variance 

multiplies the initial variance with the square root of N divided by the relative σΙ  squared to 

divide out the effects of sample size and noise. The variance is also expressed as a ratio relative 

to the parameter estimate because the effects of uncertainty must be considered proportionally. 

Each is plotted against the central optical thickness �	, which was defined as �	 ≡  
 

�
��0� to 

describe the path of travel along half the target diameter. 

The graph of optical thickness variance in Fig. 2 shows a broad minimum near τ0 ≈ 0.5 

where the scaled optical thickness variance is minimized. The rapid increase of the variance as 

τ0 increases or decreases suggests that departures from τ0 ≈ 0.5 can result in significant 

degradation of the estimates. Even as the ratio of inner to outer radii changes, the minima of the 
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three plots remain approximately the same. The graph appears to support the initial proposed 

optimal central optical thickness of τ0 ≈ 0.5 that applies to a uniformly thick slab. 

The graphs of the scaled inner and outer radius variances in Fig. 3 show the same 

minimum near τ0 ≈ 0.5 as seen in Fig. 2. The curves plotting the inner radius variance (“Radius 

1 variance”) have minima at slightly below τ0 ≈ 0.5, and the graph of outer radius variance 

(“Radius 2 variance”) continues to decrease past the minimum range, suggesting that departures 

above τ0 ≈ 0.5 are safe for estimating the outer radius. This is because as the central optical 

thickness τ0 increases, the outer shadow edge gets sharper. The graph of scaled opacity variance 

behavior in Fig. 4 is similar to the inner radius variance behavior, and further supports the 

optimal optical thickness calculation.  

The graph in Fig. 5 shows the same results as Fig. 2 but with a linear vertical axis and 

logarithmic horizontal axis, showing more clearly the degradation when τ0 is small and allowing 

it to be compared with comparable degradation at higher τ0 values, where degradation due to 

saturation comes on rapidly. These results suggest that the degradation at lower optical 

thicknesses, �	 ≲ 0.1, such as in Compton radiography, may still be feasible in spite of the τ0 

value being off the optimum value, and that even stronger degradation is obtained with only 

modestly high optical thickness, �	 ≳ 1.0. Fig. 2 offers less comparison between small and large 

τ0 uncertainty estimates because the τ0 scale is compressed at smallτ0 . 

 

Conclusion 

 Covariance analysis of hypothetical data with a simple, idealized model confirmed the 

optimum central radial optical thickness τ0 ≈ 0.5 for the radiography of a perfectly spherical and 

homogenous imploded target in inertial confinement fusion experiments. The parameters 
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degrade rapidly as the target approaches saturation, with the exception of the outer radius R2, and 

all of the parameters degrade as the target approaches transparency. The graphs obtained suggest 

the behavior of the parameter estimate degradation as τ0 departs from the optimum. For example, 

estimation uncertainty is worse at τ0 = 2.0 than it is at τ0 = 0.1, which is surprising because the 

degradation at τ0 = 2.0, a relatively low saturation, is comparable to the degradation at τ0 = 0.1, a 

very weak signal. These results provide a better understanding of how radiography experiments 

may be tuned to produce better radiographs for parameter estimation. 
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Fig. 1. A simple schematic of the radiography configuration in OMEGA. Parallel backlighter x 
rays of intensity I0 pass through the hollow target at various distances r from the capsule 
radiograph center. The x-ray attenuation forms a “shadow” on the radiograph (shown on the 
right). For simplicity the target is assumed to be perfectly spherical and homogenous.  
 

 

Fig. 2. A plot of the scaled relative optical thickness variance against central optical thickness. 
From top to bottom, the lines represent targets of inner radii R

1
 = 0.25, 0.50, and 0.75. The 

vertical axis was scaled logarithmically to illustrate the broad minimum near τ
0
 ≈ 0.5 for all 

three plots.  
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Fig. 3. Same conditions as in Figure 2. The scaled relative variances of R
1
 and R

2
 were plotted 

against the target’s central optical thickness τ
0
. 

 

 

Fig. 4. Same conditions as in Figure 2. The scaled relative variance of opacity κ was plotted 
against the target’s central optical thickness τ0. 
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Fig. 5. Same graph from Figure 4 plotted on a logarithmic horizontal axis. The optical thickness 
estimate degrades rapidly as the central optical thickness τ

0 
increases exponentially above τ

0
 = 

1.3. Notice the broad minimum nearτ
0
 ≈ 0.5.  

 


