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Abstract 

 In order to achieve ignition conditions in inertial confinement fusion (ICF) 

experiments, it is necessary for the imploding target to reach very high densities. To 

measure the properties of the target while it implodes, X-ray radiography is employed. 

The target is backlit, and the resulting radiograph is recorded using a pinhole camera. The 

optical thickness profile of the target is then inferred from the intensity profile recorded 

in the radiograph. In the simple analysis for obtaining the radial opacity profile of the 

target from the optical thickness profile in the radiograph, the target is treated as an 

absorbing spherical shell, with no emissivity. However, it may be necessary in some cases 

to be able to account for a significant amount of self-emission from the target. By 

including both an emitting center and an emitting outer shell in a simple model of an 

imploded target, we show that visible self-emission at the outer edge of a radiograph 

indicates a corresponding emission contribution to the apparent absorption seen in the 

inner part of the radiograph and that the apparent and actual absorption contribution can 

differ significantly.  The relationship between this difference and the visible self-emission 

may provide the means for correcting for self-emission in obtaining radial density 

distributions from radiograph analyses. 
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Introduction 

 The Laboratory for Laser Energetics at the University of Rochester is pioneering 

nuclear fusion by conducting laser driven, direct-drive inertial confinement fusion 

experiments. In order to achieve ignition, or a state in which fusion reactions are self-

sustaining, it is necessary for the plastic coated deuterium-tritium (DT) targets to reach 

densities of several hundred grams per cubic centimeter and temperatures of 

approximately 100 million degrees Celsius1. Given that high temperatures and densities 

must be reached to achieve fusion conditions, it is desirable to know the density of the 

DT target during the implosion. 

 

Using Radiography to Determine Density 

 In free-free absorption of x-rays, the opacity, ffκ  of an object is directly related to 

its density ρ  by the equation  
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where k is a constant, T is the temperature, Bk  is Boltzmann’s constant and hν is the 

photon energy.  The temperature may be modeled with a simulator, and the photon energy 

is a known property of the backlighter, but the value of opacity must be measured to be 

able to solve for the density.  

 If the opacity is constant, it is related to the optical thickness, τ, of the object 

along a backlighter ray path by the equation 

 Lτ κ=  (2) 

where L is the length of propagation of the backlighter ray.  By employing radiography 

and observing the attenuation of the backlighter intensity, the optical thickness is 

calculated using 
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where I  is the final intensity observed in the radiograph and 0I  is the initial backlighter 

intensity, in arbitrary units.  

 Because of self-emission from the high temperature target, the final intensity may 

include not only the backlighter radiation, but a contribution from the target as well. 

Thus, the apparent optical thickness, appτ , and the actual optical thickness, actτ , are 

unequal and must be related to each other so that actτ can be inferred from measurements 

of appτ . 

 

Radiative Transfer and Optical Thickness 

 The solution to the equation of radiative transfer for constant emissivity and 

opacity, given by  

 04 4
I I e τε ε

πκ πκ
−⎛ ⎞= + −⎜ ⎟

⎝ ⎠
, (4) 

is used to model the change in intensity as a beam travels through an absorbing and 

emitting object, where 0I  is initial intensity, I  is final intensity, ε  is the emissivity, κ  is 

the opacity, and τ  is the optical thickness.2  When an object either emits or absorbs, 

simplified forms may be used.  For an object of thickness L with emissivity only, 

 0 4
LI I ε
π

= + , (5) 

and, with opacity only, 

 0
LI I e κ−=  (6) 

 

  The target we modeled consisted of three distinct shells, which either emitted or 

absorbed exclusively, as shown in Fig. 1.  We calculated the corrections for obtaining the 

actual optical thickness profile due to the opacity alone from the apparent optical 

thickness one would infer from the radiograph by assuming that the net effect of opacity 

and emissivity was entirely due to opacity.  To accomplish this, four distinct possibilities 
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for the path of the backlighter emissions must be studied, as is shown in Fig. 2. 
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Fig. 1  The target is modeled with an emitting layer surrounding an absorbing layer, all 

surrounding an emitting core. 
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Fig. 2  Four possibilities for the path of backlighter emissions 

In each case, the final intensity is modeled based on the emissivity and opacity of 

each layer of the target, the succession of path segments along the propagation path as it 

passes through each layer of the target, and the initial intensity of the backlighter.  The 

four distinct cases are Case 1, 



 

 6

 0I I= , (7) 

Case2, 
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Case 3, 
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and Case 4, 
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 By dividing both sides of the equations by the initial intensity, the equations 

become expressions for appe τ− .  For Case 1, we have 

 1appe τ− = , (11) 

for Case2, 
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and for Case 3, 
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where 
 2 2 ( )act L yτ κ= . (14) 

 
For Case 4, the ray propagates through the absorbing layer twice, so, for this case alone, 

 2 22 ( )act L yτ κ= , (15) 

and 
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The actual optical thickness is then solved for algebraically in Cases 3 and 4, as those are 

the only cases impacted by absorption.  For Case 3, we have 
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and for Case 4, 
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Equation (18) gives the correct result in the limit of zero emissivity, 

 
1 3, 0
lim appacte e ττ

ε ε

−−

→
= . (19) 

 The chosen problem was to consider the effect of emissivity 3ε on the Case 3 

result. We assume that we are given a radiograph and that we wish to infer the opacity 2κ  

from the Case 3 portion of the radiograph.  If an emissivity 3ε  is present, then it will be 

visible in the Case 2 portion of the radiograph, according to Eq. (12). If 3ε  can be 

inferred using Eq. (12), then 3ε  can be used in Eq. (17) for Case 3 to obtain actτ  from 

appτ .  The opacity 2κ  is then obtained from actτ  using Eq. (14). Although it is clear in 

principle that a procedure such as this will succeed, we have not yet worked out the 

details of how this would work in practice. However, we have modeled the effect of 3ε  

on actτ  using Eqs. (11) through (18).  To demonstrate by example the effects of emissivity 

on a radiograph, pairs of simulations were run, one in which there was no self emission 
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and one in which there was significant self emission along the backlighter path in Layer 

3.  One such result is shown in (Fig. 3). 
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Fig. 3  Radial optical thickness profiles with and without including a strong, thick 

emitting outer layer. 

 

 Figure 3 shows the radial transmission profile of a radiograph of an absorbing 

shell with an inner radius of 1 and a thickness of 1, in arbitrary units.  The red curve 

shows the radiograph that would be obtained with a shell with a central optical thickness 

of 1.  The black curve is the radiograph of the same absorbing shell with a very thick 

outer emitting layer with the same thickness as the absorbing layer.  The emissivity is an 

arbitrary value chosen so that its maximum intensity on the radiograph, at a radius in the 

image plane corresponding to the inner radius of the emitting layer, is nearly equal in 
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magnitude to the intensity lost at the center of the radiograph due to absorption.  The 

choice of a central optical thickness of 1 is a good intermediate value for radiography, 

since it is a robust signal representing a loss of most of the backlighter intensity, and, at 

the same time, the minimum intensity recorded in the radiograph is far enough above 

zero transmission so that the emission signal will not easily overwhelm the absorption 

signal.  For the radiograph to be interpreted as an absorption shadow, the intensity should, 

as much as possible, be the result of the absorption of the backlighter intensity, without a 

large modification due to self-emission.  If the transmission of the absorbing layer is very 

small, then small contributions due to self emission can make a relatively large 

contribution to the intensity.  In this example, the apparent increase in the transmission 

due to the emitting layer is about 23%, which is quite modest, considering the strength 

and size of the emitting layer.  Examples such as this can serve as benchmarks for 

accepting or rejecting radiographs to be analyzed in terms of absorption alone.  Figure 4 

shows two examples where the reduced size and strength of the emitting layer results in 

smaller corrections. 
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Fig. 4  Radial optical thickness profiles showing the change in the apparent optical 

thickness due to the effects of an emitting layer.  The green curve, when compared 

with the black curve, show a reduced effect when the emitting layer is reduced to half 

the thickness of the emitting layer producing the black curve.  The red and black 

curves are identical to those in Fig. 3.  The blue curve shows that reducing the 

thickness of the emitting layer reduces the effect on the apparent transmission, even if 

the apparent intensity of the emission is kept constant. 

 

 A thinner emitting layer can result in a radiograph with a smaller self-emission 

modification, one that may be ignored, possibly, depending on the desired degree of 

precision.  In Fig. 4, the green curve shows that the emission effect in the radiograph is 

reduced nearly in proportion to the reduction in the thickness of the emitting layer, 

keeping the emissivity at the same value as used for the result shown in Fig. 3, 
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represented here again by the black curve.  In this case, the volume of the emitting layer 

has been reduced to only slightly larger than the volume of the absorbing layer, which is 

still larger than what would seem reasonable in a well-designed radiography experiment.  

Nevertheless, the resulting 10% emissivity effect in the radiograph can be considered 

modest, perhaps even negligible by some standards of precision.  The blue curve is a 

similar example of a reduced self-emission effect with a thinner emitting layer, but the 

emissivity in this example has been increased to keep the intensity of the emission ring in 

the radiograph constant.  These results illustrate how the apparent thickness and intensity 

of the Case 2 portion of the radiograph together indicate the effect of self-emission on the 

apparent Case 3 transmission. 

 

Conclusions and Future Work 

 Based on the examples shown above, it is clear that a correction may be needed to 

infer the opacity profile of an object from its radiograph when self-emission is seen in the 

radiograph, although there may be cases where the correction can be neglected, to an 

acceptable degree of approximation.  Experiments involving radiography should be 

designed to minimize the effects of self-emission, and examples such as those shown here 

can be a useful guide. 

 If this work were to be continued, one could consider the application of the Abel 

transformation to infer opacity profiles from radiographs.3 Considering the equation of 

radiative transfer as a means to move from the opacity distribution of the target itself to 

the shadow pattern it creates, the Abel transform can be thought of as a means to infer the 

opacity profile of a target based on the shadow created by it.  Just as a term is included in 

the solution to the equation of transfer, Eq. (4), to account for self-emission, it would be 

useful if a simple correction to the Abel transform could be found to account for self-

emissions from the target. 
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