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Abstract 
 

 The OMEGA EP laser system will be used to study long-scale-length plasmas and the 

channeling of an ultra-intense infrared short-pulse beam through these plasmas.  One of the primary 

plasma diagnostics will be grid image refractometry (GIR).1  In GIR a collimated UV beam illuminates 

a grid that breaks the beam into a two-dimensional array of probe-beam ray bundles.  These rays pass 

through a plasma, where they are affected by refraction.  Analyzing the images of the grid then allows 

one to determine the plasma density.  In the standard GIR approach the grid has a large stand-off 

distance from the plasma and the grid is imaged into the plasma.  A new approach is studied here in 

which the grid is in close proximity to the plasma.  The goal of this project was to study the basic 

optical properties of this GIR system, including the diffraction effects from the grid but ignoring the 

refraction due to the plasma.  A PV-Wave program was written based on a simple ray-trace algorithm 

that included diffraction from the grid.  The image quality was studied for various object planes and 

grid periods.  An optimal position for the grid was found that resulted in crisp images, showing that this 

approach is viable.  

 

I. Introduction 
 i. Laboratory for Laser Energetics (LLE) 
 

 The primary mission of the University of Rochester's Laboratory for Laser Energetics (LLE) is 

to study the physics of direct drive inertial confinement fusion (ICF). The controlled fusion of 

deuterium and tritium holds great promise for solving the world’s energy problem. The National 

Ignition Facility (NIF) at Lawrence Livermore National Laboratory, which is largest and most powerful 

laser in the world, will make a credible ignition attempt by using the indirect drive concept. The 

OMEGA Laser Facility at LLE is a cornerstone in the US fusion program and plays a major role in the 

national effort for achieving ignition. With ignition at the NIF on the horizon, scientists work on 

advanced inertial fusion energy concepts that might be developed into future reactor designs. The laser 

requirements are relaxed and higher gains than in indirect drive might be possible. 

One concept is the fast ignition (FI) concept2 that uses a conventional high-energy laser facility 
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to compress the fuel capsule and then achieve ignition through a high energy particle beam generated 

by a separate, high intensity short-pulse laser. One of the primary research objectives of the recently 

built high intensity OMEGA EP laser facility is to investigate advanced ignition schemes such as fast 

ignition. The main issue in FI is to bring the particles as close as possible to the compressed core 

without losing too much of their energy. There are currently two viable FI concepts; one considers 

targets with a hollow re-entrant cone that keeps a clear path for a high intensity laser so that the 

particles are generated as close as possible to the dense core. The other is the channeling concept. 

Channeling employs two co-propagating short-pulse beams; the first pulse is used to push the plasma 

away and drill a channel close to the core so that the trailing second pulse is guided through the channel 

without significant energy loss. The second short pulse then produces the energetic particles that will 

ignite the target. 

 Channeling experiments are planned on the OMEGA EP laser by using long-pulse UV lasers to 

generate an extended plasma atmosphere and then send an ultra-intense infrared short-pulse beam 

through these plasmas. It is important to have optical diagnostics to characterize the pre-formed plasma 

and to measure the channel. The measurements will be compared to simulation predictions of the 

plasma density and the formation of the channel.  One of the primary plasma diagnostics that will be 

used in these experiments is grid image refractometry (GIR)1 with an ultraviolet probe laser with a 

wavelength of 263 nm.  

 

 ii. Grid image refractometry (GIR) 
 

 GIR is a technique for determining the two-dimensional density profiles of long scale-length 

laser-produced plasmas.  Fusion plasmas are of the size of up to several millimeters with a density 

scale-length of several hundreds of micrometers. The density scale-length is defined as ( )n dn dx  at a 

certain x-position in a density profile ( )n x . The GIR concept employs a collimated UV beam that 

illuminates a grid so that the beam is split into a two-dimensional array of probe-beam ray bundles.  

These rays pass through the plasma, where they are refracted.  The term “refractometry” is used to 

indicate that the refractive index of an optical medium is inferred from the refraction angles of this set 

of probe rays.  In the previous method of GIR the grid had a large stand-off distance from the plasma 
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and was imaged into the plasma.  A new approach is studied in this project in which the grid is placed 

in close proximity to the plasma. Figure 1 shows a schematic of the experimental setup.  

 

 

Figure 1: Schematic setup of a metallic grid placed in the collimated UV beam close to the target for 

GIR application.  Typical parameters are: dgrid ≈ 1 cm, Dcoll ≈ 10 cm, g ≈ 40 cm, and a grid period of 

P = 25 μm. 

 

A collimated laser beam illuminates the grid which splits the beam into an array of pencil beams 

that pass through a plasma object. The refractive index, ( )xμ , inside the plasma varies according to 

the local electron density, and the amount of refraction that each bundle experiences depends on the 

gradient of the refractive index dµ/dx. Different planes in the plasma must be imaged onto a detector. 

The apparent position of each probe ray must be measured for at least two object planes; in the current 

project three object planes separated by a distance of ~1 mm were chosen. The UV probe light is split 

up into three beams after transmission through the plasma. Each one images a different object plane 

onto a CCD camera. The deflection angles (in the x- and y-directions) are obtained by the difference of 

the associated grid elements in two object planes divided by the distance between those planes. In other 

words, the slope of each ray is measured by imaging various object planes that are slightly displaced 

along the beam axis. With this measurement the density contours of the plasma are retrieved using an 

inversion technique by assuming a cylindrical symmetry in the plasma (the axis of symmetry is along 

the normal of the solid target).  
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One issue of the new concept is that diffraction effects are significant. Coherent light passing 

through an array of slits will diffract.  This leads to maxima and minima according to Huygens’ 

Principle, see e.g. Ref. 3.  Diffraction will affect the image quality of the grid.  As a first step, the basic 

optical properties, including diffraction from the grid, were studied without taking the refraction in the 

plasma into account.  The image quality will also depend on the distance of the grid from the object 

plane.  In Figure 2 the zero diffraction order and a higher diffraction order are schematically drawn.  

The grid has a certain distance from the object plane, which is imaged by a lens.  If the grid were 

located in the object plane, a perfect image of the grid would appear. A blurred grid image is expected 

in the case that the grid is shifted away from the object plane.  The rays are no longer combined into a 

single point in the image plane.  This is the result of diffraction.  The blurring is minimized the closer 

the grid is located to the object plane.  Image blurring is expected to be more significant for larger 

distances. 

 

 

 

Figure 2: Different diffraction 

orders from a grid are imaged. 

The grid has a certain distance 

from the object plane that is 

imaged.  As a result, the grid 

image is blurred due to the 

different diffraction orders. 

 

 

 

Figure 3 shows a schematic for light diffraction through multiple slits. Diffraction is an effect 

where a wave, such as a beam of light, deviates from a rectilinear propagation path when passing 

through a small opening.  According to Huygens’s Principle, spherical waves emerge from each source 

point. Interference of those waves after the slit structure may be constructive or destructive depending 

on the angle θ with respect to the optical axis. One can consider the beam to be broken up into an array 
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of smaller bundles of light that have a certain angle, θ, with respect to the optical axis.  The light 

bundles spread out and interfere with each other creating a pattern.  The diffraction pattern is different 

for a single slit and for multiple slits.  In multiple-slit diffraction, which is what occurs in GIR, the 

pattern produced has a uniform/periodic pattern of peaks and troughs. The intensity distribution in the 

far field from the diffraction of many slits can be written as a function of the diffraction angle4 

 

( ) ( )
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where Nslit is the number of slits, I(0) is the intensity on the optical axis, p is the distance between two 

adjacent slits (this is also called the grid period), and w is the slit width. The light intensity is a function 

of the angle θ, which is the angle with respect to the optical axis. Figure 4 shows a calculation of the far 

field diffraction pattern from 6 slits using Eq. (1.1). 

 

 

 

Figure 3: A collimated laser beam

irradiates an array of multiple slits. 

According to Huygens’ Principle, 

spherical waves emerge from each 

source point.  Interference of those 

waves after the slit structure may be 

constructive or destructive depending on 

the angle θ with respect to the optical

axis. 
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Figure 4: Interference pattern 

from a 6-slit grid in the focal 

plane of a lens. 

 

II. PV-Wave Program 
  

 A PV-Wave program was written for imaging a grid structure including diffraction effects, see 

Figure 2.  The program consists of three functions and a main program that calls upon them.   The first 

of the functions creates an array of points for an object based on parameters given by the user.  The 

main program calculates the final coordinates in the imaging plane, using a ray-trace formula of light 

through a thin lens, for the specified number of rays emitted from each point at specific angles at three 

different distances from the object plane.  The second function calculates the intensity of each ray using 

the intensity formula given by Eq. (1.1).  The third function creates the array for the image produced by 

rays.  To make sure that the program was running properly, it was tested for the 1:1 imaging case (see 

Figure 5).  In 1:1 imaging, the object is placed at 2f, or two times the focal length of the lens, from the 

lens.  From this distance, the image produced will be at 2f from the lens on the opposite side and will 

be an inversion of the object.  The object and the image will be the same size making it easy to confirm 

the effectiveness of the program. 

 In the new GIR system a collimated UV laser beam illuminates a grid that is placed in close 

proximity to a plasma object (Figure 1).  This creates a two-dimensional array of probe beam ray 

bundles that are passing through the plasma.  The rays are refracted in the plasma much like in a lens, 

but the refraction varies locally.  As a result the refraction angle varies over the ray array.  The amount 
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of refraction depends on the refractive index in the plasma, which is a function of the free electron 

density.  The refracted light is then collected by a lens, which images the grid onto a detector.2  

 

 

 

 

 

Figure 5: 12 slit grid placed at twice 

the focal length of a lens.  The 

resulting image is identical to the 

object. 

 

III. Results 
i. 1D Line-outs 

 
 The grid image was calculated for various distances from the object plane without a plasma. Figure 

6 shows intensity line outs of 1, 2, 3, 5, 6, and 9 mm distances of the grid from the object plane.  The 

line-outs show that the pattern changes significantly when the grid is moved further away from the 

object plane. At a distance of 0.1 cm the grid pattern is clearly visible. At a distance of 0.2 cm, an 

additional modulation, which becomes stronger with greater distance, appears superimposed on the grid 

pattern. At a distance of 0.5 cm the contrast, which is the ratio of the intensity of the peaks and the 

troughs, is strongly reduced. Placing a grid at this distance would make it difficult to locate the center 

of each grid element, which is essential for the analysis in GIR. If the distance is further increased, the 

additional modulation eventually reduces and then at a distance of 0.9 cm a sharp image of the grid 

appears. It is observed that this cycle of image blurring and re-appearing of sharp grid images continues 

to occur if the distance is further increased. At multiples of the distance of ~0.9 mm, a sharp image of 

the grid is obtained. The distance when the first sharp image appears depends on the light wavelength 

and the grid period. 
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Figure 6: Multiple slit images were calculated for various object positions.  The distances are given 

in centimeters. The light wavelength was 263 nm, the grid period was 50 µm, and the slit width was 

25 µm. 
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 ii.  2D Contour plots 

  

 

 

 

 

Figure 7: Calculated grid images for 

various distances (0, 0.5, 2, and 1 cm 

– beginning from top left, clockwise) 

behind the grid.  No plasma was 

assumed. The light wavelength was 

263 nm, the grid period 50 µm, and 

the slit width was 25 µm. 

 

Similar calculations as shown in the previous section have been performed for a two 

dimensional grid (Figure 7). Again, the issue with placing a grid in close proximity to a plasma object 

is that with increasing distance from the grid, multiple beam interference rapidly leads to a blurring of 

the grid structure. Figure 7 shows calculated images of a grid at various distances (0, 0.5, 1, and 2 cm) 

behind the grid. At a distance of 0.5 cm the grid image is strongly distorted and would not be useful for 

GIR.  At certain distances sharp grid self-images appear.  This has to be taken into account when 

placing the grid from the plasma object.  This effect is also known as the Talbot effect.  

 

 iii. Sharpening and blurring (Talbot effect) 
 

The Talbot effect is a diffraction effect that was first observed in 1836 by Henry Fox Talbot.5  

When a plane wave is transmitted through a grating, Talbot observed that sharp images of the grating 

appear at certain distances.  Forty-five years later, Lord Rayleigh explained Talbot’s observation as a 

result of Fresnel diffraction.6  He derived a formula for the distance, when the grating structure 
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replicates, which is now know as the Talbot length, 2 /nT np λ= , where p is the grating period, λ is the 

light wavelength, and n is an integer number. 

 For example, in the case of the GIR application using a grid with 50 µm period, it needs to be 

placed 9.4 mm away from TCC to be at the exact first Talbot length.  The 50 µm period gives sufficient 

spatial resolution for GIR.  Within a distance of ±1 mm from the Talbot length a reasonable image 

quality is maintained. 

Adding plasma in the path of the interfering beam arrays might complicate the data analysis. 

The problem is that waves from different slits interfere and the unique optical path of each individual 

beamlet is lost, which is essential for GIR. It is not yet known how plasma refraction and diffraction 

will affect the grid imaging.  A simple estimate is performed to assess this effect (see Figure 8): 

Considering an interference maximum in the Talbot plane, beams from many slits interfere 

constructively.  Outer slits with a large lateral distance from S1 can contribute to the interference 

maxima S1 in higher diffraction order, but energy decreases strongly with higher order.  Within a 

distance 2xm ,p mλ=  all the interfering beams up to order m stay in a lateral region of less than the 

grid period, p, which is about the spatial resolution of the technique.  Taking an order of m = 5, the 

corresponding distance is 5x  2 mm ( 50 m, =0.25 m)p μ λ μ≈ = , which is comparable to the plasma 

size.  This estimate shows that the diffraction effects are probably tolerable and GIR might be a viable 

technique when using a grid in proximity to the target.  However, this has to be first proven 

experimentally. 

 

 

 

Figure 8: Schematic showing the cone of beams from multiple 

slits interfering in the Talbot plane producing a self image of a 

grid.  The angle θm corresponds to a certain diffraction order 

m. 
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IV. Conclusion 
 

 A new approach in grid image refractometry (GIR) has been studied theoretically in which the 

grid is in close proximity to the plasma object.  The project studied the basic optical properties of this 

GIR system, including the diffraction effects from the grid but ignoring the refraction due to the 

plasma. A PV-Wave program has been written based on a simple ray-trace algorithm that includes 

diffraction from the grid.  The image quality was studied for various object planes and grid periods.  An 

optimal position for the grid was found that resulted in crisp images, showing that this approach is a 

promising approach to plasma analysis.  It has been shown that the diffraction effects from the grid are 

due to the Talbot effect, which explains why sharp images of the grid were observed at certain multiple 

distances of the first Talbot length.  The results that were obtained are encouraging and show that the 

new GIR method might be sufficient in analyzing the refraction effects of the irradiated plasma.  It is 

now important to test the method experimentally and to show that it is a viable method even when 

refraction in the plasma is taken into account. 
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