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Abstract

Accurate values of the thermal conductivity andcepeheat of deuterium are necessary
to make high quality cryogenic laser fusion targBise to the difficulty of measuring these
values at cryogenic temperatures, the™&ethod is used. This involves passing an ostidat
current through a platinum wire embedded in deuterand measuring the third-harmonic
voltage that results from the temperature deperedehthe resistance. A two dimensional model
has been built that calculates heat flow in bothahkial and radial directions (i.e., along and
perpendicular to the wire) including the frequediependent skin depth. The model has been fit
to four sets of experimental data (the wire in ewen and in gaseous, liquid, and solid
deuterium) by adjusting the parameters of thermaatlactivity and specific heat. Generally, the
model and data agree well. The model has enabéethédmmal conductivity to be accurately
determined at cryogenic temperatures for gasemusd) and solid deuterium.
1. Introduction

The thermal conductivity of deuterium is used ia thodeling of cryogenic laser fusion
targets. In this process, a small fuel pellet, =img) of a mixture of deuterium and tritium, is
heated and compressed by high-energy laser bedmsscréates conditions similar to those of
the Sun, allowing the nuclear fusion of deuteriumd &itium to occur through the reaction

D + T~ “He + n. (1-1)

Energy is released in the form of the kinetic ep@igthe resulting neutron. The fuel pellet is
initially kept at cryogenic temperatures to maxienthe amount of fuel in the small volume.

Knowledge of the thermal conductivity of deuteriismecessary for modeling the heat
flow within the target. Knowing the conductivity to better precision impes target quality. The

conductivity is also used in modeling the behawiothe target when exposed to the environment.
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Initially, the target is covered by a “shroud” tmfect it from the environment. Immediately
before the laser shot, the shroud is quickly rerdoltas of interest to model what happens in the
interval between the removal of the shroud andshw, such as the rate of increase of pressure
in the center of the target due to the conductidmeat resulting from external radiation.

In 1954, early measurements of the thermal comndtycof deuterium were made by
Powers? The setup was of the parallel plate type, whess was deposited at a known rate at
one end of a cylinder containing deuterium andeekihrough a heat bath at the other end. The
temperature gradient across the cylinder was meddwyr a multiple-junction-difference
thermocouple. The experiment was prone to erraisidng heat flow into the walls (requiring
correction), convection due to the geometry ofdbieip, and lack of symmetry from the
intrusion of measurement devices.

First introduced by Cahflin 1986 and subsequently used by various aufffaitse 3»
methodmeasures thermal conductivity in a geometry wheeealvenues of heat flow are simpler
to accommodate than in previous methods. Thensasl@ss susceptibility to convection. The
method uses a wire or thin film as both a heatdraathermometer to produce and measure

temperature oscillations in a chosen medium.

Plastic /— Deuterium
/

/
/
,— Copper
Platinum Wire /] PP
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Y >

Figure 1.1 Diagram of the experiment. An osciligtcurrent is passed through the wire, and theags
across a portion of the wire is measured. The plastd copper are heat baths.
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In recent experimentsthe 3» method was used to determine the thermal condiyotif/
cryogenic deuterium. As indicated in Figure 1.pJatinum wire is embedded in deuterium. A
sinusoidal current through the wire deposits hatat the system. Heat exits the system by the
heat baths, which are set at the desired temperdthe time-averaged thermal equilibrium of
the system (“steady state”) is established aftared interval, after which the voltage across a
portion of the wire is measured. The temperatupeddence of the resistance of the wire results
in a small third-harmonic voltage, which has batiphase and out-of-phase components with
respect to the phase of the power. It is possiblietermine the oscillatory temperature from this
voltage. The temperature is out of phase with 8wllating power at high drive frequencies and
in phase in the limit as the frequency approackes. z

A computer program was built to model this expentm@&he model accounts for the two-
dimensional (2D) geometry of the experiment (thethermal conduction parallel and
perpendicular to the wire). It has been used terdehe the significance of the 2D effects and to
provide improved accuracy over the one-dimensi¢hia) numerical solutions, which ignore
heat flow along the wire, that were previously ugethodel experiment$.By matching the
predicted temperature amplitudes of the prograthéexperimental data, the thermal
conductivities of solid, liquid, and gaseous ddutarhave been determined.

2. Analysis of the & Method

This section shows how the amplitude of the tentpesaoscillations in the wire can be
determined from the experimentally obtained volsage

The resistance of the wire changes with the tenper&:

R=R,+a(T-T,), (2-1)

where R, is the resistance at temperatufg and a is a constantg¢ = dR/dT).
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The sinusoidal current applied to the wire cany@essed in complex form:
| (t) = 1, Sin(at) + | ., cOS(t) :% Te“ +1 e, (2-2)

where | is complex andl " indicates its complex conjugate. Generally, = afd lis

real. The temperature has a steady time-averagadament, T, (t) , and real and imaginary

components that are in phase and out of phasetlwathower, respectively:

T(t) :Tl(t)+%[fe2‘“ +T e8|, (2-3)

The temperature oscillates at the second harmsinice the poweR = | °R, brings in e*“

terms from (2-2). Using (2-1) to (2-3), the voltaggoss the wire is
= iw | T ia = o | = _dia
V(t) = | )R() =§[Ie e ]{RO +a{Tl(t)+§[Te +Te ]—TO}}, (2-4)

which can be written as

VO = Ve Ve 4 e o], (25
where \7w = ~R0 and \73w = %a‘I:T : (2-6)

The amplitude of the first harmonic voltage is pineduct of the current and the time-averaged
resistance, and the amplitude of the third harmeaitage is proportional to the product of the
first harmonic current and the second harmonic eratpre.

Dividing the two parts of (2-6) to eliminate ther@nt shows that the amplitude of the
temperature oscillation can be determined fronréalie of the third harmonic voltage to the first

harmonic voltage®**

Tz2VwlR (2-7)

a

8< 1‘<§<I
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3. 2D Computer Model

A 2D computer model was built to model the expemnin It was constructed in (R, Z)
geometry: perpendicular and parallel to the wiespectively (see Figure 2.1). The model
includes the platinum wire, deuterium, and the@umding heat baths.

The radius of the wire (74om) is small when compared to the radial width &f th
deuterium medium (1 to 3 mm), and hence a varialzie-grid was implemented in the
deuterium, wherein the radial widths of the cealisrease geometrically with their distance from
the wire. The cell widths in Z are kept uniform &f media. The average of the platinum and
deuterium conductivities is used as the condugtattthe platinum-deuterium boundary. There

is no heat flux across the lower boundary of tleiplm wire (the Z axis).

(@) (b)

R T Wall Heat Batl K

Deuterium

Side Heat Bath

—» Z
Figure 2.1 (a) A depiction of the computer model including cells used to solve the heat flow equatice Si
heat baths and the wall heat bath are named difitydor identification but function identicallyb A 3D
depiction of the model, where each cell is a ring.

The equation solved for each cell is

C‘Z—Immzw, (3-1)

where the heat flugQ is given by

Q=-«T. (3-2)
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HereC is the specific heat of the c€ll,is the temperature,is the thermal conductivity all is

the heat deposited per unit volume. This can be&slahs an initial value problem to give the full

solution of the form (2-3), or it can be solved fioe complex:l: in the “steady state,” in which
; . TA2iat _ T a-2iat
case dT /adt is replaced WltkE (2|a))[Te -Te ]

The initial value solution is given by

c%—[a] HOT'+ (1-6)0 KOT] =W, (3-3)

where At is the time step,T" is the temperature after the time step, &ds a numerical
parameter between 0 and 1. Whér=0, T' at each cell is given explicitly in terms of known
quantities. However, the smalkt necessary for stabilityrequires many time steps to reach
the “steady state”. Fod > 05stability is achieved however larght is'? The choiced= 1

is typically made. This gives a backward differeegeiation in which thET' terms couple the

unknown T' at each cell center to th&' at the four adjacent cells.

Whether the initial value solutioW () with 6 > 0 or the “steady state” solutioﬁT() is
required, a set of simultaneous equations resaitdéin be solved via matrix inversion (see
Appendix). The program constructs a quindiagoneffa@ent matrix that corresponds to a grid

of cells as illustrated in the simplified grid ofybre 3.1.

R
T 51619 12> Deuterium
2

518 |11
1 4 710 Platinun
—» Z

Figure 31 A simplified 34 grid.
For this grid, with the bottom row as the platinwine and the top two rows as the

deuterium, there is a corresponding12 quindiagonal matrix equation:
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where each box corresponds to a column in R &nddicates T or T..
The center diagonaB, addresses the relevant aefindg;, A, C,, and F, address

heat flow to the four adjacent cells. The powerpdied by the heat source is included iy,

and is nonzero only for platinum cells. The fuluatjons for the matrix are given in the
Appendix. The matrix equation (3-4) is solved ites@y using the Incomplete Cholesky
Conjugate Gradiefit method. This method was originally envisaged foreal quantities, but

was adapted here to handle all complex numbersconamodate the2ic. term inB; and
produce a complex‘ﬁ whose real and imaginary parts correspond to aseland out-of-phase.

4. Solutions
4.1 Platinum Wire in Vacuum

A set of experimental data for a platinum wire acuum was obtained to determine the
thermal conductivity and specific heat of the wideat flow is negligible in R and the problem
can be considered as 1D in Z. The program wastoesealculate 1D solutions in Z of the initial

value problem using (3-3) to show the time evolutd the temperature of the system.
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Figure 4.1 shows the temperature at the centdreofvire as a function of time. It takes
about 30 ms to reach the “steady state”, whichhiemthe measurements are taken in the

experiment. Also, it can be seen that the temperaiscillations are out of phase with the power.

300

250}
< s
é 200 ﬁ
@ 2
3 =
E 150 .E,
Q@ [
o @
£ 100} 20 2 Figure 4.1Graphs of the
- o

og & temperature in the center of thére
20 and the power against time for a
10 platinum wire in vacuum with tt

5 current oscillating at 100 Hz.

0 0.01 0.02 0.03 0.04
Time (s)

The spatial dependence of the 1D steady-statei@adualong Z is shown in Figure 4.2
for four frequencies from 1 Hz to 1000 Hz. The temgpure amplitude is zero at each end due to
the side heat baths. At different frequencies ¢neperature amplitudes along Z have distinctive
shapes, which can be understood in terms of theetpation depth™® (d) of the temperature
amplitudes. The penetration depth is a measurewffar the temperature oscillations penetrate

before falloff and is a function of frequency, timei conductivity, and specific heat:

K
2wlC

(4-1)

The penetration depth shortens as the frequenoydees because there is insufficient time for
the changes in temperature to be thoroughly trattesi

At low frequencies of 10 Hz and less, the tempeegpuofiles (Figures 4.2a and 4.2b)
maintain the arch shape, showing the relativelymlete penetration of the temperature changes.

The quadratic shape results from the maximum teatpes being at the middle of the wire.
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(@) 1 Hz.d = 13.3 mm (b) 10 HA = 4.22 mm
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Figure 4.2 Graph of in-phase and out-of-phase teaipee amplitudes against distance (z) along thaiplum wire

at (a) 1 Hz, (b) 10 Hz, (c) 100 Hz, and (d) 1000 Hhe penetration depths “d” are also given.

At 1 Hz, the power is oscillating at a sufficienlibyv frequency that there is enough time for the
temperature to change in phase with the powerlathtphase component dominates.

At the upper frequency range (100 Hz and gredteg)e is insufficient time for the
temperature gradient beginning at the heat batbgtend far into the center of the wire. This is
illustrated by the relative peaks in temperatur@légode near the heat baths at higher
frequencies (Figures 4.2c and 4.2d). Similar bedravas found in Ref. 8. It is also at these
frequencies that the imaginary component domintaseal component, and thus the
temperature becomes out of phase with the powseas in Figure 4.1.

Similar steady-state solutions were obtained oumoad range of frequencies, and the
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average temperature amplitude at each frequencyhbtaged by averaging over the platinum
cells between the voltage leads (see Figure 1HB.résults are plotted in Figure 4.3 with the
conductivity and specific heat chosen to best mttetexperimental data.

(a) £20% in platinum conductivity (b) £20% in gladm specific heat
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Figure 4.3 The in-phase and out-of-phase tempeeatdumnplitudes as a function of frequency. The mpulictions
are shown by the solid curves. The dashed cunms $R0% variations in (a) the conductivity and thg specific
heat of the platinum.

In the low frequency limit, the calculated temparatamplitudes are dominated by the
in-phase component, while the out-of-phase compdiaéia to zero. In the high frequency limit,
the out-of-phase component dominates, and the asgopbomponent falls to zero. The data is
evidently flawed at less than 10 Hz, since thehage component should approach a constant
and the out-of-phase component should fall to ZEhe. distinctive shapes of the real and
imaginary curves and the close agreement betweanaion and experiment above 10 Hz
allowed for the simultaneous determination of kb#rmal conductivity and specific heat. The
thermal conductivity and specific heat of the platn wire, assumed to be b in radius,
were determined to be 530 W/m-K and<d& J/n?-K, respectively, with an uncertainty of
about £10% since the curves in Figure 4.3 with t2@¥ations provide poorer fits. These
values differ from the literature values of 430 W¥mand 1.9810° J/nt-K.*

Changes of +20% in the platinum conductivity (Feydr3a) shift the temperature
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amplitude curves both vertically and horizontalhcreasing the conductivity allows heat to be
more easily conducted out to the heat baths, sgiftie curves down. The results do not depend
on conductivity in the high frequency limit. Chasg#f +20% in the specific heat (Figure 4.3b)
shift the curves horizontally. Increases in thec#eheat shift the curves to the left. The high
and low frequency limits remain unaffected. Theulissdo not depend on specific heat in the
low frequency limit.

There is, however, another uncertainty in theseestue to the uncertainty of the wire
radius, which was measured by a light microscop&&sm. Errors associated with diffraction
at the wire’s edge are on the order of the waveteafthe light, which is approximatelypdm
and significant in comparison to the radius. Amiteal fit can be obtained using the standard
values of thermal conductivity and specific hedh# radius is adjusted from 7uf to 8.4um
(a 12% increase). In the rest of this work, theréiture values will be used for platinum under the
assumption that the wire radius was 8.

4.2 Gaseous Deuterium

The 2D model is essential when deuterium is indudence heat can now flow in the R
direction. The 2D effects are illustrated in Figdré, which shows significant nonuniformity
along the wire at 10 Hz. The wire can barely basas it is just the inner 8udm.

The effects on the temperature amplitude due tsitteeheat baths in the 2D model are
gualitatively similar to those found from the 1D deb. The temperature amplitudes along Z
have the arch shape as in the 10 Hz case of FHgRbe The maximum [in-phase, out-of-phase]
temperature amplitudes have been reduced fromrii00130 mK] to [52 mK, 19 mK], because

the heat deposited in the platinum wire is condiigtéo the gas.
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(a) In phase AT (MK) (b) Out of phase AT (MK)

0 2 4 6 8 10 12 14 a . 2 4 6 8 10 12 14
z (mm) z (mm)
Figure 4.4 Temperature amplitudes for a platinumevim gaseous deuterium at 10 Hz split into (aphase and (b)
out-of-phase components.
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Figure 4.5In-phase and out-of-
phase temperure amplitudes as
a function of drive frequency for
a platinum wire in 21.0 torr of
deuterium gas at 20.9 K. The
solid line indicates that the wall
heat bath is at 3 mm and the
dashed line indicates 1 mm.
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From Figure 4.5 (similar to Figure 4.3 but for d=uim gas), the thermal conductivity of
deuterium gas was determined to be 0.0137 W/m-kghwik 37% greater than the value of
0.010 W/m-K quoted in Ref. 15. This fit was obtainéth a specific heat of 360 JIK, which
is 7.5% greater than the original of 335 J#n™ Despite being flawed at the low frequency
range below 1 Hz, where the imaginary componens gegative, the data is fit well by the
model.

The radial distance of the platinum wire to thelvaakat bath in the experiment ranged
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from 1 mm to 3 mm. Deuterium gas shows a signitigaretter fit with the wall heat bath at 3
mm (Figure 4.5). The effects of the wall heat bzth be isolated by examining the 1D solution
in R, disallowing heat flow to the side heat batheat is deposited in the platinum, flows across

the platinum-deuterium boundary into the deuteriang finally flows into the wall heat bath.

Figure 4.6 Temperature amplitud
against radius R in deuterium gas at
20.9 K. The blue and red indicate the
e wall heat bath at 1 and 3 mm,
respectively. Solid lines show 10 Hz
Out-of-phase and dashed lines show 0.1 Hz. In-
=20 phase amplitudes are positive and-

L 1 1 1 1 of-phase amplitudes are negative.
05 1 15 2 25

R (mm)
In Figure 4.6, the solid red and blue curves shwi temperature amplitudes along R

Temperature Amplitude (mK)
Y
o

with the wall heat bath at 3 mm and 1 mm, respebti\Since the penetration depth is much less
than 1 mm, there is only a small difference intdraperature profiles between the two cases.
The dashed curves are the same except that theefregis 0.1 Hz. The large penetration depth
at the lower frequency is disrupted by the wallthesh, causing the maximum in-phase
temperature in the 1 mm case [69 mK] to be sigaifity lower than that of the 3 mm case [84
mK]. The decrease in temperature amplitude thatitsefom decreasing the radial distance of
the wall heat bath is also seen in Figure 4.5. @wdyparts of the curves less than a certain
frequency threshold (~10 Hz) are affected, sineesthaller penetration depths at frequencies
above the threshold do not confront the wall hadh bThus the wall heat bath is sufficiently far

from the wire to not affect the value of thermahdactivity obtained from Figure 4.5.
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4.3 Liquid Deuterium

12

—h
(=3

1 Figure 4.7In-phase and out-of-
phase temperature amplitudes
as a function of drive frequer
for a platinum wire irliquid
deuterium at 24.3 K. The solid
lines indicate that the wall he
bath is at 1 mm and the dast
lines indicate 0.2 mm.

Temperature Amplitude (mK)
[#)]

10 10 10’ 10° 10 10
Frequency of Drive (Hz)

A comparison of predictions and experimental datdifjuid deuterium is shown in
Figure 4.7. The agreement is generally good, kibtit-of-phase data is suspect of premature
falloff at 10 Hz and less. In an attempt to expkhils behavior, the wall heat bath was moved
closer in the simulation, to 0.2 mm (dashed curvdsjvever, this fails to provide a convincing
fit, and the closest heat bath in the experimerst atal.0 mm. The distance of the wall heat bath
only affects the low frequency range. The structgen between 100 Hz and 1000 Hz is also
guestionable and may be due to a thin layer ofefncar between the platinum and the deuterium.
The range of good data between 10 Hz and 100 Hsudficient to determine both thermal
conductivity and specific heat. Yet a good fit veddained using the standard specific heat,
129%10° J/n-K, and the standard thermal conductivity, 0.135V®/. >
4.4 Solid Deuterium

From Figure 4.8, the thermal conductivity of saleuterium was determined to be 0.40
W/m-K, which is 46% greater than the original 0.2vV4n-K X This fit was obtained with the

standard specific heat of 56B) J/n7-K.'® The data is very good in the limited range, big th
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also contributes to uncertainty. Without a distiising shape such as seen in Figures 4.3 and
4.5, the conductivity and specific heat cannot dmtabsolutely determined, as different
combinations of conductivity and specific heat panduce the same fit.

5 T T T T

F Y

[ 5]

Figure 4.8 n-phase and out-of-
phase temperature amplitudes
a function of drive frequency for
a platinum wire in deuterium

ha

Temperature Amplitude (mK)

] solid at 18.6 K.
0 -1 1} 1 Fd 3 4
10 10 10 10 10 10
Frequency of Drive (Hz)
a) In phase b) Out of phase
@lnp AT (MK) (b) P AT (mK)
2
0.8 08
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E E
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o o I
L] 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
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Figure 4.9 Temperature amplitudes of solid deutarat 10 Hz split into (a) in-phase and (b) out-bkpe
components, showing the relative uniformity of terafure amplitudes in Z.

In solid deuterium, temperature amplitudes are rmorrm in Z (Figure 4.9) compared
with gaseous deuterium (Figure 4.4) because thdévely high specific heat of solid deuterium
results in smaller temperature amplitudes; thush#e flow along Z (proportional 83 /0z) is

much smaller.
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5. Summary

Improved values of thermal conductivity and spedifeat of cryogenic deuterium have
been obtained by a new 2D computer program andwsmenarized in Table 5.1. The program is
able to fit data sets for gaseous, liquid, anddssddéiuterium. The program has confirmed the
published values of thermal conductivity and spediéat for platinum. The 2D model provides
a more accurate representation than conventionaloliions, and has demonstrated that the 3
method can be applied to cryogenic deuterium. Tagtation of the Incomplete Cholesky

Conjugate Gradiefit method to use complex coefficients is believetdemew.

Table 5.1. Determined values of thermal condugtiaitd specific heat of deuterium, where valuesaieptheses
are previous best values obtained from Ref. 15.

Thermal Conductivity (W/m-K) Specific Heat (J/nt-K)
D, Gas 20.9 K 0.0137 (0.010) 360 (335)
D, Liquid 24.3 K 0.135 (0.135) 129x10° (129x10°%)
D, Solid 18.6 K 0.400 (0.274) 568x10° (568x10°%)

Future work should include the acquisition and gsialof improved experimental data.
There are some obvious problems with the datdnaercase of gaseous deuterium, there is a drop
to negative out-of-phase temperature amplitudesib&lHz, and in the case of liquid deuterium,
there is an unpredicted falloff below 10 Hz andictinre between 100 Hz and 1000 Hz. Possible
experimental improvements may be to increase thetsg range of the data and improve the
measurement of the wire diameter.

In spite of the problems with some of the data, ebshe data was found to be of good
quality allowing improved values of the thermal dantivity of deuterium to be obtained. These

values will be used to model cryogenic target baraand to improve target quality.
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Appendix
This section details the numerical “steady statditson of (3-1) and the calculation of

the quindiagonal matrix coefficients of (3-4). Igtating the heat equation (3-1) over the volume

of celli (see Figure A.1) gives
C..AV. % + [AS|(N)Qi(N) ~ASOQE +ASEQE - AS|(W)Qi(W)]:VVi AV (A-2)

whereCh,; is the specific heat of cellAS are the cell interface areas, ak is the cell volume.

(a) Interior point (b) Boundary point
. (N)
i+1 i-NR Q% iR IAr.(N)
A = »
><Q.(N) >< Qi(w>< " Qi(E)><
Ar™ A" fQi ‘
' i-NR i i+NR i1
A\ - |
I X X X X
(S
Ari(s) $Q|
-1 < > < >
Y >< Az Az

Figure A.1 (a) A typical interior cell with the &eflow Q into its four adjacent cells. (b) A depa of a point on
the wall heat bath. NR is the number of cells & Rhdirection.

Using T(r,zt) =T(r,2)e?“ which differentiates to—%-[ = 2 wTe?™ (A-3)
— N T T
QM = ki Ty =) , etc. for interior points (A-4)
! Ar™
kN Oo-T
QM :w, etc. for boundary points, (A-5)
I ArI(N)
one finds

AT AV, - |5 (T, ~T) =80T ~T ) + 3O [ e ~T) = 3™ (T =T e)]

_[g00 (T —Fy = gOF T y4 5O F Ty g0 (T —F\|l2w Ay (A-6)
|80 T, -T) - BT -Ty) + B2, -T) - B (T, - T)| =wiav,
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where
(N) - (N) (S) . (S) (E) . (E) W) . (W)
' Ar®™M ArS T Az Az
B = AS™ /N(i(N) L B9 =0, B = ASE k() AW = ASWx W) (A8)
Ar™ Nz/2 Az]2

Here AS™ is the surface area of the interfaoe(") is the thermal conductivityT, =0, and
Ar, and Az are the distances between cell centers in R anesgectively.

The terms o, represent the heat flow across interfaces betwygecal (interior) cells
while S represents the heat flow across boundaries. Thestd, and S for each interface

are exclusively chosen, i.e., one must be zeror€eTiseno heat flow across the lower boundary,
since it is the exact center of the symmetric cginof the 3D depiction of the model (Figure
2.1b). The fluxes across the east and west sidebhéas are represented similarly to the wall
heat bath, except thahz /& the distance in Z from the cell center to tide ieat bath.

Equation (A-6) can be expressed as

Eifi—NR + Afi—1 + Bi-Fi + Cifi+1 + FianR =D, (A-9)

where E, =-¢" (A-9.1)
A =-50 (A-9.2)

B, = 2wWIC, AV, + 3™ + 3 + 3 + W + M 4 gO 4 g® 4 W) (A-9.3)

Cc =-oM™ (A-9.4)

F =-5® (A-9.5)

D, =WAV, (A-9.6)

The system of simultaneous equations forms a qaguaial matrix equation (3-4) that
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can be solved by Kershaw's iterative ICE@ethod, adapted to provide complex solutions for

T,. In 1D cases, a pair of diagonals becomes zetbttematrix equation simplifies to a

tridiagonal matrix that can be solved easily. Witimor modifications to (A-9.1) to (A-9.6), the

initial value equation (3-3) can also be solved.



