
Implementing a Knowledge Database for Scientific Control Systems

Daniel Gresh
Wheatland-Chili High School
LLE Advisor: Richard Kidder

Summer 2006

Abstract

A knowledge database for scientific control systems is a
powerful tool that allows users to obtain comprehensive
information from a single source. A Semantic Web implementation
of a knowledge database is intelligent enough to recognize what
the user wants to know and present the correct information back
to the user. A solid foundation for such a Semantic Web database
has been built using the Java programming language, as well as
the XML, RDF, OWL, and SPARQL languages. Using this database, a
user may already obtain specific, detailed information regarding
any aspect of the OMEGA EP Control Systems in an efficient
manner from a single source, as opposed to searching through
numerous technical and design documents. This foundation of the
Semantic Web implementation covers Oracle/SQL, as well as the
XML/RDF/OWL/SPARQL aspect.
 The potential for such a database implementation is
substantial. Upon completion, the database will automatically
gather information concerning scientific control systems,
organize it in an intelligent manner, and present intelligent
results back to a user when he or she asks the database a
question. Further research into the concept of this Semantic Web
implementation will lead to automation of data-gathering; a
basic form of artificial intelligence; a single repository for
important subject data; and the ability for users to input their
own information to expand the database.

Introduction

The Semantic Web

 The Semantic Web is a vision for the future of the Web and
for the future of information exchange. Rather than simply
having information presented to humans, information will be
processed in a way that makes it easier and more efficient to
find.
 In the Semantic Web, metadata, or “data about data”, is
very useful, as it allows machines to process information rather
than present information. By processing information, a machine

1

is able to gather enough useful information to solve problems,
which greatly assists any users of such a system.

Due to this ideal, a Semantic Web implementation of a
knowledge database will allow a user to find exactly what he or
she is looking for with minimal effort and high efficiency, as
the information in the database will be processed so the
database can present the user with the correct information.

Background

LLE has gathered an enormous amount of data and
documentation since the start of operations. This data is
currently spread over a number of different repositories.
Currently there are several hundred active control subsystems,
all of which gather and record subject data, which is documented
in many ways and stored in one of the data repositories.

The current data repositories include the Product Data
Management (PDM) system, word documents, spreadsheets,
databases, images, schematics, and events in onboard control
memory.

The current PDM system consists of a few general subtopics
for the included documents, and then displays links to all the
documents, which a user can click on to view a certain document.
The PDM system also includes a simple Google search box in which
a user can search for certain keywords, and a Google search will
be performed on the numerous documents, returning the most
relevant documents to the user.

The Oracle database is simply a store for all the data and
image information related to OMEGA and OMEGA EP shot operations.

Spreadsheets and other documents are often isolated on
personal office workstations.

Purpose of the research project

Easily retrieving data from one or any current LLE
documentation requires expert knowledge of LLE infrastructure
and of the subsystem. For a user to retrieve data using the
current system, he or she must follow a number of steps.

For example: the user must determine which data source to
browse for the information. The user must already know if the
data he or she is looking for is located in the PDM system, or
if the data is located in the Oracle database. If a user does
not know which one of these sources the data is located in, he
or she will have to browse through both databases, which is very
tedious.

Second, the user must know where to find the data in a
certain data source. If using the Oracle database, the user will

2

need to know which table he or she wants to pull information
from. If using the PDM system, the user will need to know which
document the information is located in. Otherwise, more tedious
searching is required.

Third, the user must parse through the document or table he
or she selected, and retrieve the correct data. While this is
not a big problem with the Oracle database, it can be very
problematic when using the PDM system. Not only does the user
need to wade through numerous technical and design documents, he
or she must parse the documents manually and extract the correct
information. This may lead to even more tedious searching, as a
document may not have the specific information a user is looking
for, and he or she will have to parse through another document.

Purpose of a knowledge database

 A Semantic Web implementation of a knowledge database helps
solve this problem by organizing data into a hierarchical
structure in which data is organized conceptually and is related
to other data through conceptual means. This is also known as an
ontology.

After organizing the data in this fashion, the data is
stored in a single repository, from where it can be extracted
easily. Important data from all sources -- e-logs, technical
journals, requirements documents, etc. -- is stored in one
location in an organized manner, rather than having the data
spread over multiple data sources in which the data is loosely
organized.

Furthermore, the data is easily extractable. Rather than
manually parsing through numerous documents or tables in a
database, a user is able to easily navigate to whatever concept
he or she is interested in and view all the related data
pertaining to that concept. Also, the Semantic Web
implementation enables the user to search the knowledge database
using freeform text, or natural language.

Figure1: The World Wide Web Consortium Semantic Web Framework (http://www.w3.org/2001/sw/)

3

As seen in Figure 1, the Semantic Web has many different

building blocks. The basis of the Semantic Web is formed with
URI/IRI, or resources. The resources are then structured in a
certain way using XML and XML namespaces so the resources can be
processed by machines. Then, XML Query and XML schema allow the
data to be further refined and queried by providing a slightly
more rigid structure; this rigid structure assists XML Query to
find information. Finally, using RDF and OWL, which refine the
data into an ontological structure, logic and proof are
established, which allows machines to draw inferences from the
resources, leading to a trusted, stable Semantic Web.

The knowledge database also lets users input their own
information. The knowledge database receives manual input, and
recognizes when an update to a document or e-log has been made,
and reacts accordingly. For example, if a technician makes an
entry into an e-log, or an engineer creates a new design
document, the knowledge database recognizes this event, obtains
the important information from the entry or document, and stores
it in the database accordingly.

A Semantic Web implementation is a universal system for
processing information. One of the many advantages a knowledge
database of this structure has is the ability to connect to
other knowledge databases and incorporate that knowledge into
useful information. A database of this structure is able to not
only contain important subject information from local sources,
such as LLE control systems, but also gather and use data and
information from external, related sources, further improving
efficiency.

A knowledge database of this fashion has unlimited
potential for expansion and upgrades. It is a universal
repository for important information; this information can be
easily extracted due to the data being stored in a machine-
readable format.

Furthermore, the tools required to build a knowledge
database of this fashion are very easy to acquire and easy to
use. Also, the majority of the tools used for this work are
open-source tools (free for anyone to use and develop). One of
the tools used for this work was not open-source; however it is
possible to create a knowledge database with an open-source tool
that provides the same features.

The goal of this project was to build a strong, working
foundation for a Semantic Web implementation of a knowledge
database. This goal was accomplished; an RDF/OWL database was
created using Java and the Jena development package for Java,
and it is queried using SPARQL through Java and Jena.

4

Research and Analysis

Researching the implementation of a knowledge database that
would store the data in a single repository required choosing a
small subset of controls. A few diagnostic and control
subsystems were chosen for the test case. Much of the
implementation used the Calorimeter system.

Preliminary research and analysis

 One of the goals of this project was to analyze methods for
creating a knowledge database, and decide which method would
work best for the project. Then, the appropriate techniques and
tools would be used to create a strong foundation for the
knowledge database. Furthermore, the research and analysis was
to be done independently. Any tools and/or methods could be
chosen that would create a knowledge database in the most
efficient manner.
 Initially, fourteen different languages were investigated.
Eleven of them are listed in Table 1, together with their
purpose, and the reason why they were or were not selected for
use.

Many different tools and software packages were analyzed
that might be useful, including Altova SemanticWorks, Protégé
OWL, Jena, Lixto, Inxight, Evermap, Adobe Online Tools, KAON,
JTP, Twinkle, Metadata Miner, Pellet, Omnipage, PDF Extraction,
PDF to all, PDF Extractor API, pOWL, OWL API, PDF Metadata,
VorteXML, and XML Army Knife. Tools were looked at for writing
RDF/OWL, for performing SPARQL queries, for writing PHP, and for
extracting data from documents.
 Developing a data mining tool was a large concern. In order
for quality, reliable data to be extracted from the numerous
documents and sources that exist at LLE, some type of extraction
tool would have to be developed. To determine how to create such
a tool, the field of data mining and extraction was
investigated. Studies of data mining and extraction methods led
to one conclusion: the tool would have to be custom developed
specifically for LLE; a pre-existing data mining tool would not
work. This tool will be the subject of future work.
 The World Wide Web Consortium (W3C) Web site proved to be a
very valuable source of information,1 in particular on the
languages of RDF, OWL, XML, and SPARQL. Work related to this
project is found in Refs. 9-12.

5

Language Used? Purpose Reason
XML Yes Structure basic

elements and
resources

XML is the basis
for RDF/OWL

XPATH No Navigate through
XML documents

Navigating through
XML with XPATH is
not needed

XSL/XSLT No Transform XML into
XHTML for
readability

Presenting readable
XML is not needed

XHTML No Design web pages
with a stricter
syntax than HTML

Database foundation
was built in a Java
GUI; no web page
was needed

PHP No Server-side
scripting language

Java has more
resources for
writing RDF/OWL

RDQL No Querying RDF data Replaced by SPARQL
DAML/OIL No Designing ontology

structures
Replaced by OWL

XQUERY No Querying XML
documents

Not needed; SPARQL
was used to query
RDF/OWL

RDF Yes Describing
resources

Provides basic
structure for
ontology

OWL Yes Relating resources
to each other

Defines
relationships
between resources
in ontology

SPARQL Yes Querying RDF/OWL Queries RDF/OWL
ontologies and
extracts data

 Table 1: Analysis of languages considered in this work

RDF/OWL and the Semantic Web

 Using the languages of eXtensible Markup Language (XML),
Resource Definition Framework (RDF), and Web Ontology Language
(OWL), information and data in the Semantic Web will be
organized in a structured manner in formats called ontologies.
Ontologies have the ability to organize data and present it in a
manner so that machines can draw conclusions and inferences from
the data.

6

 The Semantic Web is not pure artificial intelligence.
Rather, as previously stated, it will use data that can be
processed by machines to solve questions and perform tasks.
 The three “main” languages that the Semantic Web concepts
are based upon are XML, RDF, and OWL. These languages work
together to describe resources and relate them to each other so
that machines can process the information. These languages do
not exist to provide information to humans, but rather to
provide information to machines, so the machines can then
determine what information is useful to provide to humans.
 By structuring the resources using RDF/OWL and creating an
ontology, numerous resources can be related to each other so
they can easily be processed by a machine. An example of such a
use is shown in Figure 2, which represents a small subset of
OMEGA EP control systems. “IR Cal System” forms the base for the
subtopics under it. These subtopics branch off into many
different subtopics. However, due to the reasoning capabilities
of RDF/OWL ontologies, although a subtopic such as “TSF Cal 1”
may be a direct subtopic of “TSF Cals”, a machine can reason
that “TSF Cal 1” is also a subtopic of “IR Cal System”.

Figure 2: Structure of resources.3 Cal: Calorimeter; GCC: Grating Compression Chamber; UC: Upper
Compressor; LC: Lower Compressor; TSF: Transport Spatial Filter; SPPOL: Short-Pulse Polarizer;
POL: Polarizer

 RDF is structured as a series of graphs called “triple
graphs”. These triple graphs, or triples, are what make it
possible for machines to process RDF. A triple is a basic
description that is read in the form: subject, predicate,
object. For example, one could use RDF to specify the title and
author of a certain book, by creating a triple with subject
Example Book; predicate author; and object John Smith. This
would then be read: the author of Example Book is John Smith.

7

 Triples are instrumental in creating a database structure
for LLE data. By using the triple format, data is stored in RDF
where it can easily be extracted with SPARQL. For example, by
creating a triple with subject “SPPOL Calorimeter Location”;
predicate “information”; and object “The SPPOL Calorimeter is
located between beamlines 1 and 2”, one could read: the
information of SPPOL Calorimeter Location is, “The SPPOL
Calorimeter is located between beamlines 1 and 2”.

Planning and Design

Preliminary design

 Java was chosen as the language to program the database.
The database had to be flexible, easily modifiable, and
transportable across the Web to a variety of operating systems
for easy access.

Java is an object-oriented programming language. In other
words, an application is a series of individuals, or objects,
rather than simple commands to the computer.3 Using Java it is
relatively simple to keep a database structure organized and
functional.
 Java provides a simple, object-oriented structure, whereas
PHP does not. PHP is a server-side scripting language. There are
tools available that allow RDF/OWL ontologies to be built using
PHP, but Java’s object-oriented nature allows the RDF/OWL to be
built in a more efficient, modifiable manner.
 Furthermore, there are more resources available to assist
in building RDF/OWL ontologies with Java than there are with
PHP. RAP, the most common PHP development kit for writing
RDF/OWL, has far less support and usage than Jena, the most
common Java development kit for writing RDF/OWL. Because of
this, using Java allows the programmer to learn the structure
and functions faster, resulting in greater efficiency.

Tools

 To develop an RDF/OWL database in Java, the Jena
development package was used9. This is an external library for
Java that allows for the programming and development of RDF/OWL
databases. Jena also has support for the SPARQL querying
language in its Application Programming Interface (API), which
greatly assists when performing SPARQL queries against the
RDF/OWL database.
 Furthermore, some free tools were downloaded that would
allow for the easier development of a Java application to create
an RDF/OWL ontology. These include the Eclipse and Netbeans

8

Integrated Development Environment (IDE), as well as the Pellet
OWL DL syntax checker/reasoner. A reasoner for OWL is a tool
that determines how many inferences can be made from the
ontology.

Current Design

 Figure 3: Database Design3

 Figure 3 depicts the structure of the Semantic Web
implementation. Java acts as the backbone for the knowledge
database. From Java, a Graphical User Interface (GUI) is
displayed, which contains access to the RDF/OWL and Oracle
portions of the database. From there, resources and information
pertaining to control systems, and resources and information
related to OMEGA EP operations, are respectively displayed.
 To create a solid structure, numerous Java classes were
created. Java classes allow for simple portability and ease of
coding. Having the entire application divided into a number of
classes will also assist future programmers in learning the code
and structure.

There are a few basic classes. One class creates the
RDF/OWL ontology. Another class performs queries against the
database, and another creates a GUI to display the information.
In the future, many classes will be added, and the current
classes will be refined into easier-to-use classes.

9

Current Status

Currently, a strong foundation for the database has been
created, and a working, functional prototype of the database was
successfully demonstrated. The database is currently a simple
Java Archive (JAR) file for ease of use, and will be uploaded to
the local intranet.

Figure 4 shows the structure of the graphical user
interface for the Semantic Web Knowledge Database. A simple tree
diagram is contained on the left side that allows a user to
select the topic he or she desires. When the user clicks on a
certain topic in the tree diagram, the information associated
with that topic is displayed, as shown in Figure 4.

Figure 4: The Semantic Web knowledge database GUI

The Java code for the database has been created in such a

way that it will be very easy to modify and expand upon. The
code for the database has unlimited potential to evolve and
expand, allowing multitudes of new features (see next section).

10

An ontology in OWL Full, for maximum ease of use, has been
created that stores data about a small section of control
systems: calorimetry. A GUI has been created that allows for
easy searching of that database. Functionality has been added to
the database that allows it to search the Oracle database about
OMEGA EP operations.

The user currently browses through the information in the
ontology by using a tree diagram. When the user selects a
certain node on the tree, a SPARQL query is executed against the
RDF/OWL ontology, which returns the necessary information and
presents it to the user. The tree diagram allows the user to
easily specify the information he or she is looking for, and
view it in a simple, efficient manner.

Future Features

 As the project moves forward, additional features will be
designed and implemented. Further research into the field of
artificial intelligence and the Semantic Web will lead to more
advanced features that can be implemented at LLE. Much of this
research may take place at MIT’s Computer Science and Artificial
Intelligence Laboratory, where extensive research is already
being done.
 In the coming year, a user will be able to enter freeform
text questions into the database and receive the correct answer,
rather than using a tree diagram. The database will gather all
information automatically and will eliminate redundant
information. Also, it will organize the gathered information in
an ontology, where it can be structured in an intelligent
manner. There will also be the ability for users to enter their
own information into the database, expanding it with important
information. The database will be able to recognize what
information is important or not, and take action accordingly.
 The database will be a single repository for important
information. Rather than having numerous sources for data, all
data will be stored in one central location where it can be
easily and efficiently extracted. The database will have the
ability to be expanded and upgraded to fit any reasonable need,
and ultimately improve our knowledge of control systems and
other important areas.

Acknowledgements

I’m excited to continue this fascinating project during my
senior year at Wheatland-Chili High School. I thank LLE – in
particular, Richard Kidder, Robert McCrory, and Stephen Craxton
– for giving me this wonderful opportunity. I would also like to

11

thank Ivan Herman, the director of W3C’s Semantic Web Activity,
and Jim Hendler, a professor at the University of Maryland, who
is a chair on W3C’s Semantic Web Activity, for their assistance
during the course of the summer.

References

1. http://www.w3.org/
2. http://en.wikipedia.org/wiki/Object-oriented_programming
3. PowerPoint presentation on the summer research project:

http://www.seas.rochester.edu/~gresh/dangresh/DGreshRev3.ppt
4. http://www.w3.org/2001/sw/
5. NASA ScienceDesk white paper:

http://ti.arc.nasa.gov/publications/pdf/ISWC-
04%20SemanticOrganizer%20Paper%20pub.pdf

6. Additional notes and design ideas from notes taken over the
summer: http://www.seas.rochester.edu/~gresh/dangresh/LLE
_Semantic_Web.pdf

7. MIT’s CSAIL Decentralized Information Group Semantic Web
Projects: http://dig.csail.mit.edu/

8. Jena: http://jena.sourceforge.net/
9. Personal Publication Reader: http://www.personal-

reader.de/semwebchallenge/sw-challenge.html
10. NASA ScienceDesk: http://sciencedesk.arc.nasa.gov/
11. Platypus Wiki: http://platypuswiki.sourceforge.net/
12. Swoogle: http://challenge.semanticweb.org/

12

	Preliminary research and analysis
	Planning and Design
	Current Design

