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Abstract 

 Optical Time-Domain Reflectometry (OTDR) refers to the return of light back 

through the laser after it is fired.  The OTDR device at the laser source is used to track the 

return signals of that light. When a shot is fired, the laser beam passes through several 

optical components on its way to the target chamber. When passing through each optic, a 

small amount of the laser is reflected backwards through the laser. Anti-reflective 

coatings help reduce the reflection, but if they malfunction, a significant percentage of 

the laser's power can be lost. When the reflected signals arrive back at the laser source, 

they are recorded by the OTDR. A computer program has been written to handle the 

OTDR data on the new OMEGA Extended Performance laser. The program finds all the 

return signals and if there is an unexpected spike, it will identify which optic it came 

from. The program produces a user-friendly display of all reflected signals to allow easy 

interpretation and corrective action. 

 



   

Introduction 

The Research Project - Purpose and Rationale 

 The research topic involving computed optic failure identification using Optical 

Time-Domain Reflectometry (OTDR) was chosen because there was no existing method 

on the current or new laser to easily identify which of many optics had failed and needed 

to be replaced in order to maintain peak system transmission of light to the target.   

Knowing which optic has failed will minimize system down time needed to identify and 

replace failed optics and to maximize energy on target for each experiment using the 

laser(s).    When system down time is minimized, the number of shots per unit time 

increases.  This allows more experiments to be conducted.  When energy to the target is 

insufficient, certain experiments cannot be conducted at all or will need to be repeated.  

In general, progress in support of the laboratory’s mission is diminished if on-target 

energy is insufficient or if a reduction in the number of shots is encountered.  The ability 

to quickly and correctly identify the specific optic that has failed is important to the 

success of the laboratory.  The research project deliverable meets this need for the new 

laser and closes a gap in the capabilities of the existing laser.   

 The research project consists of two major components: Optics and Software.  

 

 

OMEGA Extended Performance (EP) 

 The OMEGA EP laser will provide the Laser Laboratory with a new resource to 

explore research into laser-driven fusion in order to obtain a cheap and renewable source 

of energy. This new laser is built tangent to the existing OMEGA laser; the two lasers 
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will work together to perform experiments neither could do alone. The new experiments 

possible with the OMEGA EP laser will advance science towards the ultimate goal of 

achieving fusion, most directly through experimental support of the National Ignition 

Facility under construction.   

 The OMEGA EP laser uses a new multi-pass architecture, which means that the 

light from a single laser shot is reflected so that it passes through the same optical 

components, in particular the amplifiers, multiple times. This is much more efficient than 

passing through different, identical optics, and results in a very powerful laser by the time 

it hits the target. 

 Figure 1.0 below shows the path of the laser beam from the source to the target.  
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        Figure 1.0 Omega EP laser light path  

 

RP0 = Laser Source   POL = Polarizer  CEM = Cavity End Mirror 

TSF = Transport Spatial Filter  PEPC = Pockel Cell 

BAMP = Booster Amplifier  SPPOLS = More Polarizer 

FM = Fold Mirror   CSF = Cavity Spatial Filter  

MAMP = Main Amplifier   DM = Deformable Mirror 
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Optical Time Domain Reflectometry  

 When the laser beam passes through the optical components of the OMEGA EP 

laser, small amounts of light are reflected back through the laser towards the laser source. 

While the percentage of the beam normally lost per optic is small, by time the laser beam 

hits the target, the beam could have passed through enough optics that there could be 

insufficient energy left in the beam.  If an optic is damaged or has failed, the on-target 

energy could be severely diminished.  

 Anti-reflection coatings can reduce the amount of reflected light to an 

acceptable amount of 0.05% per optic. However, during a shot, an immense amount of 

energy is fired through the laser, meaning that over time, some coatings may become 

damaged. When this happens, the light reflected by the damaged optic is greatly 

increased, resulting in the needless loss of energy. This situation could impact the success 

of the experiment and the ability of the Laser Lab to ultimately achieve its mission.  

 To keep track of the reflections back to the laser source, a detector and 

oscilloscope are installed at the point of laser beam initiation. The oscilloscope produces 

a signal of the light coming back through the laser (amplitude vs. time) that can be read to 

determine if all reflective coatings and optics are working properly. If an optic is 

malfunctioning, there will be a large unwanted spike in the graph, representing the 

increase in reflected light. 

 By noting the time that the spike occurred, a computer program can determine 

which optics are causing the high return signals and display them to the user. Once 

identified, the damaged optic can be replaced or repaired so that the beam no longer loses 
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a critical amount of energy.  Figure 2.0 below shows an example of how reflected light 

from a lens occurs.  

            

  Figure 2.0 Lens Based Reflected Light Opportunities 

Method 

 Data Tables 

 Data containing the future spatial placement of the optical components of the 

EP laser were available at the beginning of the project. They were used to fill the 

database that the computer would use when calculating the sources of the return signals 

in the laser. 

 

MATLAB 

   The program used for the creation of the Graphical User Interface and 

calculation of sources was written using MATLAB M-files and GUI editors. All code 

was written in the MATLAB language. 
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Optical Analysis 

 Optical Time Domain for Equal Path Scenarios 

 When the laser is fired, every optical component that is passed through along 

the way to the target has the potential to generate a return signal that would make it back 

to the laser source. Lenses have the greatest probability to create such signals. The most 

common way that light is reflected backwards through the laser is called an equal-path 

scenario. This means that the light will hit the optic, and its reflected inbound path to the 

detector (the path taken to get back to the laser source) will retrace its outbound path 

from the source (the path originally taken to reach the optic). 

 In order to predict when such possibilities may reach the oscilloscope, the time 

delay for the light to reach any given optic must be doubled; the resulting value accounts 

for the time taken to travel the inbound and outbound paths (which are equal) and thus 

accounts for the total path. This calculation was performed for each optic so as to create 

the time-based values for the return signal for every equal-path scenario. 

 

 OTD for Unequal Path Scenarios 

 While most cases for the return of laser light are equal path scenarios, there are 

specific cases where the paths of the outbound beam and the inbound beam are unequal. 

This occurs because of the multi-pass architecture of the EP beam path. Since the multi-

pass system causes the laser beam to pass through the same optics multiple times, 

returning laser light could end up 'bouncing' around in the laser cavity. This creates 

scenarios where the inbound path is greater than the outbound path. Also, there are 

scenarios where the returning light's inbound path is less than the outbound path. For 
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example, if the laser was on pass 3, passing towards the Deformable Mirror for the 

second time, but was reflected, it could follow a short path directly back to the laser 

source. 

 This bouncing creates possibilities for the laser beam to arrive at the laser 

source at unusual times. For example, if the laser bounces around the cavity and finally 

arrives back at the laser source at 1000 ns after the shot, but there is no optic at 500 ns 

delay, this then represents situation of unequal inbound and outbound path lengths. 

Figure 3.0 shows an example of an unequal path scenario.  

             

             Figure 3.0 Unequal Path Scenario 

 

 The number of lenses that the laser beam passes through limits the number of 

unequal path possibilities. Because there are a total of ten passes through lenses, there are 

only ten cases where an unequal path scenario could occur. For each of these ten, the path 

the bouncing light would follow was traced, and the total time delay of the new path was 

then calculated. The results of these calculations were then added to the program's 
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database, so that when unequal path scenarios occur, they do not confuse the program. 

Instead, it recognizes the arrival times of those ten cases as what they are. For example, if 

case 7 results in the laser beam returning at 1250 ns, and case 7 occurs, the program 

recognizes the 1250 ns to mean that case 7 has occurred. 

 Some of the unequal paths overlap in expected return times. This is because the 

inbound path of one scenario is often equal to the outbound path of another and vice 

versa, resulting in two possibilities. If this happens, the program will list both possibilities 

for investigation. 

 Finally, the reflections measured at the detector will only be those of primary 

reflections of equal and unequal path lengths. In other words, any signal from secondary 

or more reflections will simply be too small to measure and in any event, would be below 

the threshold of interest.  

 The finished database contains the data for all equal path scenarios, along with 

all ten unequal cases. Thus, the program has knowledge of every predictable scenario in 

which laser light may find its way back to the laser source. Using the data from the 

oscilloscope after a shot, the program will use the database to calculate where the return 

signals came from by comparing the time delay of the return signals to the list of return 

signal possibilities in the database.   In the unlikely event that an unforeseen reflected 

return time is obtained, the program will list the return time and indicate a need for 

further investigation.  
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Software Development 

 Iterative Process 

 The approach to developing the software was a highly planned and iterative 

method. Before any code was written, the requirements were analyzed to determine what 

exactly the end program needed to do. Then, elements of the program were planned to 

specifically meet those requirements. After those elements were designed, they were 

compared to the original requirements to see whether the requirements were indeed being 

met. Only then was code written. After the code was complete, and at several steps along 

the way, it was again checked against the original requirements to make sure the program 

was going to do what it needed to do. This iterative process is known as the RUP, 

(Rational Unified Process) method of programming. It resulted in the end-product-

program doing exactly what it was meant to do.  Figure 4.0 shows a flow diagram of the 

Rational Unified Process.  

                 

           Figure 4.0 Rational Unified Process 
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 Creation of OTD Databases  

 Data was inserted by rows into a database where information on each optical 

component is stored. Information such as component ID, component label, and time 

delay were kept for each component. When the program accesses the database it gains 

knowledge of the entire laser beam system because it contains all vital information on all 

components of the laser. 

 

 Internal Working of the Program 

 After each shot from the laser, the OTDR program will be launched. It will 

establish a connection to the database containing time delay data. For each return signal, 

it compares the time of the return to the times in the database and looks for matches. The 

matches are where the program calculates the return light to come from. 

 

 Output 

 The end output of the program is a graphical user interface that displays a graph 

of amplitude vs. time of return signals for each beamline (total of four graphs) and a table 

summarizing the signal spikes and their likely origin. Also, the GUI has several buttons 

that allow for commands, like saving all of the data for the past shot in an .hdf file for 

future reference, or loading the data for those past shots to be viewed again. 

 The program allows for user customization of the display. Each optical 

component has a corresponding “tick mark” on the graphs. The tick marks can be toggled 

on or off by the user. The tick mark toggle changes the appearance of the graph in such a 
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way as to visually align the tick mark with the spikes to more readily discern which 

components are the causes of the return signals.  Figure 5.0 below shows the output of the 

program that facilitates user understanding and interpretation of the results.  

  

 

  Figure 5.0: GUI Output with graphs and table of return signals. 
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Future Work 

 The next step for the OTDR project is to add features that allow the estimation 

of the magnitude of possible return signals. This will tell whether the return signals 

present a threat of damaging the laser.  

 Also, the same OTDR program built for the OMEGA EP laser will be 

implemented on the original OMEGA laser. Once the OMEGA laser components are 

entered into their own database, the program will do for OMEGA exactly what it is 

planned to do for OMEGA EP. Therefore, the program benefits both laser systems.    

 

Conclusion 

 Reflected light from optical components in the OMEGA EP laser represents a 

significant barrier to the Laser Lab goal of supporting laser driven fusion research. It is 

minimized to an acceptable degree by anti-reflection coatings, but these coatings can 

wear out and fail over time. The OTDR program was created to be able to tell if an 

optical component is malfunctioning so that it can be isolated and replaced. By 

minimizing the reflections, light loss is minimized, meaning that the laser beam will hit 

the target at near full power, with no damage to the OMEGA EP laser. 
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